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The decisions we make are sometimes influenced by interactions with other agents.
Previous studies have suggested that the prefrontal cortex plays an important role
in decision-making and that the dopamine system underlies processes of motivation,
motor preparation, and reinforcement learning. However, the physiological mechanisms
underlying how the prefrontal cortex and the dopaminergic system are involved in
decision-making remain largely unclear. The present study aimed to determine how
decision strategies influence event-related potentials (ERPs). We also tested the effect
of levodopa, a dopamine precursor, on decision-making and ERPs in a randomized
double-blind placebo-controlled investigation. The subjects performed a matching-
pennies task against an opposing virtual computer player by choosing between right
and left targets while their ERPs were recorded. According to the rules of the matching-
pennies task, the subject won the trial when they chose the same side as the opponent,
and lost otherwise. We set three different task rules: (1) with the alternation (ALT) rule,
the computer opponent made alternating choices of right and left in sequential trials;
(2) with the random (RAND) rule, the opponent randomly chose between right and
left; and (3) with the GAME rule, the opponent analyzed the subject’s past choices to
predict the subject’s next choice, and then chose the opposite side. A sustained medial
ERP became more negative toward the time of the subject’s target choice. A biphasic
potential appeared when the opponent’s choice was revealed after the subject’s
response. The ERPs around the subject’s choice were greater in RAND and GAME
than in ALT, and the negative peak was enhanced by levodopa. In addition to these
medial ERPs, we observed lateral frontal ERPs tuned to the choice direction. The signals
emerged around the choice period selectively in RAND and GAME when levodopa
was administered. These results suggest that decision processes are modulated by
the dopamine system when a complex and strategic decision is required, which may
reflect decision updating with dopaminergic prediction error signals.

Keywords: levodopa, feedback, readiness potential, game theory, Parkinson’s disease, high-density EEG,
prefrontal cortex, executive function
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INTRODUCTION

Interactive decision-making is fundamental to our social activity.
However, it is elusive, in that it may change dynamically
depending on social contexts and knowledge about the
intentions of others. For example, playing the rock-paper-scissors
game involves complex interactive processes including decision
variables such as likelihoods, priors, and values. The game theory
provides a mathematical framework for the strategic interactions
among decision-makers. In the game theory, a player is said to use
a mixed strategy whenever they choose to randomize over the set
of available actions (Dixit et al., 2009). Mixed-strategy games have
been used for neurophysiological research on decision-making
and identified neural signals related to the previous choices,
previous rewards, expected reward value, and decision switching
of subjects in the medial prefrontal cortex and other brain areas
(Barraclough et al., 2004; Dorris and Glimcher, 2004; Seo and
Lee, 2007, 2008; Seo et al., 2009; Thevarajah et al., 2009; Donahue
et al., 2013). These neural signals may reflect strategic updating of
decision variables based on past history.

There are several brain regions involved in decision-making,
among which the dopamine system and prefrontal cortex appear
to play pivotal roles, particularly when a decision involves a
strategic interaction (Lee and Seo, 2016). There is converging
evidence that the dopamine system is essential for adapting
behavior based on previous outcomes, such as dopamine neurons
emitting teaching signals that guide reinforcement learning
(Schultz et al., 1997), dopamine activity reflecting the upcoming
choices and actions of subjects (Morris et al., 2006; Yun et al.,
2020), and the economic decisions of Parkinson’s disease (PD)
patients being influenced by dopaminergic treatment (Kobayashi
et al., 2019). Decision processes can be decomposed into multiple
tasks, including integration of external information, outcome
estimation, and movement preparation. The primate prefrontal
cortex has been shown to be involved in each of these cognitive
tasks, and is thus thought to be one of the main processors
involved in decision-making to guide goal-directed behavior
(Kim and Shadlen, 1999; Krawczyk, 2002; Matsumoto et al.,
2003). Anatomically, dopamine neurons project to the prefrontal
cortex via the mesocortical pathway. Given these anatomical
and physiological backgrounds, it is tempting to speculate that
decision substrates are formed in the prefrontal cortex under
the influence of dopaminergic input that carries reinforcement
signals and motivational drive. However, we are not aware of
any previous study that has directly examined dopaminergic
influences on behavior and electrophysiological activities during
an interactive game.

We aimed to determine how dopamine influences event-
related potentials (ERPs) while healthy subjects played a
matching-pennies task, which is a type of mixed-strategy zero-
sum game. ERPs are voltage changes in electroencephalography
(EEG) recordings that occur before, during, or after physical
or mental events (Picton et al., 2000). Neural correlates
of decision-making in humans have been studied mainly
using functional magnetic resonance imaging (fMRI). However,
decision processes are dynamic and instantaneous, possibly
occurring in the subsecond range, and so fMRI data with

a low temporal resolution must be interpreted with caution.
Recording ERPs is well suited to studying decision processes
since it yields non-invasive data on cortical activity with excellent
temporal resolution. Much of the ERP research on decision-
making has focused on postdecision activity, such as error-related
negativity (Falkenstein et al., 1991) and the central–parietal P3
component (Polich, 2007). We looked for ERP correlates of
strategic decision-making, focusing on prefrontal activity and
dopaminergic influences.

