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Abstract: Recently, the scientific community has witnessed a substantial increase in the generation
of protein sequence data, triggering emergent challenges of increasing importance, namely efficient
storage and improved data analysis. For both applications, data compression is a straightforward
solution. However, in the literature, the number of specific protein sequence compressors is relatively
low. Moreover, these specialized compressors marginally improve the compression ratio over the
best general-purpose compressors. In this paper, we present AC2, a new lossless data compressor
for protein (or amino acid) sequences. AC2 uses a neural network to mix experts with a stacked
generalization approach and individual cache-hash memory models to the highest-context orders.
Compared to the previous compressor (AC), we show gains of 2–9% and 6–7% in reference-free and
reference-based modes, respectively. These gains come at the cost of three times slower computations.
AC2 also improves memory usage against AC, with requirements about seven times lower, without
being affected by the sequences’ input size. As an analysis application, we use AC2 to measure
the similarity between each SARS-CoV-2 protein sequence with each viral protein sequence from
the whole UniProt database. The results consistently show higher similarity to the pangolin coron-
avirus, followed by the bat and human coronaviruses, contributing with critical results to a current
controversial subject. AC2 is available for free download under GPLv3 license.

Keywords: lossless data compression; protein sequence compression; context mixing; neural networks;
mixture of experts; coronavirus

1. Introduction

One of the most demanding challenges in data compression is related to the lossless
compression of protein (or amino acid) sequences. These sequences’ origins follow the
gene expression process, from DNA to RNA, to make a functional product: a protein.
The first phase is transcription, where the information in every cell’s DNA, possibly non-
contiguous, is converted into small, portable RNA messages. Symbolically, only the T
symbol is transcripted in U from the 4-symbol DNA alphabet (A, C, G, T). The second phase
is the translation, where each triplet of RNA is encoded into one of the twenty possible
amino acids. Here, it is essential to remember that a different triplet can create the same
amino acid and, hence, it is a lossy encoding process. Finally, a specific chain or set of
chains of amino acids establishes a protein.

Although proteins have a three-dimensional (3D) structure that reshapes over time,
they are usually represented in FASTA files as a (static) 1D string of characters. Therefore,
structural correlations between similar parts need to be modeled to extend compression
gains. These involve the beta-pleated sheets, alfa-helix, side-chain interactions, and possible
combinations of multiple amino acid chains [1]. Recent developments in protein folding
have shown that high structural prediction can be achieved from the DNA source [2].
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However, for coding applications, time constraints and the use of side information provides
additional challenges. In addition, extra challenges are presented when modeling protein
sequences without information of the DNA sequence (which is the case in this article)
and, hence, relying on the product of a process that may contain errors and imprecision at
several phases. Therefore, data compressors need to consider protein sequences containing
extra symbols to represent ambiguity, error, indecision, or incompleteness [3].

The main purpose of data compression is to reduce storage and increase transmission
efficiency, specifically requiring high speed and efficient data compressors [4]. A grow-
ing application for data compression is data analysis, for example in Bioinformatics [5].
In this case, the main focus is on the maximum compression ratio, although the improve-
ment in data compressors’ speed is valuable, particularly for large-scale data analysis [6].
As an analysis tool in the genomics and proteomics fields, data compression has been
used in many applications [7], for example, to estimate the Kolmogorov complexity of
sequences [8,9], classification [10,11], phylogenomic and phylogenetic analysis [12,13],
information retrieval [14], variation and rearrangement detection [15,16], structural anal-
ysis [17,18], pan-genome analysis [19], metagenomics [20], detection of DNA-binding
proteins [21], and domain composition studies [22,23].

In the literature, the use of specialized protein sequence compressors is low compared
with that of DNA sequence compressors, mainly because specialized programs, similar
to those that model the inverted repeats in DNA, are much harder to design, given the
substantial higher uncertainty and lower specific sequence patterns [24]. Therefore, high
ratio general-purpose data compressors are very close to the specialized category.

In the specialized category, the ProtComp [25] exploits approximate repeats and uses a
hybrid method combining a substitution approach using Huffman coding and a first-order
Markov model with arithmetic coding. ProtCompSecS [26], adds to ProtComp a dictionary-
based method to encode the secondary information related to proteins. The algorithm
presented in [27] uses the Burrows-Wheeler transform and the sorted common prefix
combined with substitutions to exploit sequence long-range correlation.

In 2007, Benedetto et al. show that models that consider short and medium size
correlation were more likely to achieve higher compression rates [28]. This characteristic
was applied in XM through the combination of expert models with short and medium size,
namely repeat and context models [29]. A fusion of dictionary and sequence alignment
methods for the compression of protein databases was proposed in CaBLASTP [30]. This
algorithm searches for solid sequence alignments, and when one exists, it stores an index
instead of the sequence. In [22], a heuristic approach was proposed to transform a hyper-
graph representing the proteome into a minimum spanning hypertree. In 2017, CAD [31]
was proposed, relying on an adaptive dictionary with Huffman coding.

More recently, the challenge of protein sequence compression has been revisited,
namely with the proposal of AC, NAF, and CoMSA. Specifically, the AC tool [9,32]
uses an ensemble of Markov models (finite context and substitution tolerant context
models) with adaptive weights per model and arithmetic encoder. The NAF tool [33]
uses a 4-bit encoding followed by its compression with general-purpose compressor zstd
(https://github.com/facebook/zstd, accessed on 23 April 2021). The challenge of data
compression in aligned data gain momentum with CoMSA [34], a compression tool using
the generalization of the positional Burrows-Wheeler transform for non-binary alphabets.
In the natural sequence domain, interesting approaches using prediction-based compres-
sion through the decoupling of the context model from the frequency model have been
proposed [35].

In this article, we describe AC2, an evolution of the AC compressor. Contrarily to AC,
AC2 uses a neural network to mix the experts and memory caches for the models with
high context orders. Specifically, AC2 takes a meta-learning approach to the mixture of
experts [36]. We use a neural network with input of the probabilities of each amino acid
given by each Markov model. As additional inputs, we derive other features to improve
the accuracy of the network. As outputs, the network uses one node per amino acid.

https://github.com/facebook/zstd
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Each output node gives the final probability for the corresponding amino acid. We use
a small multilayer perceptron for the neural network, which is trained online for each
new symbol in the sequence. Moreover, to reduce the model’s memory, specifically in the
compression of protein sequence collections, we develop cache-hashes for the highest-order
context models.

The main contributions of this paper can be summarized by the following points:

• An efficient and open-source protein sequence compressor (implemented in C lan-
guage) for reference and reference-free modes (AC2);

• An enhanced neural network mixer with detailed instructions on how to integrate it
into other statistical compressors;

• A cache-hash memory model for the deepest context orders with generic alphabets;
• A protein sequence compression benchmark for reference and reference-free modes;
• Similarity analysis for each reference SARS-CoV-2 protein sequence (host: H. sapiens)

according to all the existing UniProt viral protein sequences.

