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Original Article

Glycemic control in patients with type 1 and type 2 diabetes 
is a life-long effort driven by information. Self-monitoring of 
blood glucose (SMBG) systems are fundamental in optimiz-
ing glycemic control for these patients and as such, blood glu-
cose (BG) meter technology has experienced significant 
progress and is part of most clinical guidelines for glycemic 
control. While the system accuracy of BG meters has been 
widely studied,1 little is known about the impact of accuracy 
on clinical outcomes. The maturity of mathematical models 
representing glucose metabolism in health and diabetes2 and 
the increasing acceptance of computer simulation to predict 
the impact of therapy modification in type 1 diabetes mellitus 
(T1DM)3,4 have led to regulatory acceptance of modeling and 
simulation, “for approximation of human glucose/insulin uti-
lization, interstitial sensor performance, and subcutaneous 

insulin delivery,” which included replacement for animal tri-
als in the preclinical testing of artificial pancreas systems.3 
The University of Virginia (UVA)/Padova simulation plat-
form is now commonly used for testing medical device per-
formance as well as novel treatment strategies in T1DM;5-12 
the platform is frequently augmented by new physiological 
processes.13-17
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Abstract

Background: Patients with diabetes rely on blood glucose (BG) monitoring devices to manage their condition. As some 
self-monitoring devices are becoming more and more accurate, it becomes critical to understand the relationship between 
system accuracy and clinical outcomes, and the potential benefits of analytical accuracy.

Methods: We conducted a 30-day in-silico study in type 1 diabetes mellitus (T1DM) patients using continuous subcutaneous 
insulin infusion (CSII) therapy and a variety of BG meters, using the FDA-approved University of Virginia (UVA)/Padova 
Type 1 Simulator. We used simulated meter models derived from the published characteristics of 43 commercial meters. By 
controlling random events in each parallel run, we isolated the differences in clinical performance that are directly associated 
with the meter characteristics.

Results: A meter’s systematic bias has a significant and inverse effect on HbA1c (P < .01), while also affecting the number 
of severe hypoglycemia events. On the other hand, error, defined as the fraction of measurements beyond 5% of the true 
value, is a predictor of severe hypoglycemia events (P < .01), but in the absence of bias has a nonsignificant effect on average 
glycemia (HbA1c). Both bias and error have significant effects on total daily insulin (TDI) and the number of necessary glucose 
measurements per day (P < .01). Furthermore, these relationships can be accurately modeled using linear regression on 
meter bias and error.

Conclusions: Two components of meter accuracy, bias and error, clearly affect clinical outcomes. While error has little 
effect on HbA1c, it tends to increase episodes of severe hypoglycemia. Meter bias has significant effects on all considered 
metrics: a positive systemic bias will reduce HbA1c, but increase the number of severe hypoglycemia attacks, TDI use, and 
number of fingersticks per day.
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In this study, we aim to quantify the clinical impact of BG 
monitoring system accuracy using the latest UVA/Padova 
simulation platform by (1) constructing models that replicate 
the characteristics of commercially available BG monitoring 
systems, (2) modeling type 1 subject behavior related to 
meals and self-treatment, and (3) constructing a simulation 
to track T1DM patients over 30 days. Each simulated patient 
uses each of the available BG monitoring systems in turn, 
and simulation results are used to estimate clinical outcomes 
such as HbA1c, severe hypoglycemia, and other clinically 
relevant parameters. Finally, we create regression models 
that relate the characteristics of BG monitoring systems to 
each of the clinical outcomes.

Materials and Methods

Building on the work relating accuracy to clinical out-
comes,18-30 we assess the effect of SMBG systems on clinical 
outcomes. An overview of the process followed in this work 
is described in Figure 1. (1) Our approach relied on existing 
literature and publicly available data to model commercially 
available BG meters as well as self-treatment behavior 
observed in continuous subcutaneous insulin infusion (CSII) 
therapy; (2) the resulting models, described in the following 
sections were incorporated in the UVA/Padova Type 1 
Diabetes Simulator,13,31 and used to create a thirty day long 
simulation where each in-silico subject in the population 
used in turn each of the available commercial meters; and (3) 
quality of glucose control observed by each of the subject/
meter combination was estimated using standard metrics 
such as HbA1c, severe hypoglycemia, number of finger-
sticks used, and an estimate of total daily insulin (TDI). The 
following sections describe in detail each of the steps.