According to the rules of the matching-pennies task, the
subject won the trial when they chose the same side as the
opponent, and lost otherwise. We set three different task rules:
(1) with the alternation (ALT) rule, the computer opponent made
alternating choices of right and left in sequential trials; (2) with
the RAND rule, the opponent randomly chose between right
and left; and (3) with the GAME rule, the opponent analyzed
the subject’s past choices in order to predict the subject’s next
choice, and then chose the opposite side. Therefore, the subject
had to make choice patterns as random as possible in order to
reduce the likelihood of the computer opponent winning. We
hypothesized that the prefrontal cortex would exhibit greater
activation when decisions were based on complex priors rather
than the simple alternation rule: in order words, when decision-
making is based on intensive computation of complex priors
and outcome prediction, dopaminergic input to the prefrontal
cortex plays a critical role. We therefore tested whether the
administration of levodopa, a precursor of dopamine, enhances
decision-related ERPs.

MATERIALS AND METHODS

Participants
Eighteen right-handed healthy adults (12 males; age 46.2 ± 12.8
years, mean± SD) were recruited. One male subject was excluded
because he withdrew from the experiment after the first session.
Fukushima Medical University Ethical Committee approved the
experimental design of the study, and informed consent was
obtained from all subjects.

Procedures
Each subject participated in recording sessions twice, separated
by an interval of at least 1 week. The subjects took either a placebo
or 100 mg of levodopa 45 min before the start of each recording.
Drug treatment was double-blinded and randomized.

During EEG recordings, the subject was seated 70 cm from a
computer monitor (60 cm × 30 cm) and played a computerized
version of the matching-pennies task (Figure 1). At the beginning
of each trial, two gray circles were displayed at the bottom of the
monitor and the subject put the index and middle fingers of their
right hand on the two designated keys on the keyboard (during
the WAIT period). After 800 ms, the gray circles changed color,
which signaled the subject to press either one of the two keys
(the GO period). Immediately after they had made their choice,
a hand illustration was displayed below the chosen side of the
circles (designated as SBJ CHOICE). After 1,000 ms, the choice
of the computer player was revealed by a hand illustration shown

Frontiers in Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 552750

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-552750 March 15, 2021 Time: 15:55 # 3

Chang et al. ERPs During Mixed-Strategy Game

FIGURE 1 | Illustration of the task flow in the matching-pennies task. The task started with the presentation of two gray circles (WAIT). A color change of the two
circles signaled the subject to make a choice response (GO), with the subject having to choose either the left or right target (SBJ CHOICE). After a 1,000 ms delay,
the choice made by the computer player was displayed (OPP CHOICE). After 700 ms, the outcome was shown (OUTCOME).

on the left or right side at the top of the monitor (OPP CHOICE).
The subject won the trial if the side of their choice matched that
of the computer player, and otherwise, the subject lost (Table 1).
After 700 ms, the outcome of each trial was displayed on the
monitor together with the total winning rate (OUTCOME). The
subject was encouraged to win as much as possible. The trial was
aborted if the subject responded during the WAIT period or did
not respond within 5 s after the GO signal.

The following algorithms were implemented for the computer
player: Each subject performed the matching-pennies task with
three different rules. For the ALT rule, in which the computer
player chose the right or left target alternatively, the subject could
easily predict the opponent’s choice. However, the subject could
not predict the opponent’s choice for the RAND rule, since the
computer player chose the right or left target randomly with
equal probability. The GAME rule was modified from a previous
study (Barraclough et al., 2004), in which the computer could
exploit systematic bias in the subject’s choice in the recent past
to maximize the winning rates of the computer player. The
computer saved the entire history of the subject’s choices in a

TABLE 1 | Payoff matrix of the subject and the computer player for the choice of
left vs. right key presses (subject, computer).

Computer player’s choice

Left Right

Subject’s choice Left (Win, lose) (Lose, win)

Right (Lose, win) (Win, lose)

given session and used the information to predict the subject’s
next choice by testing a set of hypotheses. Multiple conditional
probabilities were estimated to predict the subject’s choice, and
the computer biased its selection according to these probabilities.

P(A, N ) is the conditional probability of the subject choosing A
(right or left) given that they have chosen A in the Nth previous
trials. For example, if the subject chose the right target with a
probability of 80% in the recent past (i.e., P(left,1) = 0.8), the
probability of the computer selecting the left target would be 80%.
The subject’s choice may be conditional not only on their past
choice but also on the game outcome (win vs. lose). Pwin(A, N )

and Plose(A, N ) are the conditional probabilities of the subject
choosing A given that they chose A in the Nth previous trials and
winning or losing the trial, respectively, for example, Pwin(A,1) = 1
means a win-stay strategy and Plose(A,1) = 0 means a lose-switch
strategy. Among these conditional probabilities computed for
N = 1–4, the probability with the highest value (Pmax) was taken
to bias the choice of the computer player to the opposite side at
the same probability:

Pmax = max (P(A, N), Pwin (A, N), Plose (A, N))

for A = left, right and N = 1, 2, 3, 4. (1)

The next choice of the computer player was opposite to the
subject’s choice with a probability of Pmax.

