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Abstract: Glycoprotein (GP)VI and integrin αIIbβ3 are key signaling receptors in collagen-dependent
platelet aggregation and in arterial thrombus formation under shear. The multiple downstream sig-
naling pathways are still poorly understood. Here, we focused on disclosing the integrin-dependent
roles of focal adhesion kinase (protein tyrosine kinase 2, PTK2), the shear-dependent collagen recep-
tor GPR56 (ADGRG1 gene), and calcium and integrin-binding protein 1 (CIB1). We designed and
synthetized peptides that interfered with integrin αIIb binding (pCIB and pCIBm) or mimicked the
activation of GPR56 (pGRP). The results show that the combination of pGRP with PTK2 inhibition or
of pGRP with pCIB > pCIBm in additive ways suppressed collagen- and GPVI-dependent platelet
activation, thrombus buildup, and contraction. Microscopic thrombus formation was assessed by
eight parameters (with script descriptions enclosed). The suppressive rather than activating effects
of pGRP were confined to blood flow at a high shear rate. Blockage of PTK2 or interference of CIB1
no more than slightly affected thrombus formation at a low shear rate. Peptides did not influence
GPVI-induced aggregation and Ca2+ signaling in the absence of shear. Together, these data reveal a
shear-dependent signaling axis of PTK2, integrin αIIbβ3, and CIB1 in collagen- and GPVI-dependent
thrombus formation, which is modulated by GPR56 and exclusively at high shear. This work thereby
supports the role of PTK2 in integrin αIIbβ3 activation and signaling.

Keywords: focal adhesion kinase; integrins; GPR56; platelets; thrombus formation

1. Introduction

Collagen- and fibrin(ogen)-induced platelet activation and aggregation through gly-
coprotein VI (GPVI) have been recognized as controlling processes of in vitro and in vivo
arterial thrombus formation, with a limited role in hemostasis [1–3]. GPVI is an im-
munoglobin receptor that via the FcR γ-chain co-receptor, when triggered upon ligand
binding, causes activation of a signal transduction pathway of protein tyrosine kinases,
phosphatidylinositol-3-kinases, and phospholipase Cγ2 (PLCγ2) to evoke granule release
and activation of integrin αIIbβ3 [4–6]. Fibrinogen is the major ligand for integrin αIIbβ3
to establish platelet aggregation and thrombus formation, in which the integrin can act in a
non-redundant way with GPVI [7–9].
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Recent multiparameter microfluidics assays have provided first understanding of
the molecular mechanisms, implicated in whole-blood thrombus formation involving
GPVI [10–12]. The heterogenous buildup of arterial thrombi takes place by a series of
consecutive platelet activation events, i.e., flow-dependent platelet adhesion, integrin
αIIbβ3 activation, granular secretion, platelet aggregation, and thrombus contraction and
stabilization [8,13]. Mouse studies have further shown that several hundreds of platelet-
expressed genes and proteins contribute to collagen-dependent arterial thrombus formation,
thus pointing to a high complexity of the underlying platelet signaling pathways [14].

Knowing that multiple shear-dependent platelet adhesion mechanisms [15] and
platelet-platelet interactions [11] can determine the thrombus-forming process, we used our
experience in the targeted design and synthesis of anti-platelet peptides [13,15] to reveal
the importance of less understood signaling pathways. In this context, a less well-studied
protein acting downstream of αIIbβ3 in platelets is protein tyrosine kinase 2 (PTK2, also
known as focal adhesion kinase) [16–18]. In various cell types, including platelets, PTK2
is known to accumulate in focal adhesion sites formed upon stretching forces [19,20]. In
the mechanical force-dependent activation and signaling of integrins, PTK2 was found to
regulate the adhesion-dependent talin activity and actomyosin dynamics [21]. Interestingly,
PTK2 has recently become a potential therapeutic target for some cancers [22,23].

Both peptide inhibition and mouse knockout studies have shown that platelet PTK2
can become activated upon fibrinogen binding via the calcium and integrin-binding protein
1 (CIB1, gene CIB1). Interaction of CIB1 with the αIIb chain appeared to regulate the
integrin outside-in signaling [24–27]. Proteomic analyses have revealed that PTK2 and CIB1
are expressed at reasonable numbers of 2,956 and 780 copies/platelet, respectively [28,29].
Yet, there is confusion if the role of CIB1 in platelets is stimulatory [30] or inhibitory [31].
Of note, the CIB1-PTK2 interaction occurs independently of the tyrosine kinase Syk, which
binds to the other β3 integrin chain. In the absence of CIB1, platelet spreading on fibrinogen
was found to be greatly impaired [24,26]. Evidence for this role of CIB1 came in part from
the use of a αIIb cytoplasmic peptide (pCIB), entering platelets and interfering with the
binding of CIB1 to αIIb; the peptide efficiently inhibited the human platelet spreading via
the outside-in signaling mechanism [25]. Mouse knockout studies further proved that CIB1
contributes to arterial thrombosis and hemostasis [30].

A novel shear force-dependent receptor on platelets is the G protein-coupled receptor
56 (GPR56, gene ADGRG1), signaling via G13α to allow platelet shape change [32]. In both
human and mouse platelets, ADGRG1 mRNA is expressed at relatively high levels [29].
In other cells, GPR56 appeared as an adhesive receptor for collagen type-III [33]. In initial
papers, identifying platelet GPR56 as a shear-dependent collagen receptor, it appeared
to become self-activated via its tethered ligand, after which signaling responses through
other collagen receptors such as GPVI were enforced [32,34]. Knock-out mouse studies
pointed to a moderate role of GPR56 in arterial thrombosis and hemostasis [32]. However,
the precise requirements for GPR56 to support human thrombus formation on vascular
collagens remain unclear.