The next sections of this article present the implementation details of AC2, the com-
prehensive benchmark results, including several protein sequences with different charac-
teristics, and state-of-the-art compressors. Additionally, we provide compression-based
analysis examples employing the AC2 compressor.

2. Methods

This section presents the details of the AC2 compressor methodology. AC2 uses
identical models as AC, namely a combination of context models and substitution tolerant
context models of several order depths. The usage of substitution tolerant models in
biological sequences is crucial because they provide a solid improvement factor over high-
ratio general-purpose data compressors and, hence, are models that can be considered of
specific biological nature [37,38].

The most significant developments of AC2 are a neural network to augment the expert
mixing and an individual memory cache-hash for the models with the highest context
orders. These implementations allow AC2 to improve the compression ratio while reducing
the memory usage substantially. In the following subsections, we provide details on the
neural network, cache-hash and counter precision, and parameters used.

2.1. Selecting a Neural Network Type

In this subsection, we review the literature related to selecting suitable artificial neural
networks for sequence prediction, namely, to incorporate an appropriate network into the
proposed data compressor. The computational resources required and the feasibility of the
network integration in the data compressor are essential because we are concerned with
the network accuracy and efficiency.

Although we searched explicitly for literature that compared different architecture
networks in protein sequence compression, we were unable to find a single work. Never-
theless, we found an analogous work, specifically, DNA sequence compression [39]. This
analogous work describes a compressor based on neural networks and compares two
types of recurrent neural networks (RNNs) and a multilayer perceptron (MLP). Overall,
the RNNs provide the best compression rate, although there is a dependency on the dataset.
Moreover, this method uses a top-of-the-line GPU, consuming several hours to compress
sequences with 10MB length. Because performing a compression-based analysis in an
extensive protein sequence dataset (with gigabyte length) is one of the applications of our
work, speed is critical; therefore, this limits the usage of this methodology. We also found
benchmarks of neural networks to time series prediction problems; these seem to fit with
the stochastic nature of the issue we are analyzing [40].

In terms of computational resources, we intuitively deduce that the multilayer per-
ceptron (MLP) would have the best performance because of its elementary nature; this
is supported by [41], where we can notice that even with large networks, the MLP is the
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fastest network by approximately 50%, and the convolutional is the second fastest, followed
by the recurrent networks.

In terms of accuracy, the performance appears to be very dependent on the dataset.
In [42], a multilayer perceptron (MLP), a convolutional neural network (CNN), a recurrent
neural network (RNN), and a long short term memory (LSTM) are used to predict the
values of the stock market. The results favor the CNN followed by the MLP, with the LSTM
and the RNN trailing behind. In diverse datasets, the MLP is superior to the CNN. In [41],
an MLP, a CNN, and an LSTM are compared using several datasets. Overall, the CNN
performs best, followed by the LSTM and then the MLP. As in the previous comparison,
there is no single network that achieves the best result in all datasets. In [43], the authors
compare an LSTM to an MLP and conclude that the MLP has performance equal to or
better than that of the LSTM. In [44], several neural networks and datasets are compared;
among these are various types of CNNs and an MLP. Two types of CNNs, the residual
neural network (ResNet) [45] and the fully convolutional neural network (FCN) [46],
provide the best overall accuracy, with the MLP placing fourth out of the nine evaluated
networks. In [47], a hybrid network combining a CNN and an LSTM is used to predict
power consumption, stock values, and gas concentrations. In some datasets, the CNN has
better predictions than the LSTM. The proposed hybrid approach always presents better
predictions in the three datasets. In [48], two neuro-fuzzy networks are compared with
an MLP to model the reference evapotranspiration. The neuro-fuzzy networks displayed
higher accuracy than the MLP. Finally, in [49], we see a comparison of a neuro-like structure
with a sequential geometric transformations model (SGTM) [50] and an MLP. The SGTM
has better accuracy and spends less time during the training phase.

No network appears to be the best in all datasets, as anticipated by the results of the
no free lunch theorem [51].

2.2. Neural Network Architecture

Based on the above literature review, we elected to use the MLP, which confers accurate
and efficient predictions [42]. Specifically, this network is one of the most resource-efficient
neural networks in execution time and memory usage. Furthermore, it has demonstrated
high performance in other tasks also using biological sequences [52] and is straightforward
to implement and validate.

Specifically, the network has a single hidden layer, where all nodes have the sigmoid
activation function. The output layer uses the softmax activation, ensuring that all output
nodes sum to one, and the loss function is the cross-entropy. The network has two bias
nodes, one in the input layer and one in the hidden layer. The weights are set according to
the Xavier initialization [53].

2.3. Neural Network Inputs

Figure 1 depicts a high-level overview of the mixer architecture, including its inputs.
The inputs to the network consist of the outputs of the context models and substitution

tolerant context models and the output of the mixing done in the AC compressor. Therefore,
we do not substitute the mixing done in AC, but instead, we are augmenting it. In other
words, the mixing performed in AC is considered as another model. We transform these
probabilities by subtracting 1

n , where n is the number of unique symbols in the sequence.
After the subtraction, we multiply the result by five in the case of a model and ten in the
AC mixer output case. These types of transformations and their motivation are explained
in [54].

Moreover, we use derived features with the mean symbol frequencies for the last
8, 16, and 64 symbols; these are also multiplied by five. Finally, we use an exponential
moving average for all symbols, such that when a symbol occurs, the average for symbol i
is updated according to

avgi := 0.8 + 0.2 ∗ avgi. (1)
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If symbol i does not occur, then the update rule is

avgi := 0.2 ∗ avgi. (2)

Multilayer
perceptron

Model1

Modeln

...

Freqs8

Freqs16

Freqs64

EMA

PA

PB

PZ

...

PC

Figure 1. Mixer architecture: high level overview of inputs to the neural network (mixer) used in
AC2. Model1 through Modeln represent the AC model outputs (probabilities for all the amino acids).
EMA represents the exponential moving average for each symbol. Freqs are the frequencies for the last
8, 16, and 64 symbols. The network outputs represent the probabilities for each amino acid symbol.

2.4. Neural Network Outputs and Training

For the outputs, we use one node per amino acid; each one has the probability for that
symbol. These are the values that are passed to the arithmetic encoder. The network is
trained online for each new symbol. The training vector is filled with zeroes except for
the position corresponding to the symbol that occurred. This position has a value of one.
The training algorithm is the stochastic gradient descent without momentum [55].

2.5. Neural Network Pre-Training and Selection Heuristic

We noticed that the neural network initialized with the random values had less
accurate predictions at the beginning of the sequence. We improved the network, pre-
training it by activating the same symbol in all models with a value of one. Moreover,
the same symbol is used for training. Essentially, this forces the bias that if all models agree
on the same symbol with absolute certainty, then the output is forced to be that symbol.

Additionally, we added a heuristic that selects between the AC mixer and the neural
network output. The mixer used is the best performing one. This choice is determined by an
exponential moving average of the number of estimated bits produced by the two mixers.