All of the subjects played 450 trials, comprising six sessions
with three different rules and 75 trials/session. Six blocks of
trials were run in a fixed order (ALT–RAND–GAME–ALT–
RAND–GAME) and there was a short break between the trial
blocks. At the beginning of the experiment, we first provide
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general instructions about the task sequence and procedure of the
matching-pennies task, including showing example screenshots.
We then explained the three different rules and allowed 15
practice trials for each rule.

The following instructions were given for each task rule:

ALT rule: “In this session, the computer opponent will
simply alternate its response between right and left.
So, you can easily win by alternating your response to
choose the side that the opponent will choose.”

RAND rule: “In this session, the computer opponent will
randomly choose between right and left. So, its response
is unpredictable. You will win or lose by chance.”

GAME rule: “In this session, the computer opponent will
analyze your past choices in order to predict your
next choice. For example, if you chose left repeatedly,
the computer opponent would choose right to win.
Therefore, you have to try to make unpredictable
selection patterns to reduce the likelihood of the
computer opponent winning. You are encouraged to
win as much as possible.”

The three rules were applied in a fixed order to make it
as easy for the subjects to understand which rule they were
performing for a particular task. The sequence of ALT–RAND–
GAME was repeated twice to avoid the possible order effect,
training effect, and effects of changes in the recording conditions
such as in the electrode impedances. We explicitly provided
instructions about the relevant rule to the subjects before a new
session began. We also instructed them to look at the cross
mark at the center of the monitor to avoid eye movements. The
behavioral task was controlled by MATLAB (version R2014a, The
MathWorks, Natick, Massachusetts, United States) with Cogent
2000 and the Psychophysics Toolbox (Brainard, 1997) running
on a Windows computer connected to a Macintosh computer that
sampled the EEG data.

Data Acquisition and Analysis
Seventeen subjects completed the entire experiment, and all of
their behavioral data were included in the behavioral analysis.
We analyzed the winning rates of the subjects for each rule. We
evaluated how much the choice of a subject was influenced by
their own choices in the past by using the log likelihood ratio
(LR):

LRself(N) = log[{P(rtself, rtself)+ P(ltself, ltself)}/

{P(rtself, ltself)+ P(ltself, rtself)}] (2)

where LRself(N) is the LR of choosing the same side in the current
trial as in the Nth previous trials, rt and lt correspond to pressing
the right- and left-side keys as the decision, respectively, and
P(Aself, Bself) is the condition probability of the subject choosing
A in the current trial and choosing B in the Nth previous trials.
LRself(N) = 0 indicates that past choices did not influence the
present choice. If the subjects tended to choose the same side as or
the opposite side to the choice in the Nth previous trials, LRself(N)
would be positive or negative, respectively.

The subject’s current choice could also be influenced by the
opponent’s choice in the previous trials. The influence from the
past choices of the computer player was evaluated in an analogous
manner:

LRpc(N) = log[{P(rtself, rtpc)+ P(ltself, ltpc)}/

{P(rtself, ltpc)+ P(ltself, rtpc)}] (3)

where LRpc(N) is the LR of choosing the same side in the
current trial as the opponent’s choice in N previous trials, and
P(Aself, Bpc) is the conditional probability of the subject choosing
A in the current trial when the computer player chose B in
the Nth previous trials. Logistic regression analysis was used to
identify how the past choices influenced the current choice (see
Supplementary Material 1 for details).

To measure the randomness of choosing between right and
left, we calculated the permutation entropy of the numerical
sequences of the chosen target using the MATLAB function
“pec.m” (Bandt and Pompe, 2002; Ouyang, 2020).

EEG data were recorded from 129 scalp locations at a sampling
rate of 1,000 Hz with a 24-bit resolution (Geodesic EEG System
400, Electrical Geodesic, Eugene, Oregon, United States). EEG
data analysis was performed using EEGLAB (version 14.1.1)
(Delorme and Makeig, 2004) and ERPLAB (version 6.1.4)
(Lopez-Calderon and Luck, 2014). The data were downsampled
to 250 Hz and bandpass filtered between 0.01 and 30 Hz,
with a notch filter at 50 Hz. Noisy channels were removed,
and the removed channels were interpolated. The sampled data
were re-referenced to the average of all electrodes. Independent-
components analysis and an automatic EEG artifact detector
(Mognon et al., 2011) were used to correct for artifacts such as
blinks and eye movements.