In the present paper, we used a panel of inhibitors and synthetized peptides to re-
investigate the roles of PTK2, CIB1, and GPR56 in shear-dependent thrombus formation on
a range of collagen surfaces with variable GPVI dependency.

2. Results
2.1. Limited Effect of the GPR56 Peptide on Collagen Induced Thrombus Formation under Shear

To investigate how the novel collagen receptor GPR56 contributes to platelet adhesion
and thrombus formation, we treated blood from healthy donors with the synthetized
peptide pGRP (TYFAVLM, 50 µg/mL), corresponding to the hidden tethered ligand of
GPR56, and hence mimicking the shear-dependent activation of this receptor [32]. Per-
fusion of the blood was performed at an arterial wall-shear rate of 1600 s−1 [11,35]. For
platelet interaction, microspots of collagen I, collagen III, and collagen IV were used with
decreasing GPVI dependency. As before, brightfield and multicolor microscopic images
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taken after perfusion were analyzed for eight parameters (Table 1), i.e., platelet adhesion
(P1), platelet aggregation (P2), thrombus morphology, multilayer and contraction scores
(P3–5), platelet activation marker phosphatidylserine exposure (P6), P-selectin expression
(P7), and integrin αIIbβ3 activation (P8). An extended description of the scripts in Fiji to
measure the continuous parameters and to obtain the discontinuous scores is given in the
Supplementary Materials.

Table 1. Overview of obtained parameters (P1–8) of thrombus formation from brightfield and
fluorescence images. Measured ranges and scaling factor for heatmap analysis are also indicated.
Abbreviations: PS, phosphatidylserine; SAC, surface area coverage. For details of how the parameters
were established using scripts in Fiji, see Supplementary Materials.

Parameters Range Scaling

Brightfield images
P1 Platelet adhesion (% SAC) 0–71.7 0–10
P2 Platelet aggregate coverage (% SAC) 0–29.8 0–10
P3 Thrombus morphological score 0–4.75 0–10
P4 Thrombus multilayer score 0–2.75 0–10
P5 Thrombus contraction score 0–2.75 0–10

Fluorescence images
P6 PS exposure (% SAC) 0–22.2 0–10
P7 P-selectin expression (% SAC) 0–71.7 0–10
P8 Fibrinogen binding (% SAC) 0–45.7 0–10

Representative images collected at end-stage for collagen I (Figure 1A) and for collagen
III and IV (Figure S1A,B) indicated that treatment with pGRP did no more than slightly
affect platelet adhesion and thrombus buildup (brightfield images) or platelet activation
(3-color fluorescence images). Summative presentation of the univariate scaled parameter
values pointed to an overall small inhibitory rather than stimulatory peptide effect, which
was only significant for collagen I and IV (Figure 1(Bi–iii)). Similar results were obtained at
the standard high shear rate of 1000 s−1. Control experiments did not point to a pGRP effect
on collagen-induced platelet aggregation by conventional light transmission aggregometry
(not shown, but see below).
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Figure 1. Effect of GPR56 interference on collagen-induced thrombus formation at a high shear rate. 
Whole blood (700 μL) was pre-incubated with vehicle medium or pGRP peptide (50 μg/mL) for 10 
min. After recalcification, blood samples were perfused over microspots of collagen I, III, and IV for 
3.5 min at wall-shear rate of 1600 s−1. Brightfield and fluorescence images were taken per microspot 
at end stage. (A) Shown are representative microscopic images for collagen I of (i) vehicle control 
runs or (ii) pGRP runs. Scale bar = 10 μm. Complementary images for thrombi on collagen III and 
collagen IV are shown in Figure S1. (B) Cumulative plots per condition of scaled (0–10) image pa-
rameters: P1, platelet adhesion; P2, platelet aggregate coverage; P3–5, thrombus morphology, mul-
tilayer and contraction scores; platelet activation markers: P6, PS exposure; P7, P-selectin expression; 
P8, fibrinogen binding (see Table 1). Shown are means of duplicate runs for three donors. Mean 
values ± SD (n = 3); n.s., not significant, ** p < 0.005, *** p < 0.001 vs. vehicle (paired Student’s t-test). 

2.2. Effects of the GPR56 Peptide Combined with PTK2 Inhibition on Thrombus Formation 
under Shear 

Given the proposed mechanism of GPR56 in shear- and G13α-dependent platelet ac-
tivation [32], we hypothesized that its role could be masked by integrin αIIbβ3 outside-in 
signaling, in which the focal adhesion kinase PTK2 plays a central role [17,36,37]. To in-
vestigate this, we used two structurally different PTK2 inhibitors, PF573228 and FAK-
IN14, of which the former was tested before on human platelets [38,39]. Initial dose-re-
sponse experiments (2.5–10 μΜ) indicated a more potent effect of PF573228 than of FAK-
IN14 on collagen-induced platelet aggregation (Figure 2A,B), which agrees with earlier 
published IC50 values [38,40]. As expected, under the slowly stirred conditions (1200 rpm 
providing a low shear rate) in light transmission aggregometry, the addition of pGRP did 
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Figure 1. Effect of GPR56 interference on collagen-induced thrombus formation at a high shear
rate. Whole blood (700 µL) was pre-incubated with vehicle medium or pGRP peptide (50 µg/mL)
for 10 min. After recalcification, blood samples were perfused over microspots of collagen I, III,
and IV for 3.5 min at wall-shear rate of 1600 s−1. Brightfield and fluorescence images were taken
per microspot at end stage. (A) Shown are representative microscopic images for collagen I of
(i) vehicle control runs or (ii) pGRP runs. Scale bar = 10 µm. Complementary images for thrombi on
collagen III and collagen IV are shown in Figure S1. (B) Cumulative plots per condition of scaled
(0–10) image parameters: P1, platelet adhesion; P2, platelet aggregate coverage; P3–5, thrombus
morphology, multilayer and contraction scores; platelet activation markers: P6, PS exposure; P7,
P-selectin expression; P8, fibrinogen binding (see Table 1). Shown are means of duplicate runs for
three donors. Mean values ± SD (n = 3); n.s., not significant, ** p < 0.005, *** p < 0.001 vs. vehicle
(paired Student’s t-test).