2.6. Cache-Hash and Counter Precision

One of the significant limitations of AC is the substantial increase of RAM provided
with the combination of high-context orders and large sequence sizes. For example, when
the sequences to compress are larger than, say, 200 MB and AC use context orders higher
than 7, the RAM increases to values that regular laptops can not support. To resolve this
issue, AC2 uses cache-hash memory models.

A cache-hash [56] enables storing in memory only the latest entries up to a certain
number of hash collisions. This model enables the use of deep context orders with very
sparse representations. If AC2 stored its entries in a table, this would require |A|k+1 entries,
where |A| is the size of the protein sequence alphabet and k the context order of the model;
this means that assuming counters of 8 bits for a k = 10 and an |A| of 20 would require
186 TB of RAM. For small sequences, a linear hash would be feasible, depending on the
available RAM. However, for large sequences, this becomes unfeasible.

Therefore, AC2 uses a cache-hash for each high context order model to remove space
constraints. AC2 uses a parameter that represents the maximum number of collisions,
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enabling a constant maximum peak of RAM. Moreover, we reduced the size of the counters
for the models. AC2 now uses two bits per symbol, unlike eight bits in AC. The practical
outcomes are speed and RAM improvements, enabling the compression of extensive
sequences, specifically large collections of protein sequences. The disadvantage is the
slightly higher code complexity of AC2.

2.7. Parameters and Optimization

In addition to the AC parameters, AC2 includes parameters to control the learning
rate, the number of nodes in the hidden layer, and the cache’s size per model. AC2 also
adds a more powerful compression level.

All the internal and external parameters were determined empirically. These include
the coefficients for the exponential moving averages, the window size for the moving
averages, the input transformations, the learning rates, the hidden layer, and the number of
models and their parameters. The internal parameters are fixed for all experiments, while
the external parameters were adjusted for each sequence; the parameters used are available
in the same repository as the source code.

3. Results

In this section, we evaluate the performance and accuracy of AC2 as a protein sequence
compressor in two benchmarks, namely in reference-free and reference-based compression.
AC2 is available for free download (GPv3 license) at https://github.com/cobilab/ac2,
accessed on accessed on 23 April 2021.

3.1. Datasets and Materials

For benchmarking AC2 as a reference-free compressor, we used two datasets, namely

• DS1: three protein databases used in [57]:

– UniProt: the UniProt collection of sequences [58];
– PDBaa: the Protein Data Bank [59];
– GRCh38: the human reference genome [60].

• DS2: a comprehensive dataset (proposed in [9]), containing the following sequences:

– BT: Bos taurus;
– HS: Homo sapiens;
– SC: Saccharomyces cerevisiae;
– HT: Haloterrigena turkmenica;
– EC: Escherichia coli;
– LC: Lactobacillus casei;
– SA: Staphylococcus aureus;
– HI: Haemophilus influenzae;
– MJ: Methanococcus jannaschii;
– DA: Desulfurococcus amylolyticus;
– AP: Acanthamoeba polyphaga;
– HA: Hadesarchaea archaeon;
– FM: Fomitiporia mediterranea;
– FV: Fowlpox virus;
– XV: Xanthomonas virus Xp10;
– EP: Enterococcus phage.

For benchmarking AC2 as a reference-based compressor, we used four complete
proteomes of four primates (human, gorilla, chimpanzee, and orangutan) with a pair-
wise chromosomal compression. For each chromosomal pair, the following compression
was performed:

• Chimpanzee (PT) using human (HS) as a reference;
• Gorilla (GG) using human (HS) as a reference;
• Orangutan (PA) using human (HS) as a reference.

https://github.com/cobilab/ac2
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Unless otherwise stated, the benchmarks were performed on an Intel(R) Core(TM)
i7-6700 CPU @ 3.40GHz running Linux 5.4.0 with the scaling governor set to performance
and 32GB of RAM.

3.2. Reference-Free Compression Benchmark

For the comparison with AC2, we selected two specialized protein compressors: AC
and NAF. These are the only available and working compressors we could find; therefore,
we added general-purpose compressors to make a comprehensive comparison. The general-
purpose compressors added are the Big Block BWT (Burrows-Wheeler transform) [61],
the LZMA [62], and the CMIX [63].

The results from Table 1 show that AC2 achieves the best compression ratio for all
sequences, except for the smallest sequence (EP). For DS1 (collections of protein sequences),
AC2 achieves gains of 2%, 4%, 7%, 9%, and 35%, compared to CMIX, LZMA, NAF, AC,
and BBB, respectively. For DS2 (individual proteome sequence compression), AC2 achieves
gains of 2%, 3%, 4%, 6%, and 13%, compared to AC, CMIX, NAF, LZMA, and BBB, respectively.

It should be noted that the bits per symbol (bps) are for the resulting archive file,
which in the case of AC2 includes a header with parameters to describe the models and
the network parameters. For small sequences, this is a significant portion of the final size.
If we ignore the header size, which makes sense when an analysis is a primary goal, AC2
achieves even more significant gains than AC. Even with this disadvantage, AC2 shows a
better compression ratio than AC for all sequences tested.

In terms of memory usage, AC2 uses substantially less RAM than AC, and the cache
size parameters limit the increase in RAM. In challenging cases, such as the UniProt
sequence’s compression, the memory usage of AC2 is approximately 86% less than that
of AC (111 GB to 16 GB). With the present configuration, the AC2 uses less memory than
the two closest higher compression ratio compressors, CMIX and AC. For the UniProt
sequence, the RAM usage is 660 MB, 740 MB, 3 GB, 16 GB, 19 GB, and 111 GB for LZMA,
BBB, NAF, AC2, CMIX, and AC, respectively. Parameters control the memory requirements
of AC2; thus, the needed memory can be decreased with a penalty of a small precision
payoff, providing utility to computers with lower computational resources.

The computational time of AC2 is ≈3× slower than of AC, but it is ≈7–19× faster
than CMIX. Compared to the other compressors (BBB, LZMA, and NAF), AC2 is ≈15–49×
slower. Compressing the UniProt sequence with AC had to be done in a different machine
with more RAM but a slower processor; this is why the execution was slower. While
AC2 is slower than AC, this gap should decrease soon due to the inclusion of specialized
instructions and data types in general-purpose consumer CPUs [64,65]. The parameters
used for this benchmark focus on maximum compression ratio, but we can decrease the
execution time while maintaining the best ratios. For example, in the PDBaa sequence, we
can reduce the number of hidden nodes from 128 to 40, which gives us 1.725 bps at half the
execution time (10 min).