ERPs were analyzed in three periods. The first period (period
I) was from the onset of the WAIT cue until the onset of the
GO cue (800 ms), which corresponds to the period when the
subject waited for the GO stimulus to appear on the monitor.
The second period (period II) was from -800 to 0 ms from
the subject’s choice response (SBJ CHOICE, 800 ms). The third
period (period III) was from the disclosure of the opponent’s
choice (OPP CHOICE) until the onset of the feedback cue
(OUTCOME, 700 ms). The activity during the intertrial interval
was used for baseline correction. We excluded EEG data with a
large proportion of noise contamination (more than 25% of trials
rejected by ERPLAB).

For periods I and II, the period-mean amplitude was defined
as the amplitudes of ERPs averaged over the entire period. For
periods I to III, the negative peak amplitude was defined as the
minimum value of the ERP during each period. For period III,
the positive peak amplitude was defined as the maximum value
of the ERP during the period.

Initially, there were 17 subjects. Data from seven subjects
were excluded because the number of trials was insufficient after
artifact removal. Therefore, data from the remaining 10 subjects
were analyzed. The numbers of trials averaged for the ERP
analysis are summarized in Table 2.

To quantify the selectivity of the ERP signals to the
direction of the subject choice, we calculated the mean
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TABLE 2 | Numbers of trials used to obtain event-related potentials (ERPs).

Rule Period I Periods II and III

Placebo ALT 134.3 (115–150) 130.1 (100–150)

RAND 132.7 (119–148) 128.6 (101–148)

GAME 132.8 (106–149) 133.1 (107–149)

Levodopa ALT 130.1 (97–148) 124.4 (83–148)

RAND 132.7 (111–150) 127.8 (95–150)

GAME 133.9 (112–149) 130.9 (109–150)

EEG noise contamination was removed separately for period I and periods II and
III, and hence, the number of trials differed across periods. Data are mean (range)
values for 10 subjects.

ERP difference between choosing the right and left
targets:

ERP(rt−lt) = ERPmean(rt)− ERPmean(lt) (4)

where ERPmean(rt) and ERPmean(rt) are the ERPs averaged for
trials in which the subject chose the right and left, respectively.
To quantify the ERP selectivity for behavioral outcomes, we
calculated the mean ERP difference between winning and losing
trials:

ERP(win−lose) = ERPmean(win)− ERPmean(lose) (5)

where ERPmean(win) and ERPmean(lose) are the ERPs averaged
for trials in which the subject won and lost, respectively.

To examine whether ERPs were influenced by the choice
history, we examined the effect of previous choices from the
following aspects:

1. The influence of the previous choice was examined by
calculating the mean ERP difference between trials in
which subjects chose the right and left targets in the
preceding trial (Supplementary Material 2).

2. The influence of the outcome in the previous trial
was examined by calculating ERP(win−lose) based on the
outcome in the preceding trial:

ERPprev (win−lose) = ERPmean (won in previous trial)

− ERPmean (lost in previous trial)(6)

where ERPmean(won in previous trial) and ERPmean(lost in
previous trial) are the ERPs averaged for trials just after
winning and losing, respectively.

3. Whether subjects changed the choice direction from the
preceding trial (switch) or chose the same direction as
before (stay) was examined by calculating the mean ERP
difference between switch and stay trials:

ERP(switch−stay) = ERPmean(switch)− ERPmean(stay) (7)

where ERPmean(switch) and ERPmean(stay) are the ERPs
averaged for trials in which the subject had switched from
or stayed with the previous trials, respectively.

Statistical Analysis
Behavioral Data
Average winning rates were subjected to two-way repeated-
measures ANOVA for rule (RAND and GAME) × drug

(levodopa and placebo). Behavioral data in the ALT condition
were not included because the subjects won almost 100% of those
trials. Because reaction time data were not normally distributed,
the data were inverse Gaussian transformed. Data on winning
rates, reaction time, and permutation entropy were analyzed
using two-way repeated-measures ANOVA for rule × drug.
When the permutation entropy was tested by ANOVA, data
in the ALT condition were not included because behavioral
responses were simple alternations and their permutation
entropy was fixed at 0.69.

The significance criterion was set at p < 0.05 and the effect size
was quantified using partial eta-squared (ηp

2). We tested whether
LRself(N) and LRpc(N) differed significantly from 0 using a two-
tailed Student’s t-test with Bonferroni correction.

Electrophysiological Data
The effects of drug and rule on the ERPs were tested using
two-way repeated-measures ANOVA for rule (ALT, RAND,
and GAME) × drug (levodopa and placebo). The significance
criterion was set at p < 0.05 with multiple comparisons corrected
using Tukey HSD. We also tested ERPs using three-way ANOVA
for rule (ALT, RAND, and GAME) × drug (levodopa and
placebo) × outcome (win and lose) and three-way ANOVA
for rule (ALT, RAND, and GAME) × drug (levodopa and
placebo) × choice (switch and stay). The significance criterion
was set at p < 0.05. The analyses were conducted using the
MATLAB Statistics toolbox and SPSS statistical software (version
23, IBM, Armonk, New York, United States).