2.2. Effects of the GPR56 Peptide Combined with PTK2 Inhibition on Thrombus Formation
under Shear

Given the proposed mechanism of GPR56 in shear- and G13α-dependent platelet
activation [32], we hypothesized that its role could be masked by integrin αIIbβ3 outside-
in signaling, in which the focal adhesion kinase PTK2 plays a central role [17,36,37]. To
investigate this, we used two structurally different PTK2 inhibitors, PF573228 and FAK-
IN14, of which the former was tested before on human platelets [38,39]. Initial dose-
response experiments (2.5–10 µM) indicated a more potent effect of PF573228 than of
FAK-IN14 on collagen-induced platelet aggregation (Figure 2A,B), which agrees with
earlier published IC50 values [38,40]. As expected, under the slowly stirred conditions
(1200 rpm providing a low shear rate) in light transmission aggregometry, the addition
of pGRP did not further enhance the dose-dependent inhibitory effects of PF573228 or
FAK-IN14 on platelet aggregation (Figure 2B).

To investigate how PTK2 inhibition affected whole-blood thrombus formation, we
used the same microfluidic setup with collagen I, III, and IV. Blood samples were pretreated
with 2.5–10 µM of PF573228 or FAK-IN14 and then perfused over the collagen spots at
the standard high shear rate of 1000 s−1. Inspection of microscopic images showed a
consistent effect of PF573228 and FAK-IN14 at the highest dose applied by reducing platelet
aggregate formation on collagen I (Figure 3Ai–iii). Subtraction heatmap analysis after
parameter scaling showed that the reduction with either inhibitor extended to the majority
of parameters, as well as from collagen I and III to collagen IV (Figure 3B). This was
confirmed by summation of the univariate scaled parameters P1–8, pointing to a significant
reduction for PF573228 > FAK-IN14 (Figure S2A–C, panel i).

We then examined the combined effect with the GPR56 peptide added. Surprisingly,
the combination of pGRP with PF573228 or FAK-IN14 further reduced platelet adhesion and
aggregate size on collagen I (Figure 3Aiv,v), as well as collagen III and IV (Figure S3ii,iii). In
particular for PF573228, this reduction extended to a lower phosphatidylserine exposure, a
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marker of GPVI activity. This was also apparent from the subtraction heatmap of Figure 3B,
showing larger effect sizes with the combined presence on all surfaces. Cumulative analysis
of the scaled parameters confirmed that the reduction with pGRP was highest for PF573228
(Figure S2).

Since activation of the GPR56 receptor is considered to act in a shear-dependent way,
we compared the effects of PF573228 (5 µM) alone or in combination with pGRP (50 µg/mL)
at high (1000 s−1) and low (150 s−1) shear rates. The composed subtraction heatmap versus
the vehicle control condition pointed to an essential lack of effect by the combination with
pGRP at a low shear rate, in contrast to the high-shear condition (Figure 4). This also
appeared from the cumulation of scaled parameter values (Figure S4). Taken together,
these results pointed to a shear-dependent suppression of collagen-dependent thrombus
by interfering with GPR56 plus PTK2 activity.
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Figure 2. Effects of GPR56 and PTK2 interference on collagen-induced platelet aggregation. Washed
platelets (250 × 109/L) were incubated with vehicle (control), pGRP peptide (50 µg/mL), and
indicated PTK2 inhibitor (2.5–10 µM) for 10 min. Platelet aggregation was monitored by light
transmission in response to collagen I (1 µg/mL). (A) Representative traces of collagen-induced
aggregation. (B) Dose-dependent effect of PTK2 inhibitors on maximal aggregation. Mean values
± SD (n = 3 donors); n.s., not significant, * p < 0.05, ** p < 0.005, **** p < 0.0001 vs. vehicle (paired
Student’s t-test).
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Figure 3. Effects of GPR56-binding peptide and PTK2 inhibition on collagen-induced thrombus
formation. Whole blood samples were pre-incubated with vehicle medium (control) or indicated PTK2
inhibitor (PF573228 or FAK-IN14 at 2.5–10 µM) with or without pGRP peptide (50 µg/mL) for 10 min.
After recalcification, the blood was perfused over collagen I, III, and IV for 3.5 min at a standard
shear rate of 1000 s−1. End-stage brightfield and fluorescence images were analyzed for thrombus
parameters P1–8. Enlarged images (lower-left corner) are indicated to visualize the formed platelet
aggregates. (A) Representative images for collagen I of (i) vehicle control, (ii) PF573228 (10 µM),
(iii) FAK-IN14 (10 µM), (iv) pGRP + PF573228 runs, and (v) pGRP + FAK-IN14. Scale bar = 10 µm.
Representative images for collagen III and collagen IV are shown in Figure S2. (B) Subtraction
heatmap representing control-subtracted scaled (0–10) parameter values for collagen I, III, and IV
microspots. The color code represents a decrease (green) or increase (red) in comparison to control
runs. Means of duplicate runs for three donors were compared per blood sample. For statistics, see
Figure S3.
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Figure 4. Shear rate dependency of GPR56 and PTK2 interference. Blood samples pre-incubated with
vehicle (control) or PF573228 (5 µM) with/ without pGRP (50 µg/mL) for 10 min and then perfused
over collagen microspots for 3.5 or 6 min at a wall-shear rate of 1000 s−1 or 150 s−1. Parameter
analysis of recorded images was as for Figure 1. Shown is a subtraction heatmap representing
control-subtracted scaled (0–10) parameter values for collagen I, III, and IV microspots. The color
code represents a decrease (green) or increase (red) in comparison to vehicle control runs.