Figure 2 depicts the difference between the AC and the AC2 compression performance,
described as gain complexity profiles. Gain complexity profiles are numerical representa-
tions of the gain in terms of bits per symbol for each sequence element. Using the GTO
toolkit [66], we applied a low-pass filter to the gain complexity profiles to smooth the peaks
and valleys and better perceive the trends.
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Table 1. The bits per symbol (bps) and time needed to represent an amino acid sequence for BBB, LZMA, CMIX, NAF, AC and AC2. NAF uses the highest compression level (22) for
all sequences. BBB uses the parameters ‘cfm100q’ for all sequences. LZMA uses the highest level (-9 -e) for all sequences. For DS2, AC and AC2 use the same levels as in [9]. For DS1,
the models used by AC are ‘-tm 1:1:0.76/1:1:0.88 -tm 2:10:0.83/1:1:0.86 -tm 3:20:0.83/2:1:0.87 -tm 4:50:0.88/2:10:0.89 -tm 5:200:0.94/3:20:0.89 -tm 6:300:0.91/5:20:0.88 -tm 7:500:0.91/6:60:0.87
-tm 8:500:0.92/7:15:0.89 -tm 9:1000:0.92/8:15:0.9 -tm 10:1500:0.92/9:80:0.9 -tm 11:1500:0.93/10:200:0.92 -tm 12:1500:0.94/11:200:0.93 -tm 13:1500:0.96/12:30:0.92 -tm 14:1750:0.95/13:150:0.93
-tm 15:2000:0.94/14:250:0.92 -tm 17:2200:0.95/16:350:0.93 -tm 20:2500:0.96/19:500:0.95’, which are equivalent to level 8 for AC2. The asterisk (*) next to the time means that the compression
was run on a different machine, with more RAM but slower CPUs. The underlined values represent the fastest computations, and the bold stand for the best compression rates.

BBB LZMA CMIX NAF AC AC2
DS ID bps Time bps Time bps Time bps Time bps Time bps Time

1

UniProt 2.872 2 m 34 s 1.939 3 m 20 s 1.887 47 h 08 m 07 s 2.013 3 m 26 s 2.071 2 h 03 m 37 s * 1.857 2 h 24 m 51 s
PDBaa 2.541 25 s 1.851 28 s 1.847 7 h 06 m 24 s 1.824 34 s 1.790 6 m 55 s 1.718 20 m 09 s

GRCh38 1.906 29 s 1.196 22 s 1.168 9 h 24 m 44 s 1.203 35 s 1.216 6 m 38 s 1.154 26 m 22 s
Total 2.689 3 m 28 s 1.817 4 m 10 s 1.774 63 h 39 m 16 s 1.869 4 m 36 s 1.910 2 h 17 m 12 s * 1.743 3 h 13 m 00 s
BT 3.711 9 s 3.208 10 s 3.081 2 h 54 m 59 s 3.114 12 s 3.049 1 m 35 s 2.961 4 m 21 s

2

HS 4.076 2 s 4.022 2 s 3.859 44 m 36 s 3.905 2 s 3.786 21 s 3.717 49 s
SC 4.093 2 s 4.030 1 s 3.914 38 m 59 s 3.956 2 s 3.876 16 s 3.835 47 s
HT 4.006 2 s 3.971 1 s 3.867 19 m 42 s 3.929 1 s 3.825 10 s 3.764 26 s
EC 4.150 1 s 4.209 1 s 4.051 17 m 51 s 4.108 1 s 4.038 6 s 4.000 18 s
LC 4.129 1 s 4.188 0 s 4.051 10 m 59 s 4.119 1 s 4.055 4 s 4.019 9 s
SA 4.142 1 s 4.213 0 s 4.036 10 m 52 s 4.109 1 s 4.056 4 s 4.008 9 s
HI 4.155 1 s 4.239 0 s 4.087 6 m 59 s 4.155 1 s 4.102 1 s 4.082 4 s
MJ 4.059 0 s 4.141 0 s 3.974 6 m 15 s 4.069 1 s 3.997 1 s 3.962 3 s
DA 4.083 0 s 4.182 0 s 4.014 5 m 31 s 4.101 1 s 4.028 1 s 4.008 4 s
AP 4.084 0 s 4.106 0 s 3.951 4 m 46 s 4.073 1 s 3.985 1 s 3.936 5 s
HA 4.122 0 s 4.214 0 s 4.081 3 m 03 s 4.145 0 s 4.082 0 s 4.071 2 s
FM 3.968 0 s 3.508 0 s 3.538 2 m 19 s 3.537 1 s 3.426 1 s 3.372 3 s
FV 4.130 0 s 4.176 0 s 4.063 1 m 12 s 4.118 1 s 4.063 0 s 4.049 1 s
XV 4.188 0 s 4.258 0 s 4.140 14 s 4.176 0 s 4.137 0 s 4.134 0 s
EP 4.262 0 s 4.434 0 s 4.228 7 s 4.348 1 s 4.323 0 s 4.314 0 s

Total 3.900 19 s 3.642 15 s 3.507 48 m 30 s 3.553 29 s 3.476 2 m 48 s 3.408 7 m 27 s
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Figure 2. Smoothed gain of AC2 relatively to AC, in bits per symbol (bps). Regions with the line
above zero indicate that AC2 has better compression than AC. Three profiles are depicted for three
species, namely (a) XV: Xanthomonas virus Xp10, (b) FV: Fowlpox virus, (c) HS: Homo sapiens.

We can see the heuristic effect of switching between the new and the old mixer
for small sequences, such as the XV and FV. Flat regions, with the number of bits per
symbol equal to zero, corresponds to regions where the old mixer is used. It is also
visible for smaller sequences that even with the heuristic and the pre-training, the AC2
mixer sporadically produces lower results than the AC mixer. These are shown in the
plot when the graph has negative values. This situation is due to the lag associated
with the exponential moving average that controls the mixer switching. The lag can be
reduced, and for small sequences, the compression does benefit; the reverse is true for large
sequences. For extensive sequences (HS), we can see that the plot is always positive with
this smoothness level. In this case, AC2 appears to compress consistently more.

Finally, all plots show small peaks of at most 0.4 Bps. On the one hand, this is due
to the smoothness function applied. On the other hand, it shows no large regions (as a
percentage of the total sequence) where AC2 is vastly superior to AC. Even so, there appear
to be new regions of interest that could provide new insights into the sequences’ nature.

3.3. Reference-Based Compression Benchmark

In this section, we compare AC with AC2 for the compression of proteins using a
reference because, as far as we know, AC it is the only data compression tool (currently
working) for reference-based protein sequence compression. AC has some reference-based
compression errors related to the incapability to deal with a different alphabet between
reference and target sequences. Therefore, we improved AC2 to output the AC compression
estimates, using the AC mixer’s probabilities to calculate the expected number of bits with
− log2(psym). The results in Table 2 show that AC2 improves the compression ratio by 6–7%
compared to AC. Chromosomes 5 and 17 of the gorilla show the least improvement and
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also the worst bits per symbol. This performance is due to a hypothetical rearrangement
in the gorilla that diverges from the other three primates [67]. In practice, a similar part
of one of the chromosomes is present in the other, decreasing the capability of using
the reference sequences as an auxiliary input [68]. A way to improve these particular
sequences’ compression would be to use the references of both proteomic sequences from
chromosomes 5 and 17 of the human.