RESULTS

Behavioral Results
Figure 2A shows the winning rates for the three task rules in
the levodopa and placebo groups. The behavioral performance
in ALT sessions was nearly perfect, as expected, reflecting how
easy it was to predict the opponent’s choice. The behavioral
performance in RAND and GAME was close to the chance level,
but significantly worse for GAME than for RAND, as supported
by a significant main effect of rule in two-way repeated-measures
ANOVA for rule × drug on winning rate [F(1,16) = 8.515,
p = 0.01, ηp

2 = 0.068]. There was no significant main effect
of drug or an interaction effect. The choice reaction time was
623.0± 301.4 ms overall, and it did not change significantly with
the rules or levodopa treatment (two-way repeated-measures
ANOVA, p > 0.05; Figure 2B).

In GAME sessions, the subjects could play better by choosing
targets independently in each trial, because any choice bias could
have been exploited by the computer. Figure 2C shows the
permutation entropy (a measure of response randomness) in
RAND and GAME. The behavioral response in ALT was a fixed
sequence, and so its permutation entropy was fixed at 0.69. The
permutation entropy was significantly higher in GAME than
in RAND when applying two-way repeated-measures ANOVA
for rule × drug [F(1,16) = 6.374, p = 0.02, ηp

2 = 0.056]. These
results indicate that the subjects made more random choices in
GAME (Figure 2C).
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FIGURE 2 | Behavioral results for the winning rate (A), behavioral reaction
time (B), and permutation entropy of the choice sequence (C). Data were
averaged for each task rule and for each drug condition (levodopa or placebo)
across 17 subjects. (A) There was a significant main effect of rule in two-way
repeated-measures ANOVA (p < 0.05), indicating that the winning rate was
higher in RAND than in GAME. There was no significant main effect of drug or
an interaction effect (p > 0.05). (B) The choice reaction time did not change
significantly with the rule or levodopa treatment. (C) The permutation entropy
measured randomness of the choice sequence. Permutation entropy in ALT
was fixed at 0.69 (not plotted). Entropy was slightly but significantly higher in
GAME than in RAND (drug main effect, p = 0.02 in two-way
repeated-measures ANOVA). In each box plot, the central line indicates the
median, the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively, and the whiskers extend to the extreme data points
that were not considered outliers; the outliers are indicated separated by the
“+” symbols. *p < 0.05 for the main effect in ANOVA.

We evaluated the degree to which the choices made by
subjects were influenced by their own choices in the past by
using the LR method (cf. Supplementary Material 1 for the
results by logistic regression analysis). LRself(N) expresses the
influences from the past choices of the subject in the Nth previous
trials (Figure 3A). LRself(1) was significantly negative in RAND
sessions with levodopa [t(35) = 2.968, p = 0.05, Student’s t-test
with Bonferroni correction], indicating that subjects tended to
choose the target opposite to the one they chose in a previous
trial. There was no significant past influence in GAME sessions.
In a similar way, we analyzed the influences of the opponent’s
past choices (Figure 3B). LRpc(N) was significantly positive in
GAME sessions for N = 2–9 with levodopa [t(31) = 3.14, 5.49,
4.83, 4.38, 4.23, 3.11, 4.62, and 3.47, respectively; p < 0.005]
and for N = 3 to 10 without levodopa [t(33) = 5.48, 3.90,
4.50, 3.42, 3.10, 4.67, 3.22, and 4.88, respectively, p < 0.05].
These results indicate that the subjects tended to choose the

FIGURE 3 | The effects of previous choices on decision-making. The figure
shows how past choices influenced the present choice by plotting the LR vs.
how long ago the previous trial occurred. Positive and negative LRs mean that
the subject tended to choose the same side as and the opposite side to that
in the previous trials, respectively. (A) Influences from the subject’s own past
choices. (B) Influences from the opposing player’s past choices. Data are
mean and SD values. *p < 0.05 (Student’s t-test) for deviation from 0.
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target on the same side as the target chosen by the computer
player in the past.

Electrophysiological Results
We averaged EEG activities from 10 subjects and aligned them
to the trial start (WAIT) and the subject’s choice response (SBJ
CHOICE). The activity recorded at the Cz electrode is plotted
separately for the three different task rules with and without
levodopa in Figure 4. The ERP profile of a representative single
subject recorded at the Cz electrode is shown in Figure 5. Period
I covers the movement preparation period from the WAIT cue
until the GO cue (800 ms). After the phasic response to the
WAIT cue, we observed sustained negativity particularly during
GAME and RAND sessions with levodopa between periods I
and II, which returned to the baseline after the subjects made
the key-press response (SBJ CHOICE). During period III, when
the opposing player’s choice was displayed on the monitor, the
negative potential increased again, which resulted in an abrupt
deflection toward positivity and a return to the baseline after
the outcome information was displayed on the monitor. For
the RAND and GAME rules, the negative and positive peaks
were distributed around the vertex electrodes during period III
(topographical maps in Figure 4).