2.3. In Silico Design of CIB1-Interfering Peptide Binding to Integrin Chain αIIb

Since PTK2 is known to be activated via integrin αIIbβ3 outside-in signaling, involving
binding of CIB1 to the αIIb chain, we used the αIIb cytoplasmic peptide pCIB, which has
been shown to enter into platelets and block the CIB1-αIIb interaction, as evidenced by the
suppression of platelet spreading on fibrinogen [24,26]. Virtual analysis of the binding mode
of the 26 amino-acid pCIB to the binding pocket of CIB1 revealed a free binding energy
of −43 kcal/mol (Figure 5A,B). Aiming to improve the predicted binding affinity of the
peptide with CIB1, we rationally mutated several residues of pCIB in silico, which resulted
in a list of 31 mutant peptides. Among these, the peptide pCIBm with five mutations had
the lowest binding free energy of −58 kcal/mol and predicted an unaltered interaction
mode with CIB1 (Figure 5C). We then chemically synthetized the previously used pCIB
and the pCIBm peptide for microfluidic assays. After purification, the measured masses of
pCIB (3104 Da) and pCIBm (3286 Da) corresponded well with the theoretical monoisotopic
masses of 3102 Da and 3284 Da, respectively.

2.4. Effects of Combined Peptides Interfering with GPR56 and CIB1 on Thrombus Formation
under Shear

For flow assays, the two synthetized CIB1-binding peptides were used at an affordable
high dose for platelet-inhibiting peptides of 50 µg/mL in whole blood [15]. Preincubation
of blood with the pCIB or pCIBm resulted in no more than small visual effects on thrombus
formation at microspots of collagen I (Figure 6Ai–iii). We also investigated the effects
of combined application of pCIB or pCIBm and pGRP. This combined treatment showed
for collagen I a reduction in platelet adhesion, thrombus buildup, and platelet activation
markers including exposed PS and P-selectin and activated integrin αIIbβ3, of which the
reduction was more prominent for pCIB than for pCIBm (Figure 6Aiv,v). The stronger effect
with pCIB was confirmed by statistical analysis of the parameters of platelet deposition
(P1–2), thrombus characteristics (P3–5), and platelet activation (P6–8) (Figure 6B). Regarding
collagen III and IV, representative images showed similar effects of the combined addition
of peptides (Figure S5A,B). Upon quantification, pGRP plus pCIB significantly reduced
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platelet deposition, thrombus characteristics, and platelet activation (Figure S6 Ai,ii). A
synergistic effect of pGRP + pCIB (but not pCIBm) also appeared from the subtraction
heatmap (Figure 7) and from cumulative plots of the scaled parameters (Figure S6Bi–iii).
For all collagen types, effect sizes decreased in the order of pGRP + pCIB > pCIB > pGRP +
pCIBm > pCIBm.

To assess shear dependency of these effects, we again evaluated the effects on thrombus
formation inhibition of pGRP with/without pCIB or pCIBm at high (1000 s−1) and low
(150 s−1) shear rates. The subtraction heatmap pointed to a consistently larger effect of the
pGRP + pCIB combination, regardless of parameter and collagen type, at a high shear rate
than at a low shear rate (Figure 7). This was confirmed by statistical parameter analysis
(Figure S7).
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Figure 5. Molecular dynamics simulation of the pCIB–CIB1 complex formation. (A) Reported
structure of CIB1 in complex with the pCIB peptide, mimicking part of the intracellular αIIb chain.
(B) Calculated structure of the pCIB–CIB1 complex obtained by molecular dynamics simulation.
(C) Structure of the modified pCIBm-CIB1 complex by molecular dynamics simulation. Color code:
hydrogen bonds shown as yellow dashed lines; amino acid residues of the wildtype (B) and mutated
(C) peptides are indicated in cyan and magenta, respectively; CIB1 residues are pictured in green;
also indicated per peptide is the calculated binding free energy (BFE).
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Figure 6. Combined GPR56 and CIB1 peptides affecting collagen-induced thrombus formation. Blood
samples were pre-incubated with vehicle medium (control) or indicated peptides pGRP, pCIB, and
pCIBm (50 µg/mL each) for 10 min. Thrombus formation on collagen I, III, and IV was monitored.
(A) Representative images for collagen I of (i) vehicle control, (ii) pCIBm, (iii) pCIB, and (iv) pGRP
+ pCIBm, or (v) pGRP + pCIB. Scale bar = 10 µm. (B) Percentual effects of peptides on combined
parameters of platelet deposition (P1–2), thrombus characteristics (P3–5), and platelet activation
(P6–8) versus the vehicle control condition. Additional images and raw data for collagen III and
collagen IV are given in Figures S5 and S6. (C) Subtraction heatmap representing control-subtracted
scaled (0–10) parameter values for collagen I, III, and IV microspots. The color code represents a
decrease (green) or increase (red) in comparison to controls. Mean values ± SD (n = 3 donors).
* p < <0.05, *** p < 0.001, **** p < 0.0001 vs. vehicle (paired Student’s t-test).
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Figure 7. Shear rate dependency of GPR56 and CIB1 peptides. Blood samples pre-incubated with
vehicle (control) or indicated peptides (50 µg/mL) for 10 min and then perfused over collagen
microspots for 3.5 min at 1000 s−1 or for 6 min at 150 s−1. Shown is the subtraction heatmap
representing control-subtracted scaled (0–10) image parameter values for collagen I, III, and IV
microspots. The color code represents a decrease (green) or increase (red) in comparison to vehicle
control runs.