Table 2. The bits per symbol (b) needed to represent a protein sequence of a chromosome (Chr: Chromosome, MT: Mitochon-
dria) using as a reference the corresponding Human’s. AC and AC2 use the following models ‘-rm 1:1:1:0.9/1:1:0.9
-rm 3:10:1:0.95/2:10:0.96 -rm 5:200:5:0.98/4:50:0.95 -rm 7:1500:5:0.955/6:50:0.945 -rm 15:2000:15:0.94/14:250:0.92 -tm
1:1:1:0.9/1:1:0.9 -tm 3:10:1:0.95/2:10:0.96 -tm 5:200:5:0.98/4:50:0.95’. Additionaly, AC2 uses the following parameters
‘-lr 0.03 -hs 32’.

Chimpanzee (PT) Gorilla (GG) Orangutan (PA)
ID AC (b) AC2 (b) Gain (%) AC (b) AC2 (b) Gain (%) AC (b) AC2 (b) Gain (%)

Chr1 0.385 0.353 8.3 0.420 0.387 7.7 0.532 0.493 7.3
Chr2 0.359 0.329 8.3 0.355 0.326 8.1 0.483 0.447 7.5
Chr3 0.377 0.347 7.9 0.404 0.375 7.1 0.474 0.440 7.2
Chr4 0.384 0.359 6.4 0.410 0.387 5.5 0.487 0.458 6.0
Chr5 0.384 0.355 7.6 1.598 1.581 1.1 0.505 0.471 6.7
Chr6 0.398 0.369 7.2 0.423 0.394 6.7 0.527 0.492 6.7
Chr7 0.433 0.409 5.5 0.450 0.426 5.4 0.586 0.556 5.3
Chr8 0.405 0.378 6.7 0.423 0.399 5.7 0.549 0.519 5.4
Chr9 0.382 0.355 7.0 0.411 0.386 6.1 0.566 0.537 5.2

Chr10 0.391 0.368 6.0 0.417 0.394 5.5 0.580 0.549 5.4
Chr11 0.399 0.365 8.3 0.412 0.379 8.1 0.573 0.532 7.1
Chr12 0.354 0.324 8.5 0.381 0.351 7.8 0.457 0.422 7.5
Chr13 0.410 0.389 5.0 0.438 0.419 4.4 0.511 0.488 4.5
Chr14 0.379 0.350 7.5 0.396 0.369 6.8 0.528 0.494 6.4
Chr15 0.362 0.333 7.9 0.388 0.360 7.1 0.485 0.449 7.4
Chr16 0.409 0.375 8.3 0.428 0.394 7.9 0.569 0.528 7.2
Chr17 0.358 0.330 7.9 1.476 1.460 1.1 0.573 0.538 6.0
Chr18 0.368 0.346 5.8 0.401 0.378 5.7 0.553 0.527 4.7
Chr19 0.446 0.411 7.9 0.468 0.433 7.5 0.667 0.618 7.3
Chr20 0.415 0.390 6.1 0.436 0.411 5.8 0.614 0.586 4.5
Chr21 0.449 0.430 4.3 0.476 0.456 4.2 0.681 0.658 3.4
Chr22 0.419 0.391 6.8 0.424 0.397 6.4 0.612 0.581 5.0
ChrX 0.486 0.463 4.6 0.505 0.485 3.9 0.580 0.555 4.2
MT 0.662 0.631 4.7 0.574 0.525 8.6 0.998 0.920 7.8

Mean 0.409 0.381 6.8 0.521 0.495 6.0 0.570 0.536 6.1

The plots in Figure 3 show a similar trend to the plots from the reference-free com-
pression. For the mitochondrion sequence, we can see the effects of the heuristic switching
between the AC and neural network mixer. For the larger sequences, we can see more
consistently positive values.
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Figure 3. Smoothed gain of AC2 relatively to AC in bits per symbol (Bps). Regions with the line above
zero indicate that AC2 has better compression than AC. Three profiles are depicted for referential
compression of three sequence pairs, namely (a) Chromosome 1 of chimpanzee, (b) Chromosome 17
of gorilla, and (c) Mitochondrion of orangutan. All target sequences use the corresponding human
sequence as reference. The compression parameters are the same as in Table 2.

4. Application: SARS-CoV-2 Protein Sequence Similarity to Other Viral Proteins

As an example of identifying similar protein sequences in terms of quantity of informa-
tion, we studied the most similar protein sequences, in the whole UniProt database, to the
proteins of the human Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [69],
respecting important Bioinformatics guidelines [70].

SARS-CoV-2 is a positive-sense single-strand RNA virus with an origin traced to a food
market in Wuhan, China, in December 2019 that can cause COVID-19 disease [71]. SARS-
CoV-2 is transmitted by inhalation or contact with infected droplets with an incubation
period from 2 to 14 days [72]. According to the World Health Organization (WHO), SARS-
CoV-2 has already caused more than 146 million infections and 3.1 million deaths, where
the variation of the latter seems to be related to seasonality [73]. New developments of
fast diagnostic methods are emerging, for example, a 10-min antibody assay [74], enabling
reacting and predicting infection and vaccine responses much faster.

Although several therapeutics have already been proposed [75,76], the emergence of
multiple variants brings additional complexity to the challenge both in diagnostics and
therapeutics [76,77]. Much has been learned with the current pandemic; however, much
progress is still required. One of the inconclusive themes is related to SARS-CoV-2 protein
sequence similarity to other viral protein sequences. Despite several studies addressing
this topic both at genomic and proteomic level [78,79], different interpretations have been
provided at the animal host origins [80–82]. Perhaps the reason is related to the characteris-
tics of the measures used, namely the use of normalized scores applying alignments that
do not rigorously consider quantities of information, overestimation issues, and the respect
of distance properties, such as symmetry and idempotency [83]. Without respecting the
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theoretical foundations that characterize an information distance (or distance of dissimilar-
ity), a problematic question arises: where should one draw the threshold or the splitting
line? Therefore, defining thresholds in these cases can substantially contradict conclusions,
not because one of the measures is incorrect but because the starting point or assumptions
are fundamentally different.

Accordingly, in this paper, we present the SARS-CoV-2 protein sequence similarity to
other viral protein sequences relying on AC2, the data compressor benchmarked with the
best-known compression ratios (shown in this paper above) and through the computation
of the Normalized Compression Distance (NCD) [84].

For this purpose, we separated all protein sequences in the UniProt database and all
proteins of the SARS-CoV-2 into different classes. Then, we measured the (dis)similarity
across each pair of elements of the classes using the NCD through the approximation of
the conditional complexity [85] as

NCD(x, y) =
max{C(x|y), C(y|x)}

max{C(x), C(y)} . (3)

For approximating the complexity (C(x) and C(y)) and conditional complexity (C(x|y)
and C(y|x)), we used AC2 with optimized parameters for each type of compression
as follows:

• C(x), C(y): -tm 1:1:1:0.9/1:1:0.9 -tm 3:10:1:0.95/2:10:0.96 -tm 5:200:5:0.98/4:50:0.95;
• C(x|y), C(y|x): all the models used in C(x) and C(y) and -rm 1:1:1:0.9/1:1:0.9 -rm

3:10:1:0.95/2:10:0.96 -rm 5:200:5:0.98/4:50:0.95 -rm 7:1500:5:0.955/6:50:0.945.