Figure 6 and Table 3 summarize the amplitudes of ERPs
recorded at the Cz electrode during periods I to III and the
results of the statistical tests, respectively. The period-mean ERP
amplitude in period II showed a tendency of main effects of drug
and rule (p = 0.06, two-way repeated-measures ANOVA). The
negative peak in period II showed a significant main effect of

drug (p = 0.02). During period III, the ERPs showed negative-to-
positive biphasic peaks, and two-way repeated-measures ANOVA
was applied to the amplitude of each peak. For the negative peak,
there were significant main effects of rule (p < 0.001) and drug
(p = 0.03), while for the positive peak, there was a significant
main effect of rule (p = 0.001). The grand-averaged waveforms in
Figure 4 show that the activity after the subject choice (the time
between periods II and III) generally shifted to negative values
with levodopa as compared with placebo. When the amplitude
of the negative peak in period III was corrected for the baseline
amplitude during period II, there was no significant effect of rule
or drug (p > 0.05, two-way repeated-measures ANOVA).

To examine whether EEG signals differentiate the subject’s
choice direction (right–left), we examined the topographical
distribution of ERP(rt−lt) (Figure 7). In RAND and GAME
sessions with levodopa, clear hemispheric asymmetry emerged
after period II, with ERP(rt−lt) generally being positive in the
right hemisphere and negative in the left hemisphere. The choice
signal was not clear in any of the tasks for placebo. Even
with levodopa, the signal was absent in ALT sessions. We also
examined whether EEG signals differentiated the subject’s choice
direction in the previous trial by calculating ERP(rt−lt) based on
the choice in the preceding trial (Supplementary Material 2).
The hemispheric lateralized signal was not present except for in
the ALT sessions, in which the previous choice and present choice
were contingent on each other.

In RAND and GAME sessions, the behavioral winning rates
were approximately 0.5. Trials in which the subjects won and
lost against the computer player are merged in Figures 4, 5. To

FIGURE 4 | Grand-averaged waveforms at the Cz electrode for the three rules. Event-related potentials (ERPs) were averaged from 10 subjects in three task
conditions. Gray areas (I, II, and III) indicate time windows of the ERP analyses (cf. Table 3). Topographical maps show the distributions of negative (top) and positive
(bottom) peaks during period III.
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FIGURE 5 | Grand-averaged waveforms of a representative single subject
recorded at the Cz electrode for the three rules. The format is the same as in
Figure 4.

examine whether the ERPs differentiated the choice outcome,
we plotted the average ERP waveform at the Cz electrode
separately for each outcome and examined ERP(win−lose) in
all recording channels during period III (Figure 8). Three-
way ANOVA for rule (ALT, RAND, and GAME) × drug
(levodopa and placebo) × outcome (win and lose) revealed
that there was no significant main effect of the outcome on
the ERPs at the Cz electrode during any periods (p > 0.05).
Also, ERP(win−lose) did not deviate from 0 significantly in any
condition (p > 0.05, Student’s t-test with Bonferroni correction).
This meant that the ERPs did not differentiate the decision
outcome. We also examined whether the outcome in the
previous trial significantly influenced the ERPs by analyzing
ERPprev(win−lose), which revealed that this parameter did not
deviate from 0 in any condition (p > 0.05, Student’s t-test with
Bonferroni correction).

To examine whether ERPs reflect the switch-or-stay decision
for the direction of target choice, we examined topographical
maps of ERP(switch−stay) in the GAME and RAND sessions
(Figure 9). ERP(switch−stay) was negative in the right lateral
prefrontal area in GAME sessions with levodopa treatment
during period III (top-left topographical map in Figure 9). The
ERP selectivity for the switch-or-stay choice was not observed
in the RAND sessions (topographical map in the bottom panel
of Figure 9). The average ERP in this region in GAME (top
waveforms in Figure 9) was significantly more negative on
switching (red line) than on staying (blue line) after period II
to period III (red rectangles below the waveforms; p < 0.05,
three-way ANOVA for rule× drug× switch–stay).

DISCUSSION

We aimed to determine whether ERPs reflect decision strategies
when performing a binary choice task. We found that the
behavioral performance and reaction time changed systematically
according to the decision rule for choosing between right and
left targets (Figure 2). Although the subjects made more random
choices in GAME than in RAND, the choices were partially
predictable, with subjects tending to choose the target on the
same side as that previously chosen by the computer player
(Figures 2C, 3B). We found that levodopa did not significantly
affect the behavioral performance in sessions of any rule. Previous
studies that found an influence of levodopa on decision-making
were often driven by reward incentives (Chowdhury et al., 2013).
Thus, it is possible that cognitive decision-making that does not
involve salient reward drive is less sensitive to dopaminergic
treatment. In summary, the present behavioral analyses revealed
the presence of strategic adaptation in binary decision-making
based on the task rule.