2.5. Absence of Peptide Effects on GPVI-Induced Platelet Aggregation and Ca2+ Responses

Considering that the peptide-sensitive interaction of CIB1 with αIIbβ3 is thought
to be confined to outside-in signaling [25], we also checked the effects of pGRP in com-
bination with pCIB or pCIBm on GPVI-mediated platelet aggregation and intracellular
Ca2+ responses. As a control, we used the common αIIbβ3 inhibitor tirofiban [13]. As
expected, up to a concentration of 50 µg/mL, the peptide combination was unable to
suppress the platelet aggregation response to collagen I or CRP-XL (Figure 8Ai,ii). Quanti-
tative analysis only showed a minor significant aggregation inhibition by pCIB and pGRP
+ pCIB (Figure 8B). The control compound tirofiban completely blocked collagen I- and
CRP-XL-induced platelet aggregation. To investigate GPVI-induced Ca2+ responses, we
examined fluorescence changes in response to the same agonists using Fura-2-loaded
platelets, employing a 96 well-plate based assay and static conditions [41]. In line with the
aggregation results, we did not notice significant changes in [Ca2+]i rises by pGRP alone
or in combination with pCIB or pCIBm (Figure 8C). These results pointed to near absence
of (combined) signaling effects of pGRP and pCIB on platelets under conditions of no or
low shear.
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Figure 8. No effect of combined peptides pGRP and pCIB on collagen-induced platelet aggrega-
tion or Ca2+ fluxes. (A,B) Platelet preparations (250 × 108/L) were pre-incubated with vehicle
control, tirofiban (1 µg/mL) or indicated peptides (50 µg/mL) for 10 min. Platelet aggregation
was monitored by light transmission aggregometry in response to 1 µg/mL collagen I or (i) or
1 µg/mL CRP-XL (ii). (A) representative aggregation traces (B) and normalized transmission changes.
(C) Fura-2-loaded platelets were pre-incubated with vehicle control, tirofiban (1 µg/mL), or indicated
peptides (50 µg/mL) for 10 min, before addition to 96-well plates. After supplementation of 1 mM
CaCl2, loaded platelets were automatically stimulated with 10 µg/mL collagen I (i) or 10 µg/mL
CRP-XL (ii). Dual wavelength 340/380 nm fluorescence changes per well were recorded in a FlexSta-
tion 3. Shown are representative [Ca2+]i traces per agonist. Mean values ± SD (n = 3 donors); n.s.,
not significant, * p < 0.05, ** p < 0.005, *** p < 0.001, vs. vehicle (paired Student’s t-test).

3. Discussion

In this paper, we unraveled the role of αIIbβ3 integrin-dependent signaling involving
PTK2, CIB1, and GPR56 in collagen-dependent thrombus formation under shear conditions.
Our data support for this major platelet integrin, the recently recognized concept of integrin
affinity and avidity regulation by mechanical forces [21], in that the activation and signaling
via αIIbβ3 can be dampened by peptide-mimicking activation of the shear-dependent
receptor GPR56. This would imply that external shear forces play a role in the concept of
intracellular actomyosin-dependent mechanosensitive forces for αIIbβ3 activation [21]. As
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we have recently shown [15], the GPIbα-VWF axis contributes to the formation of platelet
aggregates under shear.

In our studies, we hypothesized that targeted interference in integrin activation and
signaling via PTK2 and CIB1 would affect the process of thrombus formation under shear.
To investigate this, we used a range of collagens relevant for the damaged vessel wall,
e.g., the fibrillar Horm-type collagen I and human tissue-derived collagens III and IV.
These collagen types were previously assigned to a high (I) or lower (III, IV) platelet GPVI-
dependency [41]. Earlier work also indicated that the thrombi formed on all three collagens
rely on Syk signaling, i.e., on tyrosine kinase activity through GPVI and in synergy with
αIIbβ3 signaling [9,41]. As well-characterized PTK2 inhibitors, we used two structurally
different compounds, PF573228 and FAK-IN14 [38,39]. We further chemically synthetized
the seven-amino acid peptide pGRP, which is considered to mimic shear-dependent self-
activation of GPR56 [32] and furthermore a 26-amino acid peptide pCIB (wildtype), known
to enter platelets and block the binding of CIB1 to the αIIb chain in outside-in signaling [26],
as well as a four-time mutated form pCIBm with calculated higher free binding energy.