Modeling BG Monitoring Systems

A comprehensive study1 reported the system accuracy of 43 
commercial BG monitoring systems. Accuracy was defined 
in terms of percentages of measurements within certain toler-
ances of the reference measurement, split between low and 
high glucose ranges (<100 mg/dl, ≥100 mg/dl, respectively). 
The BG monitoring systems are modeled using a Johnson 
transform of a standard normal distribution where parame-
ters are selected to optimally match the reported measure-
ment percentage errors reported in literature. Specifically, in 
the low glucose range (<100 mg/dl), the parameters of a 
Johnson distribution
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are estimated so that P Y l plL i i≤( ) ≈ , where li  is one of the 
threshold in 15, 10, 5 mg/dl, and pli  is the reported percentage 
of measurements within that threshold.1 Here N is a standard 
normal variate. A similar approach is used to fit parameters 

Figure 1. Project approach to estimating clinical impacts of 
meter accuracy.
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set percentage pli  there are two symmetric distributions satis-
fying these properties. The sign of the distribution is resolved 
by matching systematic biases reported1 for each BG monitor-
ing system. The complete set of parameters required to repre-
sent a specific meter is χ λ γ δ χ λ γ δL L L L H H H H, , , , , , ,( ).

Use in Simulation. Simulated measurements given a reference 
glucose value G can be obtained from a standard normal 
variate N by computing measurement as
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the reference G < 70 , it will return the high glucose mea-
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  when G ≥130, and a mix of the two 

in the range 70 130≤ <G . In Figure 2, we show the result of 
such an approach.

Modeling Behavior

The behavioral model adopted in this work consisted of the 
components described in Figure 3, namely (1) a meal behav-
ior component that describes eating amount, times, and 
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correlations; (2) a bolusing behavior component that 
describes the conditions under which a bolus is self-adminis-
tered; (3) a fingerstick behavior component describing how 
frequently subjects fingerstick and under what conditions; 
and (4) a hypoglycemia self-treatment behavior. Before 
describing in detail each of these components, we briefly 
describe the data sources used to design and parameterize 
our behavioral model.

Data Sources. We used archived deidentified data collected 
during the project funded by National Institutes of Health/
National Institute of Diabetes and Digestive and Kidney Dis-
eases grant RO1 DK 085623 (see clinicaltrial.gov for clinical 
trial registration number NCT01434030). Sixty insulin pump 
users with type 1 diabetes were recruited and asked to wear a 
CGM device for a month, simultaneously recording SMBG, 
CGM, and insulin pump data, as well as information about 
meals and physical activity. Fifty-six participants completed 
the data collection and contributed to the database. The demo-
graphic characteristics of these subjects were as follows: 21-65 
years of age, with a mean (SD) age of 41 (12.2) years; duration 
of type 1 diabetes of at least 2 years, with a mean duration of 
24.1 (11.0) years; use of an insulin pump for at least 6 months, 
with a mean interval of 10 (5.8) years; and active use of a 
bolus calculator function. Mean (SD) hemoglobin A1c level 
was 7.7% (1.2%), 59% were female, the majority (95%) were 
white, and 50% were employed in professional occupations. 
The database building protocol was approved by the local 
Institutional Review Board; study details were previously 
published.32 Data collection was designed to interfere mini-
mally and reduce as much as possible burden, distractions or 
alterations to participants’ typical daily routines and allow 
them to maintain typical daily behaviors.