We observed sustained negative ERPs after presentation of the
WAIT cue. It has been reported that self-paced action induces
premovement negative ERPs in the frontocentral region, which
is called movement-related potentials (MRPs) (Kornhuber and
Deecke, 1965, 2016). The early component of the MRPs is called
the Bereitschaftspotential (BP), which is a negative potential that
slowly increases a few seconds before executing a movement
(Cunnington et al., 1995). There have been several reports of
MRP amplitudes being smaller in PD patients than in healthy
controls, with the reduced amplitude of the BP being restored
by dopaminergic therapy (Amabile et al., 1986; Dick et al., 1987;
Feve et al., 1992; Oishi et al., 1995). However, the result was not
consistent with another report (Barrett et al., 1986), and the effect
of levodopa on MRPs has not been studied in healthy subjects. We
found that levodopa enhanced the ERP negativity from period II
to period III, indicating the impact of exogenous dopamine on
prefrontal activity in healthy human subjects.

Along with the progression of decision-making, ERPs may
show selectivity to the chosen direction. To find ERP correlates
of the directional decision, we introduced ERP(rt−lt) and found
that it emerged and developed during the task period. The signal
was distributed in the frontocentral region with clear hemispheric
laterality (Figure 7). A particularly interesting observation was
that the directional signal emerged more slowly in GAME than
in RAND, possibly reflecting the difference in decision timing.
Importantly, the directional signal was not present in ALT even
though the subjects exhibited the same motor responses. These
results suggest that the ERPs do not simply encode motor
execution, with instead the lateralized directional signal possibly
reflecting the cognitive strategy varying according to the task
requirements. Another interesting point is that ERP(rt−lt) was
much weaker without levodopa. Because behavioral measures
were not changed significantly by levodopa, the behavioral
implication of the levodopa-induced ERP change is unclear. Our
speculation is that the prefrontal cortex in healthy subjects has
sufficient capacity to perform the task, and so levodopa does
not influence behavioral performance due to a ceiling effect.
In PD patients whose frontal executive functioning is known
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FIGURE 6 | Box plots of ERPs at the Cz electrode: (A,B) Period I amplitudes of the period mean (A) And negative peak (B). (C,D) Period II amplitudes of the period
mean (C) And negative peak (D). (E,F) Period III amplitudes of the negative peak (E) And positive peak (F). The format of each box plot is the same as in Figure 2.
Dots indicate individual data points.

to be compromised (Owen, 2004), levodopa treatment may
ameliorate the dysfunction and improve the task performance.
This hypothesis should be investigated in future studies.

While the present tasks required subjects to choose between
right and left targets, it is possible that the decision is made in
an alternative form, that is, choosing whether to switch from
or stay with the previous choice. We introduced ERP(switch−stay)
as an indicator of this form of decision-making and found that

the ERP correlate was present in the right prefrontal cortex
selectively during GAME sessions (Figure 9). Decades of primate
neurophysiology research has elucidated the pivotal role of the
prefrontal cortex in decision-making. The medial frontal cortex
is involved in the voluntary switching of action (Shima and
Tanji, 1998; Isoda and Hikosaka, 2007), while the dorsolateral
prefrontal cortex (DLPFC) integrates perceptional inputs and
reinforcement signals to realize adaptive behavior in a changing
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TABLE 3 | Results of ERP analysis using two-way repeated-measures ANOVA for
rule × drug.

Period ERP
measure

Main effect df F p ηp
2 Power

I Mean Rule 2 2.01 0.16 0.18 0.36

Drug 1 0.11 0.75 0.01 0.06

Interaction 2 1.51 0.25 0.14 0.28

Negative
peak

Rule 2 2.61 0.10 0.01 0.06

Drug 1 0.09 0.77 0.01 0.05

Interaction 2 1.97 0.17 0.01 0.06

II Mean Rule 2 3.26 0.06 0.27 0.55

Drug 1 4.59 0.06 0.34 0.48

Interaction 2 1.31 0.30 0.13 0.25

Negative
peak

Rule 2 1.44 0.26 0.14 0.27

Drug 1 8.50 0.02* 0.49 0.76

Interaction 2 2.42 0.12 0.21 0.42

III Negative
peak

Rule 2 18.30 < 0.001** 0.67 1.00

Drug 1 6.33 0.03* 0.41 0.61

Interaction 2 0.74 0.49 0.08 0.16

Positive
peak

Rule 2 11.52 0.001** 0.56 0.98

Drug 1 2.13 0.18 0.19 0.26

Interaction 2 0.29 0.75 0.03 0.09

df, degrees of freedom. *p < 0.05; **p < 0.01.

environment (Lauwereyns et al., 2001; Sakagami et al., 2001;
Gold and Shadlen, 2007; Shadlen and Kiani, 2013). For example,
when monkeys forage between two targets following Herrnstein’s
matching law, DLPFC neurons encode the valuations of specific
choices based on the previous rewards (Tsutsui et al., 2016). Also,
when monkeys play a matching task, DLPFC neurons encode

their past decisions and reward history (Barraclough et al., 2004).
We found that past decisions influenced ERPs in the form of
switching from or staying with the previous choice, whereas there
was no influence of reward history. The inconsistent results for
the same behavioral task are probably attributable to differences
in methods. Besides physiological differences between the single-
neuron activities and ERPs, the reinforcement method also
differed, with the monkeys receiving an immediate liquid reward
after their choice and our subjects receiving verbal feedback via
the monitor as immediate reinforcement.