Control experiments indicated that pGRP, pCIB or pCIBm by itself did not influ-
ence collagen-induced platelet aggregation (integrin inside-out signaling) or Ca2+ fluxes,
in agreement with a selective action on outside-in signaling. Yet, PTK2 inhibition did
block collagen-induced platelet aggregation, pointing to a wider role of PTK2 in GPVI-
dependent platelet activation. On the one hand, whole-blood flow experiments indicated
that the inhibitors PF573228 and FAK-IN14 alone only slightly affected thrombus formation
under high shear, which was also true for pGRP. On the other hand, when pGRP was
combined with increasing doses of PF573228 or FAK-IN14, this ultimately annulated the
thrombus-forming process, extending over all three collagen preparations and diminishing
the majority of parameters. Importantly, the thrombus-suppressing effect of pGRP plus the
PTK2 inhibitor was prominent at a high shear rate (1000 s−1) and substantially reduced at
a low shear rate (150 s−1).

Mouse knock-out and human platelet studies have confirmed that PTK2 signaling
regulates platelet spreading on fibrinogen [17,37]. Other early studies have shown that
PTK2 phosphorylation—and likely activation—is a coordinated signaling event involving
integrins as well as other receptors [36,42]. This is in agreement with our current findings
that PTK2 inhibition has a larger suppressive effect on GPVI-dependent platelet aggregation
than CIB1 peptide interference. However, either type of inhibitor was similarly effective
in antagonizing thrombus formation on the investigated collagens. Regarding CIB1, our
results are furthermore compatible with the fact that genetic ablation of Cib1 in mice
significantly delayed and destabilized in vivo arterial thrombus formation, while leaving
in vitro platelet aggregation unaffected [30].

A remarkable finding was that the combination of the CIB1 peptide (pCIB or pCIBm

peptide) with the GPR56 peptide (pGRP) was required to suppress the thrombus-forming
process on collagen. Herein, the combination of pGRP + pCIB had the strongest antithrom-
botic effect, i.e., larger than pGRP + pCIBm or pGRP + PF573228/FAK-IN14. Given the
BFE values of pCIB and pCIBm, pCIBm was expected to outperform pCIB. However, it
appeared that pCIBm was not more effective than its counterpart. This could be due to
the fact that pCIBm may adapt a more kinked conformation due to the mutation at Q7,
Y11, and Y16, which may induce α-helix conformation of the peptide, resulting in less
efficient CIB1-binding. Interestingly, CIB1 has also been reported to bind WASP, a protein
with mutations in patients with the immunodeficiency Wiskott—Aldrich syndrome; the
WASP–CIB1 complex was assigned a role in integrin αIIbβ3-dependent cell adhesion [43].

The collective and consistent shear-dependent inhibitory rather than stimulatory ef-
fects of pGRP were unexpected. These findings suggest that the tethered ligand-mimicking
peptide blocks rather than enhances a positive signaling role of the G13α-linked GPR56 re-
ceptor; alternatively, in human platelets, this receptor restricts platelet activation. However,
further studies will be needed to confirm this conclusion.
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Overall, our findings point to a novel shear-dependent role of PTK2 and CIB1 in
collagen-induced thrombus formation via integrin activation and signaling that involves
the GPR56 receptor (Figure 9). Our work thereby extends the previous studies on the sepa-
rate roles of PTK2, CIB1, and GPR56. How precisely the presumed GPR56-G13α activity
adds to PTK2-CIB1-αIIbβ3 still needs to be disclosed. Supported by earlier knock-out
studies [17,27,30,32] and the evaluation of multiple mouse genes in collagen-dependent
thrombus formation in vivo and in vitro [14], our findings now add another element to the
complex signaling cascades in platelets required for the build-up of a stable contracted
thrombus. Our work also extends the multitude of functions of GPR56 in immune regula-
tion and tumor progression [44,45].
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and the tyrosine kinases Syk, Tec, and Btk ; phosphatidylinositol 3-kinase (PI3K); leading to activa-
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trisphosphate). (iii) αIIbβ3 outside-in signaling: SFK- and CIB1-mediated activation, the latter trig-
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Figure 9. Scheme of the proposed combined action of GPR56, GPVI, and aIIbb3 signaling in shear-
dependent thrombus formation on collagen, consisting of platelet aggregation, secretion, and shape
change. (i) GPR56 signaling: small GTP-binding protein RhoA, activated by p115 RhoGEF (guanine
nucleotide exchange factor). (ii) GPVI signaling via FcR γ-chain co-receptor: SFK (Src-family kinases)
and the tyrosine kinases Syk, Tec, and Btk; phosphatidylinositol 3-kinase (PI3K); leading to activation
of PLCγ2, which generates the secondary messengers DAG (diacylglycerol) and IP3 (inositol trispho-
sphate). (iii) αIIbβ3 outside-in signaling: SFK- and CIB1-mediated activation, the latter triggering
PTK2 (focal adhesion kinase FAK); small GTP-binding proteins Rap1b and RhoA transmit parts of
the signal. For further explanation, see text.

4. Materials and Methods
4.1. Materials

Horm collagen type I derived from equine tendon was obtained from Nycomed
(Hoofddorp, The Netherlands). Human placenta-derived collagen type III (1230-01S) was
supplied by Southern Biotechnology (Birmingham, AL, USA). Human collagen type IV,
FAK inhibitor 14 (FAK-IN14), and PF573228 were obtained from Sigma–Aldrich (Zwi-
jndrecht, The Netherlands). PPACK (D-phenylalanyl-L-propyl-L-arginine chloromethyl
ketone) were obtained from Calbiochem (520222, Amsterdam, The Netherlands). Fura-2
acetoxymethyl ester and pluronic were obtained from Invitrogen (Carlsbad, CA, USA).
The fluorescent stains used were Alexa Fluor (AF)647-conjugated anti-human CD62P mAb
(304918, Biolegend, London, UK), FITC-labeled fibrinogen (F0111, Dako, Amstelveen,
The Netherlands), and AF568-labeled annexin A5 (A13202, ThermoFisher, Eindhoven,
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The Netherlands). Other reagents came from Sigma–Aldrich or from sources described
before [41].

