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Abstract: Sodium salicylate (SA), a cyclooxygenase inhibitor, has been shown to increase insulin
sensitivity and to suppress inflammation in obese patients and animal models. Transient receptor
potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed in afferent nerve fibers.
Cyclooxygenase-derived prostaglandins are involved in the activation and sensitization of TRPV1.
This study tested whether the metabolic and renal effects of SA were mediated by the TRPV1 channel.
Wild-type (WT) and TRPV1−/− mice were fed a Western diet (WD) for 4 months and received SA
infusion (120mg/kg/day) or vehicle for the last 4 weeks of WD feeding. SA treatment significantly
increased blood pressure in WD-fed TRPV1−/− mice (p < 0.05) but not in WD-fed WT mice. Similarly,
SA impaired renal blood flow in TRPV1−/− mice (p < 0.05) but not in WT mice. SA improved insulin
and glucose tolerance in both WT and TRPV1−/− mice on WD (all p < 0.05). In addition, SA reduced
renal p65 and urinary prostaglandin E2, prostaglandin F1α, and interleukin-6 in both WT and
TRPV1−/− mice (all p < 0.05). SA decreased urine noradrenaline levels, increased afferent renal nerve
activity, and improved baroreflex sensitivity in WT mice (all p < 0.05) but not in TRPV1−/− mice.
Importantly, SA increased serum creatinine and urine kidney injury molecule-1 levels and decreased
the glomerular filtration rate in obese WT mice (all p < 0.05), and these detrimental effects were
significantly exacerbated in obese TRPV1−/− mice (all p < 0.05). Lastly, SA treatment increased urine
albumin levels in TRPV1−/− mice (p < 0.05) but not in WT mice. Taken together, SA-elicited metabolic
benefits and anti-inflammatory effects are independent of TRPV1, while SA-induced sympathetic
suppression is dependent on TRPV1 channels. SA-induced renal dysfunction is dependent on intact
TRPV1 channels. These findings suggest that SA needs to be cautiously used in patients with obesity
or diabetes, as SA-induced renal dysfunction may be exacerbated due to impaired TRPV1 in obese
and diabetic patients.

Keywords: TRPV1; obesity; sodium salicylate; afferent renal nerve activity; renal dysfunction;
blood pressure

1. Introduction

Cyclooxygenase 2 (COX-2) contributes to the development of obesity and obesity-
associated metabolic syndrome [1]. COX-2 is considered to be an inducible enzyme and is
upregulated in inflammatory conditions [2,3]. Type 2 diabetes is related to COX-2-mediated
inflammation [4], and inhibition of COX-2 in the diabetic rat confers renal protection [5].
Sodium salicylate (SA), a COX inhibitor, inhibits inflammation and improves insulin
sensitivity and hyperleptinemia in obesity. On the other hand, COX-2-derived prostacyclin
(PGI2) and prostaglandin E2 (PGE2) exert a natriuretic effect and increase renal blood flow
and glomerular filtration rate (GFR) [6,7]. Renal COX-mediated generation of prostanoids
is enhanced in metabolic disorders, which may play a counter-regulatory role against renal
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vasoconstriction induced by elevated renal sympathetic nerve activity (RSNA) in obesity. In
addition, PGI2 is a potent vasodilator that decreases peripheral vascular resistance during
the initial phase of renal hypertension [8–11]. Therefore, inhibiting COX-2 with SA could
improve insulin resistance at the cost of renal function deterioration.