We observed large biphasic ERPs while the subjects perceived
the choice of the opposing player and recognized the behavioral
response (period III). These ERPs were prominent in GAME
and RAND, but much smaller in ALT (Figure 4). The rule
dependency of ERPs may be explained by the information
value of the feedback stimulus. The choice of the opposing
player was not predictable during RAND and GAME, and
so its disclosure represented important information. However,
in ALT, the alternating choice of the computer player was
perfectly predictable, and disclosing it was not informative.
A major finding of the present study is that rule-dependent
ERPs were modulated by levodopa administration. This finding
is consistent with the role of dopamine in reinforcement learning
(Schultz, 2015). Upon receiving the reinforcement signal, the
medial prefrontal cortex may compute the action value and
update the decision strategy. More specifically, dopaminergic
input to the prefrontal cortex might be used to compute the
advantages and disadvantages of staying with or shifting the
choice in the next trial.

The ERP literature indicates that contingent negative variation
(CNV) is elicited in the frontocentral area when two sensory
stimuli are paired and presented with a fixed interstimulus

FIGURE 7 | Topographical maps of choice signal ERP(rt- lt), which is the difference in the period-mean ERP amplitude between right-choice and left-choice trials.
ERP(rt- lt) was calculated for each channel and averaged across 10 subjects. For RAND and GAME rules, positive signals evolved in the right hemisphere and
negative signals evolved in the left hemisphere during periods II and III with levodopa, but the signal was weaker with placebo.
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FIGURE 8 | Grand-averaged waveforms at the Cz electrode plotted separately for trials in which the subjects won and lost.

interval (Walter, 1964; Tecce, 1972; Rohrbaugh et al., 1976;
Hamano et al., 1997). In our study, the intervals between the
WAIT and GO cues and between SBJ CHOICE and OPP
CHOICE events were fixed. Thus, the ERPs around these
events can be conservatively classified as CNV. Whether these
ERPs have cognitive components beyond the classical concept
of CNV is an important question. To dissociate bottom-
up sensory components and top-down cognitive components,
researchers have examined how ERPs are modulated by
behavioral performance (Gajewski and Falkenstein, 2013; Di
Russo et al., 2016, 2017; Perri and Di Russo, 2017). For example,
the activity of prefrontal pN and P3 components during a go/no-
go task was inversely related to the reaction time variability,
which was interpreted as reflecting top-down attention (Perri
et al., 2016). Most studies of prefrontal ERPs have used operant
tasks, such as the go/no-go task and the Stroop task, in which

correct responses are determined by stimulus–response mapping.
Thus, in operant tasks, response variability could manifest only
in the reaction time and occasional errors. In contrast, the use
of a mixed-strategy game in the present study allowed subjects
to respond in a nondeterministic manner. We found ERPs that
change according to the task rule, choice direction, and decision
to switch or stay, and the obtained results provide strong evidence
of the influence by top-down executive processes.

The primary factor restricting the generalizability of the
present results is the smallness of the sample. Insignificant
results in this study may be attributable to an insufficient
sample size and the resulting lack of statistical power. For
example, it is possible that a larger sample would have revealed
significant main effects of rule and drug on the period-mean
ERP amplitude during period II. Table 3 provides the power
calculations used to estimate the probability of type II errors.
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FIGURE 9 | ERP selectivity to switch-or-stay choices. The right lateral frontal area showed negative ERP(switch-stay) in GAME with levodopa, indicating that the ERP
amplitude was more negative when switching than when staying with the previous target choice. The waveforms are the grand-averaged waveforms in the right
lateral frontal area (average of 10 electrodes) in GAME sessions with levodopa. Rectangles below the waveforms indicate time periods where the main effects of
choice (red) and drug (black) and the interaction effect were significant [p < 0.05; three-way ANOVA for rule × drug × choice (switch and stay)].

The present results should be tested in future research involving
a larger number of subjects. The advantages of this study
include the relatively large number of trials in each session
(Table 2) and its double-blind placebo-controlled design, which
are expected to increase the data reliability and statistical power
in reducing biases.

In conclusion, we found that prefrontal ERPs reflect different
decision strategies when performing a binary choice task. Both
the frontomedial negativity and frontolateral signal tuned to the
choice direction were modulated by the task rule and levodopa.
Important questions to be addressed in future research are how
PD patients play mixed-strategy games and whether their ERPs
differ from those of healthy subjects.
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