4.2. Preparation of Blood and Platelets

Blood was drawn from healthy volunteers through venipuncture. Donors had not
received anti-platelet medication for at least two weeks and gave full informed consent
according to the declaration of Helsinki. Studies were approved by the local Medical Ethics
Committee of Maastricht University Medical Centre+. Blood from donors was collected into
3.2% trisodium citrate (Vacuette tubes, Greiner Bio-One, Alphen a/d Rijn, The Netherlands).
All blood samples had platelet counts within the reference ranges, such as measured by a
Sysmex XN-9000 analyzer (Sysmex, Cho-ku, Kobe, Japan).

Platelet-rich plasma (PRP) and washed platelets were isolated, basically as described
before [46]. In brief, PRP was obtained from citrated blood by centrifugation at 240 g for
15 min. After the addition of 1:10 vol/vol acid citrate dextrose (ACD; 80 mM trisodium
citrate, 183 mM glucose, 52 mM citric acid), this PRP was centrifuged at 5500 g for 2 min.
The pelleted platelets were resuspended in Hepes buffer, pH 6.6 [10 mM Hepes, 136 mM
NaCl, 2.7 mM KCl, 2 mM MgCl2, 5.5 mM glucose, and 0.1% bovine serum albumin (BSA)].
After the addition of apyrase (1 U/mL) and 1:15 vol/vol ACD, another centrifugation step
was performed to obtain washed platelets. The final platelet pellet was resuspended in
Hepes buffer, pH 7.45 (10 mM Hepes, 136 mM NaCl, 2.7 mM KCl, 2 mM MgCl2, 5.5 mM
glucose, and 0.1% BSA) at the required platelet count as indicated below.

4.3. Selection and Design of Peptides

The 7-amino acid peptide TYFAVLM (pGRP), comprising the N-terminal tethered
ligand of GPR56, was synthetized as described previously [33]. Other peptides were syn-
thetized to target the interaction site of the EF-hand domain of CIB1 with the integrin
αIIb chain in the membrane-proximal hydrophobic 15-amino acid region [47,48]. These
included the wildtype CIB1-binding peptide Ace-LVLAMWKVGFFKRNRPP LEEDDEEGQ-
OH (pCIB), corresponding to the cytoplasmic C-terminus of the αIIb chain (Leu983-Glu1008),
which has been previously shown to be internalized into platelets [24]. In addition, we de-
signed and synthetized a more hydrophobic, mutated form Ace-LVRKMWQVGFYKRNRYP
LEEDDEEGQ-OH (pCIBm) and calculated the lowest binding free energy (BFE). For design-
ing the latter, the structure of the αIIb chain was extracted from known NMR analyses (PDB
ID: 2KNC), and this was virtually docked onto the binding pocket of CIB1 (PDB ID: 2LM5)
by applications of the HADDOCK and HDOCK routines of the protein–protein docking
WebServer [49,50]. The retrieved docking poses were refined by performing molecular
dynamics simulations, and the BFE values of these docking poses were also calculated
and compared in order to determine a likely binding mode of the pCIB–CIB1 complex.
The docking solution that gave the lowest BFE, indicative of the most thermodynamically
favorable conformation, was chosen as a template for improved in silico design peptide
candidates [51,52]. The virtually optimized CIB1–peptide complexes were subjected to
molecular dynamics simulations and BFE calculations to predict the most favorable peptide
candidate, pCIBm, using methods described before [53].

4.4. Solid-Phase Synthesis of Peptides

The pCIB peptide was synthesized using automated microwave (CEM Liberty BLUE
microwave peptide synthesizer) Fmoc-based synthesis on a Cl-MPA ProTide resin at
0.25 mmol scale. The modified peptide pCIBm was also synthesized at 0.25 mmol scale, but
using manual solid-phase peptide synthesis on a methylbenzhydrylamine polystyrene resin
(ChemPep, Wellinton, FL, USA), as described previously [54,55]. To produce pCIBm, 2-(6-
chloro-1H-benzotriazol-1-yl)-1,1,3,3-tetramethylaminium hexafluoro-phosphate (Peptides
International, Louisville, KY, USA) was used as coupling reagent. After cleavage of the pro-
duced peptide from resin using anhydrous hydrogen fluoride (GHC, Hamburg, Germany),
the crude product was analyzed on a Waters (Milford, MA, USA) ultrahigh-performance
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liquid chromatography mass spectrometric XEVO-G2QToF system. Both peptides were pu-
rified by semipreparative HPLC using a Vydac C18 HPLC column (10 × 25 mm, 12 mL/min
flow rate or 22 × 250 mm, 20 mL/min flow rate; Grace Davison Discovery Sciences, Deer-
field, IL, USA) connected to a Waters Deltaprep System consisting of a Prep LC Controller
and a 2487 dual wavelength absorbance detector (λ = 214 nm). To elute the peptides, an
appropriate gradient of buffer B in buffer A was used, where buffer A was composed
of 0.1% trifluoroacetic acid (Biosolve, Valkenswaard, The Netherlands) in H2O/CH3CN
(95/5, v/v, Biosolve) and buffer B contained 0.1% trifluoroacetic acid in CH3CN/H2O
(90/10, v/v).