Understanding the action of mechanisms of COX-2 inhibitors may facilitate the de-
velopment of a better COX-2-targeting treatment without the adverse effects on renal
function. The transient receptor potential subfamily V member 1 (TRPV1) cation channel
is expressed in renal afferent nerve fibers [12]. Activation of TRPV1 in the renal pelvis
leads to an increase in ipsilateral renal afferent nerve activity (ARNA) [9–11] and a long-
lasting depression of efferent RSNA [13]. TRPV1 activation enhances ARNA by inducing
the release of substance P (SP) from sensory nerves [11]. Increased ARNA provides an
important contribution to the maintenance of low RSNA, which is essential in preventing
renal sodium retention as well as the regulation of arterial pressure [11,13]. The functions
of TRPV1 and ARNA are impaired in obesity [14]. Obesity is associated with an increase
in RSNA [15,16] and impaired ARNA and baroreflex sensitivity (BRS) [17]. In addition,
lack of TRPV1 exacerbates obesity [18]. Evidence suggests that there may be connections
between COX-2 and TRPV1 [19]. It was reported that COX-2-derived PGE2 increased the
release of substance P (SP) from renal pelvic sensory nerves and enhanced ARNA [20].
Therefore, the effects of COX-2 inhibitors may be mediated by TRPV1. However, it is
unknown whether the metabolic and renal effects of COX-2 inhibitors are dependent on
TRPV1 channels.

In the present study, we investigated whether the TRPV1 channel was involved in the
metabolic and renal effects of SA treatment in diet-induced obese mice using TRPV1 gene
knockout mice.

2. Materials and Methods
2.1. Animals

All experimental procedures involving animals were approved by the Institutional An-
imal Care and Use Committee of Michigan State University (08-17-148-00). This study fol-
lowed the rules of the Declaration of Helsinki. The male TRPV1 gene knockout (TRPV1−/−)
mice (B6.129S4-TRPV1tm1Jul, Stock No: 003770) and matching control wild-type (WT)
C57BL/6J mice (Jackson Laboratory, Bar Harbor, Maine) were used. The TRPV1−/− mice
had been backcrossed to C57BL/6J mice for 10 generations. Three-week-old TRPV1−/−

(n = 14) and WT (n = 14) mice were fed a Western diet (WD, protein 17.3%, carbohy-
drate 48.5%, fat 21.2% (mainly from milkfat), 42% kcal from fat; 88137, Harlan Teklad)
for 4 months, during which the mice had free access to tap water. The mice were main-
tained with a normal 12 h/12 h light/dark cycle. Room temperature was maintained at
23.0 ± 1.0 ◦C, with a relative humidity between 40 and 60%.The mice (n = 7 in each group)
received either sodium salicylate (SA, 120 mg/kg body weight per day, administered
by Alzet pumps, Model 2004, 1 mL, Alzet Corporation, Palo Alto, CA, USA) or vehicle
(saline, administered by the same Alzet pumps) for 4 weeks during the last 4 weeks of diet
intervention. SA was purchased from Sigma-Aldrich (#S3007, St. Louis, MO, USA) and
freshly dissolved in saline before use.

2.2. Telemetry Blood Pressure Assay

Mean arterial pressure (MAP) and heart rate (HR) of the mice (n = 6 in each group)
were determined using a telemetry system (Data Sciences International, St. Paul, MN,
USA). In brief, the mice, after diet and SA treatment, were anesthetized with ketamine
and xylazine (80 and 5 mg/kg, i.p., respectively), and then the transmitter catheter was
implanted into the left carotid artery. Mice were allowed to recovery for 7 days before
ambulatory 24 h MAP was recorded.
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2.3. Glucose and Insulin Tolerance Testing and Serum Leptin and Insulin Measurement

At the end of the 16-week treatment, mice (n = 5–7 in each group) were fasted for 10 h
and then given glucose (2 g/kg body weight, i.p.). Tail vein blood was sampled for glucose
determination using an Accu-Chek glucose meter (Roche Diagnostics, Indianapolis, IN,
USA) at 0, 30, 60, 90, and 120 min after glucose administration. The areas under the curve
(AUC) for glucose were calculated according to the trapezoidal rule. After 48 h, mice were
fasted for 6 h, and then insulin (0.75 IU/kg body weight diluted in 0.9% saline) was injected
intraperitoneally, and subsequent blood samples were taken from the tail tip. Glucose was
quantified at 0, 30, 60, and 120 min after insulin administration using an Accu-Chek glucose
meter (Roche Diagnostics). The AUC vs. time curve was calculated with the trapezoidal
rule. Tail vein blood was also collected at baseline, and serum was immediately separated
and stored at −80 ◦C. Insulin and leptin levels were measured using a commercial kit
(Crystal Chem Inc., Downers Grove, IL, USA).