Figure 4 depicts the results with the lowest NCD and, hence, the most similar
sequences according to a reference SARS-CoV-2. As presented in the architecture of
Figure 4d,g, several protein sequences can be localized, namely the (Open Reading Frame)
ORF1ab, spike (S), envelope (E), membrane (M), and nucleocapsid (N). The ORF1ab in-
cludes ORF1a and ORF1b, which characterize a non-structural polyprotein involved in
the transcription and replication of viral RNAs, containing the proteinases responsible for
the protein’s cleavages. ORF3 is an accessory protein specialized for environment change
inside the infected cell, through the membrane’s rupture, increasing the virus replication.
The membrane (M) is a structural protein that forms part of the virus’s outer coat, playing
a crucial role in virus morphogenesis and assembly via its interactions with other viral
proteins. The nucleocapsid protein (N) is a structural protein that packages the RNA into a
helical ribonucleocapsid (RNP) and is essential during assembly through its interplays with
the viral genome and membrane protein (M). It also magnifies the efficiency of subgenomic
viral RNA transcription and replication [86].

According to the remain of Figure 4, the NCD for the flagged proteins is consistently
lower for pangolin coronavirus, followed by the ranked alternation between multiple bats
and human coronavirus. In humans, the highest similarities stand for MERS [87] and
SARS [88] coronaviruses, naturally showing the evolution under the host. The pangolin
and bat coronaviruses with higher similarities to the SARS-CoV-2 are in accordance with
some studies of both origin species of SARS-CoV-2 [89], measured at the genomic [78]
and proteomic level [79]. Moreover, the results show that the pangolin coronaviruses are
the most similar in terms of information (Kolmogorov complexity [90]). Furthermore,
the last protein sequence (marked with an X in Figure 4), also known as ORF10, shows
only relevant similarity according to the pangolin coronavirus. Despite the consistency of
the results provided at the proteomic level, the discovery of new proteomes with higher
similarity (or lower NCD) to the SARS-CoV-2 may change the conclusions.
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Figure 4. Analysis of the most similar protein sequences from the NCBI database according to
multiple protein sequences of the SARS-CoV-2. The similarity metric used is the Normalized
Compression Distance (NCD). The lower the NCD, higher the similarity. Five protein sequences
are used for comparison: (a) membrane, (b) nucleoprotein, (c) envelope, (e) Replicase polyprotein
(ORF 1ab), and (f) spike. The (d) panel depicts an illustration of the two-dimensional localization
of the proteins in SARS-CoV-2, while (g) shows localization in one-dimension of the sequences that
correspond to the proteins.

5. Conclusions

This paper describes AC2, a new protein sequence compressor that uses a neural
network to mix experts with a stacked generalization approach and individual cache-
hash memory models to the highest context orders. We show gains over the previous
compressor (AC) between 2 and 9%, depending on the dataset characteristics. These
gains come at the cost of slower execution times ≈3×. AC2 substantially improves the
memory usage compared to AC, with memory usages about 7× lower. Compared to the
previous best available state-of-the-art compressors, AC2 achieves an overall compression
ratio improvement of approximately 2% and 6% in reference-free and reference-based
modes, respectively. Nevertheless, we think that AC2 can still be improved in single-
organism proteome compression. For example, to address this challenge, we can derive
other experts that model the secondary information of the proteins, similar to the algorithm
in [26]. Another crucial area of improvement has to do with the computational resources,
as these may limit the efficiency of analysis. To improve the execution speed, we can drive
computations to a GPU, with the neural network as the most likely candidate to benefit.
Furthermore, different caching strategies directly applied to the models may reduce the
memory requirements while bringing some improvements.

Additionally, we provided an application of the usage of AC2 for comparative pro-
teomic analysis, namely measuring the similarity between each SARS-CoV-2 viral protein
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sequence with each viral protein sequence from the whole UniProt database. This straight-
forward alignment-free solution infers the most similar proteomic sequence using very
flexible, balanced, and consistent measures. According to the eventual redundancy in the
sequences, alignment-based measures may provide overestimated results, given its small
size and ambiguous choices. On the other hand, our approach quantifies the similarity us-
ing information without overestimation (a property of using data compression through the
NCD). Moreover, it uses multiple experts of different nature in an unsupervised learning
approach. This characteristic means that the data compressor can use models of another na-
ture, for example, energy, structural, or algorithmic models [91], to combine the predictions
besides simple vertical amino acid comparison. In this paper, the results consistently show
higher similarity to the pangolin coronavirus in the provided application, followed by
the bat and other human coronaviruses. However, as with any other known comparative
methods, this approach has a drawback: discovering new proteomes with higher similarity
to the SARS-CoV-2 may change the conclusions.

Author Contributions: M.S. and D.P. conceived and designed the experiments; M.S. implemented
the algorithm and performed the experiments; M.S., D.P., and A.J.P. analyzed the data and wrote
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially funded by the Portuguese national funds through the FCT in the
context of the project UIDB/00127/2020. D.P. is funded by national funds through FCT—Fundação
para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus—Institutional Call—CI-
CTTI-94-ARH/2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and scripts used are available at https://github.com/cobilab/
ac2/tree/ref-comp/benchmark-ref, accessed on 23 April 2021 and https://github.com/cobilab/ac2
/tree/master/benchmark, accessed on 23 April 2021.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Dill, K.A.; MacCallum, J.L. The protein-folding problem, 50 years on. Science 2012, 338, 1042–1046. [CrossRef] [PubMed]
2. Service, R.F. ‘The game has changed.’ AI triumphs at protein folding. Science 2020, 370, 1144–1145. [CrossRef]
3. Golan, A. Foundations of Info-Metrics: Modeling, Inference, and Imperfect Information; Oxford University Press: Oxford, UK, 2018.
4. Sayood, K. Introduction to Data Compression; Morgan Kaufmann: San Francisco, CA, USA, 2017.
5. Baxevanis, A.D.; Bader, G.D.; Wishart, D.S. Bioinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2020.
6. Amich, M.; De Luca, P.; Fiscale, S. Accelerated implementation of FQSqueezer novel genomic compression method. In Proceedings

of the 2020 19th International Symposium on Parallel and Distributed Computing (ISPDC), Warsaw, Poland, 5–8 July 2020;
pp. 158–163.

7. Nalbantoglu, Ö.U.; Russell, D.J.; Sayood, K. Data compression concepts and algorithms and their applications to bioinformatics.
Entropy 2010, 12, 34–52. [CrossRef]

8. Pratas, D.; Pinho, A.J. On the approximation of the Kolmogorov complexity for DNA sequences. In Proceedings of the Iberian
Conference on Pattern Recognition and Image Analysis, Faro Portugal, 20–23 June 2017; pp. 259–266.