4.5. Whole-Blood Thrombus Formation

Microspots of collagen I (M1), collagen III (M2), and collagen IV (M3) were applied by
coating degreased coverslips with 0.5 µL of 100 µg/mL, as described previously [10]. After
coating, the coverslips were incubated in a humid chamber overnight at 4 ◦C, washed with
saline and blocked with 1% BSA-containing Hepes buffer, pH 7.45, before assembly into
the microfluidic chamber [56]. In the case of multiple microspots, the most active one was
located downstream to prevent cross-activation of platelets [10].

For the assessment of thrombus formation, samples of 500 µL citrated whole blood
were pre-incubated with saline, peptides or inhibitors for 10 min. Immediately before
perfusion, blood samples were supplemented with 40 µM PPACK and recalcified with
3.75 mM MgCl2 and 7.5 mM CaCl2 (f.c.). The recalcified blood was then flowed through a
microspot-containing flow chamber for 3.5 min at a wall shear rate of 1000 s−1 or 1600 s−1 or
for 6 min at a wall shear rate of 150 s−1. After flow, staining was started by a 2-min perfusion
with AF647 anti-CD62P mAb (for P-selectin expression), FITC-fibrinogen (for integrin
αIIbβ3 activation), and AF568-annexin A5 (for phosphatidylserine exposure) in Hepes
buffer, pH 7.45, containing 2 mM CaCl2 and 1 U/mL heparin, as described before [11].
During staining, two brightfield images were captured per microspot. Subsequently,
residual label was removed by post-perfusion with Hepes buffer, pH 7.45, containing
2 mM CaCl2 and 1 U/mL heparin, after which three representative multicolor fluorescence
images were captured per microspot. All conditions were performed in duplicate runs
with blood from at least 3 donors.

4.6. Microscopy and Image Analysis

Brightfield and fluorescence images were taken using an EVOS-FL microscope (Life
Technologies, Bleiswijk, The Netherlands) equipped with Cy5, RFP, and GFP LEDs, an
Olympus UPLSAPO 60x oil-immersion objective, and a sensitive 1360 × 1024 pixel CCD
camera [11]. The images were analyzed using semi-automated scripts operating in Fiji
(ImageJ) and a scoring procedure based on a preset of reference images [11]. Observers
were blinded to the experimental condition. Per microspot, this gave five parameters from
brightfield images (P1–5) and one parameter from each of the three-color fluorescence
images (P6–8), such as defined in Table 1.

Detailed information on the scripts and scoring procedures is given in the supplemen-
tary methods. This section also provides reference brightfield images, used for the scoring.
In brief, P1 (platelet adhesion) represents the percentage of total surface-area-coverage
(SAC%) occupied by platelets. P2 (platelet aggregate coverage) concerns the SAC% occu-
pied by multilayered platelet aggregates. P3 (thrombus morphological score), P4 (thrombus
multilayer score), and P5 (thrombus contraction score) describe the thrombus phenotype,
in comparison to refence images, ranging from 0,0,0 (essential absence of platelets) to 5,3,3
(large contracted, multilayered platelet aggregates). Finally, P6 (PS exposure), P7 (P-selectin
expression), and P8 (fibrinogen binding) represent %SAC of platelets staining positively
for the respective fluorescent probes.
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4.7. Light Transmission Aggregometry

Aggregation of washed platelets (250 × 109/L) was measured at 37 ◦C under stirring
at 1200 rpm using a chronology aggregometer (Havertown, PA, USA). Platelet samples
of 500 µL were pre-incubated with saline, tirofiban (1 µg/mL) or indicated inhibitors
(peptides) for 10 min. Platelet activation was performed with indicated agonists at 37 ◦C.

4.8. Cytosolic Ca2+ Measurements

Washed platelets (200 × 109/L) were loaded with a mixture of Fura-2 acetoxymethyl
ester (3 µM) and pluronic (0.4 µg/mL) in a 40-min incubation at room temperature, as
described elsewhere [41]. After centrifugation in the presence of 1:10 ACD and apyrase
(1 U/mL), the dye-loaded cells were resuspended at the same concentration into Hepes
buffer, pH 7.45. Samples of 200 µL in 96-well plates were pre-incubated with saline,
tirofiban (1 µg/mL), or the indicated inhibitor (peptide) for 10 min at room temperature.
Subsequently, 1 mM CaCl2 was added, and after adaptation to 37 ◦C, ratiometric changes
in fluorescence (excitation wavelengths 340 and 380 nm, emission wavelength 510 nm)
were measured per well with a FlexStation 3 (Molecular Devices, San Jose, CA, USA).
Agonists collagen I (10 µg/mL, f.c.) or CRP-XL (10 µg/mL, f.c.) were added by roboted
pipetting. For optimal, diffusion-limited mixing, the speed of agonist injection was set
at 125 µL/s [41]. Calibrated, nanomolar changes in cytosolic [Ca2+]i were calculated as
before [57,58]. Measurements were performed in triplicate wells, with platelets isolated
from at least 3 donors.

4.9. Statistics and Data Processing

Statistical analysis was performed with GraphPad Prism 8 software (San Diego, CA,
USA). Figures were generated with the same package. Parameter values of thrombus
formation from 2–3 corresponding images in the same run were averaged. In addition,
parameters of duplicate flow runs were averaged to obtain one parameter set per donor,
microspot, and condition [41]. For heatmap representation, mean parameter values across
microspots were univariate normalized 0–10 [11]. For statistical analysis, values of control
and inhibitor runs were compared per donor, using a paired Student’s t-test. In the
subtraction heatmaps, a conventional filter was set at p-values less than 0.05 [41].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23158688/s1.
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