2.4. Recording of Afferent Renal Nerve Activity

After the mice (n = 5–7 in each group) were anesthetized with ketamine and xylazine
(80 and 5 mg/kg, i.p., respectively), the renal nerves were isolated at the angle between
the abdominal aorta and the renal artery via a left flank incision [12,21]. The nerves were
placed on the bipolar, stainless-steel electrode to record multifiber nerve activity. The
electrode was connected to a high-impedance probe (HIP-511, Grass Instruments). The
signals were amplified 20,000×, filtered with a high-frequency cutoff at 1000 Hz and a
low-frequency cutoff at 100 Hz by a Grass model P511 AC Amplifier and recorded by a
Gould 2400 s recorder (Gould Instrument System, Valley View, OH, USA). After the renal
nerve activity was verified using its pulse synchronous rhythmicity with the heartbeat, the
nerves were sectioned, and ARNA was recorded from the distal cut end of a renal nerve
branch. The electrode was fixed to the renal nerve with Kwik-Cast & Kwik-Sil (World
Precision Instruments, Sarasota, FL, USA). The experiment started after the placement of
nerve electrodes and physiological stabilization for 60 min. Two MD-2000 microdialysis
tubes (ID 0.18/OD 0.22 mm; BASi) were bonded together and placed inside the left ureter
via a midline incision. One of the tubes, of which the tip extended 1 to 2 mm further into the
renal pelvis compared with the other, was used for drug perfusion, whereas the other was
used for urine draining. The perfusion was performed at a rate of 10 µL/min. Capsaicin
(10−6 mmol/L) was perfused into the renal pelvis in 3-min periods, and the recovery value
of renal nerve activity was recorded 10 min after the treatment. The postmortem renal
nerve activity recorded as the background signal of renal nerve activity was subtracted
from all of the nerve activity recording values. Capsaicin-stimulated renal nerve activity
was expressed as a percentage of its baseline value prior to the application of capsaicin.

2.5. Determination of Baroreflex Function

The baroreflex function of the mice (n = 5–7 in each group) was evaluated by measur-
ing the reflex changes in RSNA and HR in response to decreases and increases in MAP
induced by intravenous infusion of 50 µg/mL sodium nitroprusside (SNP) and 125 µg/mL
phenylephrine (PE), respectively. SNP and PE were administered via the jugular vein in
successive ramped infusions at an initial rate of 5 µL/min, increased by 5 µL/min every
30 s [22]. The PE and SNP infusions were done separately, with one drug administered
after the blood pressure response to the other drug had returned to baseline level, and
the order of drugs was administered randomly. Infusions were stopped if MAP reached
a minimum of 60 mmHg or a maximum of 140 mmHg. The RSNA was recorded from
the proximal cut end of a renal nerve and hooked up to electrodes. The postmortem renal
nerve activity recorded as the background of renal nerve activity was subtracted from all
of the values. Baroreflex-mediated changes in RSNA were expressed as a percentage of its
baseline value. Baroreflex modulation of RSNA and HR was estimated by calculating (1)
the percent change in integrated activity and (2) the change in HR in relation to the change
in mean BP induced by PE and SNP.
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2.6. Renal Blood Flow Recording

Anesthesia was induced with 5% isoflurane (Abbott Laboratories, Chicago, IL, USA)
and maintained with 1% isoflurane, and the mice (n = 5–7 in each group) were placed on
a heating pad to maintain body temperature at 37 ◦C [23,24]. After surgical preparation,
the kidney was placed in a clay cup without exerting tension on the renal vessels. The
left jugular vein was cannulated for injections and infusion of a 0.9% sodium chloride
solution containing 1% bovine serum albumin at a rate of 0.2 mL/Kg/min throughout
the experiment. Cortical and medullary blood flows (CBF and MBF, respectively) were
measured simultaneously by a dual-channel, laser-Doppler flowmeter (Periflux 5000,
Perimed, North Royalton, OH, USA). For measurement of CBF, the probe was placed
perpendicular to the surface of the cortex and MBF was measured by a probe inserted into
the outer medulla at a depth of 3–4 mm. The position of the probe in the outer medulla
was verified at the end of each experiment by dissection of the kidney. The experiment
started after the placement of the probe and physiological stabilization for 60 min to obtain
baseline recordings of CBF and MBF. Next, the mice received intravenous bolus (10 µL)
injections of angiotensin II (Ang II, Sigma) at doses of 0.5, 2.5, and 12.5 ng/kg. Consecutive
administrations of Ang II were separated by a period of 10 min to allow a full recovery of
hemodynamic variables. Electrical signals of both probes were digitized and recorded in
real time and analyzed by Perisoft for Windows software (Perimed).