Meal Behavior. To account for interrelationships between the 
timing and amount of consecutive meals that is observed in 
real life, we adopt bootstrap sampling in the following sense: 

Figure 2. Example simulated glucose readings using our 
modeling approach.

consider a database of meals where for meal m  we have the 
associated meal time of day and amount t am m, , respectively. 
We assume meal m +1  follows meal m (ie, meals are ordered 
by time). Using this information, we can construct the set of 
meals

M t a m t t t a a am t t m m m, , , , ,( ) = ∈ − +( ) ∈ − +( ){ }| δ δ δ δ

that is, meals that took place at approximately time t  of a 
size approximately equal to a. As illustrated in Figure 4, 
both the size and the timing of a meal depend on the timing 
and size of the meal just prior. To mimic this behavior, given 
a meal time N and size a, meals are uniformly sampled from 

the set M t a+ ( ), , the set of meals following meals in set 

M t a,( ), where M t a mm M t a+ ( ) = − ∈ ( ){ }, ,| 1 . Based on 

our data sets, the time between meals has a mean of 3.64 
hours (standard deviation of 2.73), median of 3.16 hours, 
where the lowest 5% of these times fall below 25 minutes, 
and the 95% fall under 8.75 hours. The average meal size is 
39.6 g (24.8 g).

Bolus and Fingerstick Behavior. Fingerstick and bolus behav-
ior is modeled according to Figure 5. The subject responds 
probabilistically to a triggering event (eg, meal or hyper-
glycemia), and applies a bolus if necessary according to 
functional therapy parameters. For example, in the top-left 
of Figure 5, we illustrate how the in-silico subject responds 
to persistent hyperglycemia (two consecutive hours of high 
glucose >220 mg/dl): a fingerstick is applied with a fixed 
probability, followed by the appropriate correction. A 
slightly more detailed model was used to model meal bolus 
behavior, where patients may (randomly) decide to ignore 
or delay a meal bolus.

Hypoglycemia Treatment. Hypoglycemia is treated according 
to the following rule. This response approximates behavioral 
data from the data sets reported above. As observed, the size 
of hypo treatments will increase as treatments are repeated. 
Moreover, a lower glycose level will result in an increase in 
rescue size. More specifically, a low glucose concentration 
level (<80 mg/dl) will trigger a fingerstick with probability 
e BG35 8−( )/  every half-hour.12 This implies that when BG low-
ers to 35 mg/dl, it will be detected for sure, but on the other 
hand, if BG = 70, the probability of triggering an SMBG 
check within 15 minutes is approximately 20%. If low glu-
cose is indeed detected, rescue carbs are administered 
according to hypoglycemia level and number of rescues 
applied recently (within 30 min), as described in Table 1. For 
example, a subject weighing 90 kg with a glucose reading of 
55 mg/dl that has received 3 consecutive rescues (within 30 
min), will receive an additional one of 0.5 × 90 = 45 g. On 
the other hand, suppose that the first rescue the subject 
received was given when her glucose was 65 mg/dl, will 
receive 0.2 × 90 = 18 g carbohydrates.
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Figure 5. Behavioral model of bolus and fingerstick behavior.

Figure 3. Description of the elements of the basic behavioral model.

Figure 4. Relationship between consecutive meal times and sizes, using values of δ δt a= ( ) =15 20min and, (g).
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In-Silico Evaluation

A 30-day scenario was designed based on behavioral models 
described in the previous sections, and used to generate the 
glycemic response for each 100 in-silico subject of the T1D 
adult population in the UVA/Padova simulator, using each 
BG monitoring system modeled in our database, a total of 43 
meters, together with an ideal meter (neither bias nor error). 
Given the natural variability of the process and to improve 
estimates of our metrics, 30 replicates of each combination 
of subject-BG monitoring system were simulated, resulting 
in more than 10 000 simulated patient years. Random seeds 
were controlled across subjects and meters to minimize vari-
ance of the estimates and accurately isolate the effect of 
meter accuracy on glycemic control. In other words, each 
subject will experience the same meal sequence, bolus deci-
sions, and other behavioral factors. Thus, differences across 
scenarios are only due to meter characteristics.

Clinical Outcome Estimates. For each simulation, we com-
puted an estimated HbA1c (using a commonly used linear 
regression model relating average glucose to HbA1c33) and 
severe hypoglycemia events (via a model relating LBGI and 
severe hypoglycemia events; see Table 2 in Kovatchev 
et al34). We note that severe hypoglycemia, defined as a glu-
cose level such that the patient will require assistance, is not 
explicitly simulated, but later estimated. In addition, TDI and 
daily fingerstick use were computed directly from the simu-
lation output.