9. Hosseini, M.; Pratas, D.; Pinho, A.J. AC: A compression tool for amino acid sequences. Interdiscip. Sci. Comput. Life Sci. 2019,
11, 68–76. [CrossRef]

10. Kocsor, A.; Kertész-Farkas, A.; Kaján, L.; Pongor, S. Application of compression-based distance measures to protein sequence
classification: A methodological study. Bioinformatics 2005, 22, 407–412. [CrossRef] [PubMed]

11. Ferragina, P.; Giancarlo, R.; Greco, V.; Manzini, G.; Valiente, G. Compression-based classification of biological sequences and
structures via the Universal Similarity Metric: Experimental assessment. BMC Bioinform. 2007, 8, 252. [CrossRef] [PubMed]

12. Cilibrasi, R.L.; Vitányi, P.M. Fast Whole-Genome Phylogeny of the COVID-19 Virus SARS-CoV-2 by Compression. bioRxiv 2020.
[CrossRef]

13. Cilibrasi, R.L. Statistical Inference through Data Compression. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The
Netherlands, 2007.

14. Kuruppu, S.; Puglisi, S.J.; Zobel, J. Relative Lempel-Ziv compression of genomes for large-scale storage and retrieval. In
Proceedings of the International Symposium on String Processing and Information Retrieval, Los Cabos, Mexico, 11–13 October
2010; pp. 201–206.

https://github.com/cobilab/ac2/tree/ref-comp/benchmark-ref
https://github.com/cobilab/ac2/tree/ref-comp/benchmark-ref
https://github.com/cobilab/ac2/tree/master/benchmark
https://github.com/cobilab/ac2/tree/master/benchmark
http://doi.org/10.1126/science.1219021
http://www.ncbi.nlm.nih.gov/pubmed/23180855
http://dx.doi.org/10.1126/science.370.6521.1144
http://dx.doi.org/10.3390/e12010034
http://dx.doi.org/10.1007/s12539-019-00322-1
http://dx.doi.org/10.1093/bioinformatics/bti806
http://www.ncbi.nlm.nih.gov/pubmed/16317070
http://dx.doi.org/10.1186/1471-2105-8-252
http://www.ncbi.nlm.nih.gov/pubmed/17629909
http://dx.doi.org/10.1101/2020.07.22.216242


Entropy 2021, 23, 530 15 of 17

15. Hosseini, M.; Pratas, D.; Morgenstern, B.; Pinho, A.J. Smash++: An alignment-free and memory-efficient tool to find genomic
rearrangements. GigaScience 2020, 9, giaa048. [CrossRef] [PubMed]

16. Büchler, T.; Ohlebusch, E. An improved encoding of genetic variation in a Burrows–Wheeler transform. Bioinformatics 2020,
36, 1413–1419. [CrossRef] [PubMed]

17. Bywater, R.P. Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity.
PLoS ONE 2015, 10, e0119306. [CrossRef] [PubMed]

18. Subramanian, R.; Allison, L.; Stuckey, P.J.; De La Banda, M.G.; Abramson, D.; Lesk, A.M.; Konagurthu, A.S. Statistical
compression of protein folding patterns for inference of recurrent substructural themes. In Proceedings of the 2017 Data
Compression Conference (DCC), Snowbird, UT, USA, 4–7 April 2017; pp. 340–349.

19. Beller, T.; Ohlebusch, E. Efficient construction of a compressed de Bruijn graph for pan-genome analysis. In Proceedings of the
Annual Symposium on Combinatorial Pattern Matching, Ischia Island, Italy, 29 June–1 July 2015; pp. 40–51.

20. Pratas, D.; Pinho, A.J. Metagenomic composition analysis of sedimentary ancient DNA from the Isle of Wight. In Proceedings of
the 2018 26th European Signal Processing Conference (EUSIPCO), Eternal City, Italy, 3–7 September 2018; pp. 1177–1181.

21. Wang, Y.; Ding, Y.; Guo, F.; Wei, L.; Tang, J. Improved detection of DNA-binding proteins via compression technology on PSSM
information. PLoS ONE 2017, 12, e0185587. [CrossRef] [PubMed]

22. Hayashida, M.; Ruan, P.; Akutsu, T. Proteome compression via protein domain compositions. Methods 2014, 67, 380–385.
[CrossRef] [PubMed]

23. Hayashida, M.; Ishibashi, K.; Koyano, H. Analyzing Order of Domains in Grammar-based Compression of Proteomes. In Pro-
ceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas,
NV, USA, 30 July–2 August 2018; pp. 278–281.

24. Hosseini, M.; Pratas, D.; Pinho, A.J. A survey on data compression methods for biological sequences. Information 2016, 7, 56.
[CrossRef]

25. Hategan, A.; Tabus, I. Protein is compressible. In Proceedings of the 6th Nordic Signal Processing Symposium, Espoo, Finland,
9–11 June 2004; pp. 192–195.

26. Hategan, A.; Tabus, I. Jointly Encoding Protein Sequences and their Secondary Structure Information. In Proceedings of the 2007
IEEE International Workshop on Genomic Signal Processing and Statistics, Tuusula, Finland, 10–12 June 2007; pp. 1–4.

27. Adjeroh, D.; Nan, F. On compressibility of protein sequences. In Proceedings of the Data Compression Conference (DCC’06),
Snowbird, UT, USA, 28–30 March 2006; p. 10.

28. Benedetto, D.; Caglioti, E.; Chica, C. Compressing proteomes: The relevance of medium range correlations. EURASIP J. Bioinform.
Syst. Biol. 2007, 2007, 1–8. [CrossRef]

29. Cao, M.D.; Dix, T.I.; Allison, L.; Mears, C. A simple statistical algorithm for biological sequence compression. In Proceedings of
the 2007 Data Compression Conference (DCC’07), Snowbird, UT, USA, 27–29 March 2007; pp. 43–52.

30. Daniels, N.M.; Gallant, A.; Peng, J.; Cowen, L.J.; Baym, M.; Berger, B. Compressive genomics for protein databases. Bioinformatics
2013, 29, i283–i290. [CrossRef]

31. Nag, A.; Karforma, S. Adaptive dictionary-based compression of protein sequences. Int. J. Educ. Manag. Eng. 2017, 5, 1–6.
32. Pratas, D.; Hosseini, M.; Pinho, A.J. Compression of amino acid sequences. In Proceedings of the International Conference on

Practical Applications of Computational Biology & Bioinformatics, Toledo, Spain, 20–22 May 2018; pp. 105–113.
33. Kryukov, K.; Ueda, M.T.; Nakagawa, S.; Imanishi, T. Nucleotide Archival Format (NAF) enables efficient lossless reference-free

compression of DNA sequences. Bioinformatics 2019, 35, 3826–3828. [CrossRef] [PubMed]
34. Deorowicz, S.; Walczyszyn, J.; Debudaj-Grabysz, A. CoMSA: Compression of protein multiple sequence alignment files.