For each combination of subject s , meter m, and repli-
cate r, we have an estimate for HbA cs m

r1 , , an estimate SHs m
r
,  

of severe hypoglycemia events per person per 6 months, an 
estimate TDIs m

r
,  of average TDI used, as well as FSs m

r
,  a 

fingerstick count. In addition, we define accuracy of a meter 
in terms of two following characteristics used to describe our 
results.

Error. Fraction of measurements whose absolute relative 
difference is >5%. Formally, if we have a collection of n  
measurements SMBGmi  obtained with meter m , paired with 
reference values BGi , with i n= …1 2, , , , we define
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Bias. The average difference between measurement and 
reference, that is,
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In Table 2, we report population means for each of these met-
rics and meters. For example, given a fixed meter m , we 
denote the average HbA c1  across all subjects and replicates as

HbA c E HbA c HbA cm S m
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Correspondingly, we denote by SHm , FSm , and TDIm , the 
average across all subjects and replicates of severe hypogly-
cemia episodes, fingerstick count, and TDI, respectively. 
Similarly, we denote per subject averages (across replicates) 

as HbA cs m1 , , SH s m, , FS s m, , and TDI s m, .

Results

In Table 2 we report all simulation results in terms of HbA1c, 
severe hypoglycemia, TDI, and fingerstick count. Entries in 
Table 2 represent the average value of each metric across 30 
replicates of 100 subjects in the adult population all using 
each of the 43 glucose meter models. The table also reports 
the average bias and errors obtained for the corresponding 
meter, as observed in the simulation.

Response of HbA1c to Error and Systematic Bias

Meter error has a marginal effect on HbA1c. In fact, as we will 
show in our next section, a linear regression model shows that 
the coefficient corresponding to meter error is not significant. 
On the other hand, the data shows a clear inverse relationship 
between meter systematic bias and HbA1c (as illustrated in 
Figure 6). Meters with positive bias (represented as orange-yel-
low dots), will tend to reduce HbA1c while at the same time 
increasing the expected number of severe hypoglycemia events.

Response of Severe Hypoglycemia to Error and 
Systematic Bias

The effect of error, which was negligible on HbA1c, is sig-
nificant on severe hypoglycemia: higher error rates are asso-
ciated with a higher number of severe hypoglycemia. These 
relationships will be further formalized in the following sec-
tions where we show that a simple linear regression model 
can explain most of the results shown here.

Other Relationships

TDI, as well as fingerstick count, shows similar relation-
ships to severe hypoglycemia, that is, from a reference of 

Table 1. Rescue Carb Schedule in Grams/kg.

Number of consecutive rescues

Hypoglycemia level 1 2 3+

<70 mg/dl, ≥60 mg/dl 0.2 0.4 0.6
<60 mg/dl, ≥50 mg/dl 0.4 0.8 0.8
<50 mg/dl 0.6 1.2 1.2
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Table 2. Metric Estimates Obtained by Averaging Simulation Outputs Across Subjects.

Meter/metric HbA1c (%)

Severe 
hypoglycemia 

(events/6 months) TDI (U)
Fingerstick count 

(meas./day) Bias (mg/dl)

Error 
(fraction 

ARD > 5%)

Meter 1 8.9 1.1 41.3 8.0 0.3 0.2
Meter 2 8.7 1.4 41.5 8.4 0.0 0.4
Meter 3 8.9 1.1 41.2 8.0 −3.7 0.4
Meter 4 8.7 1.4 42.3 8.4 −6.8 0.3
Meter 5 8.7 1.4 43.2 8.4 4.4 0.2
Meter 6 8.7 1.4 42.5 8.3 −3.0 0.3
Meter 7 8.9 1.2 41.6 8.1 −7.3 0.3
Meter 8 8.6 1.6 43.6 8.6 5.6 0.3
Meter 9 8.6 1.6 42.8 8.5 2.2 0.3
Meter 10 8.9 1.1 42.1 8.1 −3.6 0.4
Meter 11 8.5 2.0 43.8 9.0 7.1 0.7
Meter 12 8.6 1.7 43.3 8.7 4.1 0.4
Meter 13 9.0 1.0 41.5 7.9 −10.3 0.6
Meter 14 8.7 1.5 42.8 8.4 0.0 0.4
Meter 15 8.9 1.2 41.0 8.1 4.9 0.5
Meter 16 9.0 1.1 42.9 8.0 −10.9 0.7
Meter 17 8.7 1.4 41.3 8.4 3.2 0.1
Meter 18 8.9 1.1 41.2 8.1 0.8 0.1
Meter 19 8.4 2.3 47.3 9.3 15.1 0.7
Meter 20 9.0 1.1 41.2 8.0 −3.6 0.6
Meter 21 8.7 1.6 42.0 8.5 0.0 0.6
Meter 22 9.0 1.0 42.2 8.0 −3.4 0.6
Meter 23 8.5 1.8 44.5 8.8 8.9 0.6
Meter 24 8.5 2.2 43.9 9.3 21.0 0.7
Meter 25 9.2 1.0 42.0 7.9 −21.9 0.8
Meter 26 8.4 2.1 43.3 9.2 16.8 0.7
Meter 27 8.5 1.9 44.5 9.0 12.2 0.6
Meter 28 8.5 2.0 45.1 9.0 11.0 0.6
Meter 29 8.5 1.9 43.8 8.9 0.7 0.6
Meter 30 8.9 1.1 40.5 8.1 6.4 0.5
Meter 31 9.0 1.1 42.1 8.0 −9.0 0.6
Meter 32 9.0 1.0 41.3 7.9 −10.0 0.6
Meter 33 9.0 1.1 41.0 8.0 −9.5 0.6
Meter 34 8.6 1.8 44.4 8.8 3.9 0.5
Meter 35 8.6 1.7 43.2 8.7 9.5 0.4
Meter 36 8.5 2.0 43.4 9.0 15.2 0.6
Meter 37 8.9 1.1 40.8 8.0 −4.8 0.5
Meter 38 9.1 0.9 41.3 7.9 −12.3 0.7
Meter 39 8.4 2.3 46.8 9.4 23.6 0.7
Meter 40 8.7 1.5 42.1 8.4 9.4 0.4
Meter 41 8.7 1.5 42.8 8.4 −3.0 0.5
Meter 42 8.5 1.8 43.2 8.8 10.8 0.5
Meter 43 8.7 1.6 42.4 8.6 12.0 0.5
Ideal (error free) 8.8 1.4 41.8 8.4 0.0 0.0

41.8U of TDI for an ideal meter, high error rates as well as 
positive bias will result in higher daily insulin use. For 
example, meter 19 with a positive bias of 15.1 mg/dl and 
an error of 0.7 (on a scale of 0 to 1), increases insulin use 
to 47.3U per day. A similar relationship is observed for 
fingerstick counts.

A Model Relating Accuracy and Clinical Outcomes

We propose a linear model

HbA c a a error a bias a HbA c

a FSCount a error

s m m m s

m

1 10 1 2 3 0

4 5

, ,~ + + + +

+ mm mbias ,
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where HbA cs1 0,  is the average HbA1c observed by subject N 

when using the ideal (error-free) meter, and FSCountm  is 
average number of fingersticks used by subject using meter 

m . Similar models were created for TDI, and for daily finger-

stick count (excluding in this case FSCountm ). Results are 
reported in Table 3. Severe hypoglycemia was modeled using 
a nonlinear (logistic) model. First, we define the linear model

SHL a a error a bias

a SH a error bias

m m m

m m

~

,

0 1 2

4 0 3

+ + +

+

and the prediction for severe hypoglycemia takes the form

SH
e

m SMLm
~ .

/

θ
θ θ
1

1 2 3+ −( )

Discussion

Based on our simulations, we could show a clear relationship 
between the system accuracy of a BG monitoring system and 
the resulting quality of glucose control. More specifically, a 
meter with a large error rate will tend to increase glucose 
variability and therefore episodes of severe hypoglycemia. 
The BG monitoring systems with large systematic bias, on 
the other hand, will have a dual and symmetric effect: the 
effect on HbA1c will be inversely proportional while inci-
dence of severe hypoglycemia will be proportional to sys-
tematic bias. A previous retrospective study has similar 
conclusions,35 showing for instance that meters with read-
ings consistently higher than reference can significantly 
increase hypoglycemic coma episodes.