Bioinformatics 2019, 35, 227–234. [CrossRef]
35. Fulber-Garcia, V.; Sardi Mergen, S.L. LUISA: Decoupling the Frequency Model From the Context Model in Prediction-Based

Compression. Comput. J. 2020. [CrossRef]
36. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
37. Liu, Y.; Wong, L.; Li, J. Allowing mutations in maximal matches boosts genome compression performance. Bioinformatics 2020,

36, 4675–4681. [CrossRef]
38. Pratas, D.; Hosseini, M.; Pinho, A.J. Substitutional tolerant Markov models for relative compression of DNA sequences. In

Proceedings of the International Conference on Practical Applications of Computational Biology & Bioinformatics, Porto, Portugal,
21–23 June 2017; pp. 265–272.

39. Goyal, M.; Tatwawadi, K.; Chandak, S.; Ochoa, I. DeepZip: Lossless Data Compression using Recurrent Neural Networks. arXiv
2018, arXiv:1811.08162.

40. Churchill, G.A. Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol. 1989, 51, 79–94. [CrossRef]
41. Lara-Benítez, P.; Carranza-García, M.; Martínez-Álvarez, F.; Riquelme, J.C. On the performance of deep learning models for time

series classification in streaming. arXiv 2020, arXiv:2003.02544.
42. Hiransha, M.; Gopalakrishnan, E.A.; Menon, V.K.; Soman, K. NSE stock market prediction using deep-learning models. Procedia

Comput. Sci. 2018, 132, 1351–1362.
43. Struye, J.; Latré, S. Hierarchical temporal memory and recurrent neural networks for time series prediction: An empirical

validation and reduction to multilayer perceptrons. Neurocomputing 2020, 396, 291–301. [CrossRef]

http://dx.doi.org/10.1093/gigascience/giaa048
http://www.ncbi.nlm.nih.gov/pubmed/32432328
http://dx.doi.org/10.1093/bioinformatics/btz782
http://www.ncbi.nlm.nih.gov/pubmed/31613311
http://dx.doi.org/10.1371/journal.pone.0119306
http://www.ncbi.nlm.nih.gov/pubmed/25856073
http://dx.doi.org/10.1371/journal.pone.0185587
http://www.ncbi.nlm.nih.gov/pubmed/28961273
http://dx.doi.org/10.1016/j.ymeth.2014.01.012
http://www.ncbi.nlm.nih.gov/pubmed/24486717
http://dx.doi.org/10.3390/info7040056
http://dx.doi.org/10.1155/2007/60723
http://dx.doi.org/10.1093/bioinformatics/btt214
http://dx.doi.org/10.1093/bioinformatics/btz144
http://www.ncbi.nlm.nih.gov/pubmed/30799504
http://dx.doi.org/10.1093/bioinformatics/bty619
http://dx.doi.org/10.1093/comjnl/bxaa074
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1093/bioinformatics/btaa572
http://dx.doi.org/10.1016/S0092-8240(89)80049-7
http://dx.doi.org/10.1016/j.neucom.2018.09.098


Entropy 2021, 23, 530 16 of 17

44. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.
Knowl. Discov. 2019, 33, 917–963. [CrossRef]

45. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

46. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the 2017 International joint conference on neural networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585.

47. Lin, T.; Guo, T.; Aberer, K. Hybrid neural networks for learning the trend in time series. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2273–2279.

48. Alizamir, M.; Kisi, O.; Muhammad Adnan, R.; Kuriqi, A. Modelling reference evapotranspiration by combining neuro-fuzzy and
evolutionary strategies. Acta Geophys. 2020, 68, 1113–1126. [CrossRef]

49. Tkachenko, R.; Mishchuk, O.; Izonin, I.; Kryvinska, N.; Stoliarchuk, R. A non-iterative neural-like framework for missing data
imputation. Procedia Comput. Sci. 2019, 155, 319–326. [CrossRef]

50. Tkachenko, R.; Izonin, I. Model and principles for the implementation of neural-like structures based on geometric data
transformations. In Proceedings of the International Conference on Computer Science, Engineering and Education Applications,
Kiev, Ukraine, 18–20 January 2018; pp. 578–587.

51. Gómez, D.; Rojas, A. An empirical overview of the no free lunch theorem and its effect on real-world machine learning
classification. Neural Comput. 2016, 28, 216–228. [CrossRef]

52. Silva, M.; Pratas, D.; Pinho, A.J. Efficient DNA sequence compression with neural networks. GigaScience 2020, 9. [CrossRef]
53. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.
54. LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 9–48.
55. Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
56. Ferreira, P.J.; Pinho, A.J. Compression-based normal similarity measures for DNA sequences. In Proceedings of the 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 419–423.
57. Kryukov, K.; Ueda, M.T.; Nakagawa, S.; Imanishi, T. Sequence Compression Benchmark (SCB) database—A comprehensive

evaluation of reference-free compressors for FASTA-formatted sequences. GigaScience 2020, 9, giaa072. [CrossRef]
58. Consortium, U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef]
59. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank.

Nucleic Acids Res. 2000, 28, 235–242. [CrossRef]
60. Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Ben-

nett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2020, 48, D682–D688. [CrossRef]
61. Mahoney, M. Big Block BWT. Available online: http://mattmahoney.net/dc/#bbb (accessed on 18 October 2020).
62. Pavlov, I. Lzma Sdk (Software Development Kit). 2007. Available online: https://www.7-zip.org/sdk.html (accessed on

23 April 2021).
63. Knoll, B. CMIX. Available online: http://www.byronknoll.com/cmix.html (accessed on 23 January 2020).
64. BFLOAT16—Hardware Numerics Definition. Available online: https://software.intel.com/sites/default/files/managed/40/8b/

bf16-hardware-numerics-definition-white-paper.pdf (accessed on 6 May 2020).
65. IBM Reveals Next-Generation IBM POWER10 Processor. Available online: https://newsroom.ibm.com/2020-08-17-IBM-Reveals-

Next-Generation-IBM-POWER10-Processor (accessed on 19 August 2020).
66. Almeida, J.R.; Pinho, A.J.; Oliveira, J.L.; Fajarda, O.; Pratas, D. GTO: A toolkit to unify pipelines in genomic and proteomic

research. SoftwareX 2020, 12, 100535. [CrossRef]
67. Samonte, R.V.; Eichler, E.E. Segmental duplications and the evolution of the primate genome. Nat. Rev. Genet. 2002, 3, 65–72.

[CrossRef]
68. Cardone, M.F.; Jiang, Z.; D’Addabbo, P.; Archidiacono, N.; Rocchi, M.; Eichler, E.E.; Ventura, M. Hominoid chromosomal

rearrangements on 17q map to complex regions of segmental duplication. Genome Biol. 2008, 9, 1–11. [CrossRef]
69. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak

associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [CrossRef]
70. Xia, X. Bioinformatics and the Cell: Modern Computational Approaches in Genomics, Proteomics and Transcriptomics; Springer:

Berlin/Heidelberg, Germany, 2018.
71. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus

associated with human respiratory disease in China. Nature 2020, 579, 265–269. [CrossRef]
72. Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473.

[CrossRef]
73. Kifer, D.; Bugada, D.; Villar-Garcia, J.; Gudelj, I.; Menni, C.; Sudre, C.; Vučković, F.; Ugrina, I.; Lorini, L.F.; Posso, M.; et al. Effects
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