Generalization of these results is somehow limited by the 
use of models mimicking patient’s behavior during a rela-
tively small scale (n = 55, 1 month) clinical study; while the 
protocol was designed to minimize contact with participants 
and perturbations of their treatment behaviors, this group 
may still have exhibited treatment behaviors that were more 
compliant than ones observed for the population at large. 
Measurements frequency in particular may impact our 
results, particularly the balance between bias and variance of 
the error. It is important to note that while the observed BGM 
frequency was high it was equivalent in all simulation, lead-
ing to changes in hypoglycemia and HbA1c that were purely 
driven by BGM error characteristics.

In summary, our results demonstrate that BG monitoring 
systems compliant with most conditions of the ISO 15197 
(2013) standard have only limited impact on HbA1c, SHE, 
insulin utilization and SMBG frequency, whereas systems 
not meeting the standards can have significant clinical influ-
ence on one or several of these outcomes. For the HbA1c 
values, the increases could reach approximately 0.4% while 
the number of annual SHE could increase by up to 1.7 cases 
per year. In addition, the insulin consumption could increase 
by up to 5.5 units/day and the number of fingersticks by up 
to 1.0 tests/day.

Importantly, these are not limited to just one specific 
SMBG system; rather, they apply to several systems not 
meeting the most recent version of ISO standard 15197. 
These findings not only offer important guidance to both cli-
nicians and individuals with diabetes when selecting an 
appropriate SMBG system but they provide a basis for esti-
mation of the economic impact of SMBG system inaccuracy, 
which will be presented in a subsequent publication. The 
relationship between CGM-MARD and the ISO 15197 
(2013) standard in nonadjunctive use is also critical. As 
recent studies have shown, it is difficult to directly relate 
MARD levels to the ISO 15197:2013 standard. A recent 
study36 showed that MARDs of 3.25% and 5.25% are 
required to achieve ISO standard with probability one.

Conclusion

In this study, we present a new approach to estimate the 
impact of BG monitoring system accuracy on clinical out-
comes. This approach allows us to leverage recent advances 
in the simulation of the glucose-insulin metabolism as well 
as new behavioral models of type 1 diabetes patients to 
assess the clinical impact of inaccurate glucose meters in 
everyday use. Patients under CSII therapy will receive ben-
efits from increases in accuracy in both CGM and BGM 
technologies. These effects will be observed independent of 
the mode of BGM use, for example, insulin-dosing or cali-
bration only.

Although this in-silico study simulated a CSII based pop-
ulation, we can assume that, at least qualitatively, these 
results can be extended to patients using functional insulin 
therapy and multiple daily injections (MDI); it is still unclear 

Figure 6. Relationship between error, bias, HbA1c, and severe 
hypoglycemia. Each meter is represented by a colored dot. The 
x-coordinate represents error, while the y-coordinate represents 
the resulting HbA1c. The size of the dot is proportional to the 
number of severe hypoglycemia events in 6 months, while the 
dot’s color shows the meter’s systematic bias.
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how much of these results are applicable to older forms of 
therapy, for example, sliding scale. Our simulation study 
does not consider temporary basal rate adjustments, so as 
long as the considered basal insulins display long (~24-hour) 
time constants (eg, glargine), results are not likely to change. 
Behavioral models were trained on a combination of MDI 
and CSII patients, and are representative of this mixture. 
Further simulation studies would allow to quantify the sensi-
tivity of our results to these behavioral parameters, in par-
ticular the response to changes in the number of treatment 
decisions.

An important limitation in our study is the lack of long-
term behavioral adjustments. For instance, it has been 
observed that patients with T1DM who experience fre-
quent episodes of hypoglycemia will adjust their therapy 
on their own or with assistance by their physician. 
Although the results presented here accurately predict 
short-term clinical outcomes, the long-term effects of 
such behavioral adaptations need to be better understood. 
While such behavioral adaptations are commonly observed 
in clinical practice, the authors are not aware of data sets 
with sufficient detail to properly model and simulate this 
behavior.
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