2.7. Renal NF-κB p65 Activity Assay

Nuclear protein was extracted from the kidney with a nuclear extract kit (Active Motif,
Carlsbad, CA, USA) based on the manufacturer’s instructions. The binding activities of
free NF-κB p65 in nuclear extracts were determined with the use of the TransAM NF-κB
p65 assay kit (Active Motif) following the manufacturer’s protocol. The plate was read at
450 nm using an absorbance microplate reader (Molecular Devices, Sunnyvale, CA, USA).

2.8. Plasma and Urine Analysis

At the end of the 16-week treatment, mice were placed in mouse metabolic cages for
24 h urine collection. Urine samples were centrifuged and stored at −80 ◦C. Urinary albu-
min and noradrenaline were measured with enzyme-linked immunosorbent assay (ELISA)
kits (Mouse Albumin ELISA, #1011, Exocell, Philadelphia, PA, USA; Norepinephrine ELISA
Kit, #E4360, Biovision, Milpitas, CA, USA). Urinary kidney injury molecule-1 (KIM-1)
as a marker of renal injury was quantified using a mouse kim-1 Elisa kit (CL0880, Cell
applications Inc, CA, USA) according to the manufacturer’s protocol. Plasma creatinine
concentrations were assayed using the Creatinine Colorimetric/Fluorometric Assay Kit
(K625, Biovision, Milpitas, CA, USA). Endogenous creatinine clearance is a sensitive and
accurate method for assessing glomerular filtration rate (GFR). Plasma and urine creatinine
levels were determined using the above-mentioned assay kit (K625, Biovision) and calcula-
tion of creatinine clearance: GFR = U[Cr] × Volume]/P[Cr] × [Time] [25]. Since the half-life
of PGI2 was short, 6-keto-PGFla, its stable and inactive metabolite, was measured. A PGE2
EIA Kit-Monoclonal (#514010, Cayman Chemical Company, MI, USA) and a 6-keto-PGFla
EIA Kit (#515211, Cayman Chemical Company, MI, USA) were used according to the
manufacturer’s instructions.

2.9. Statistical Analysis

All values are expressed as mean ± SEM. Differences among groups were performed
by two-way ANOVA analysis followed by the Tukey–Kramer multiple comparison test.
The results were considered statistically significant at p < 0.05.

3. Results
3.1. Effects of SA on Blood Pressure

Ambulatory blood pressure was measured by telemetry after the mice had been fed
with WD for 16 weeks and treated with SA or vehicle for 4 weeks (Figure 1A). SA treatment



Cells 2021, 10, 1234 5 of 12

did not change the 24 h MAP of WD-fed WT mice but significantly increased MAP in
WD-fed TRPV1−/− mice compared with WD-fed TRPV1−/− mice treated without SA
(p < 0.05, Figure 1B). SA treatment had no significant effects on body weight of either WT
or TRPV1−/− mice (WT-WD, 47.1 ± 3.4 g; WT-WD-SA, 41.6 ± 3.2 g; TRPV1−/−-WD,
46.2 ± 3.7 g; TRPV1−/−-WD-SA, 46.0 ± 2.9 g).
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Figure 1. SA treatment-induced hypertension in obese TRPV1−/− mice. Telemetric recording of ambulatory blood
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3.2. Effects of SA on Glucose Tolerance and Insulin Resistance

Glucose tolerance, reflected as the AUC of the glucose tolerance test, was significantly
improved by treatment with SA in both WT and TRPV1−/− mice (Figure 2A, both p < 0.05).
Moreover, glucose tolerance was impaired in TRPV1−/− mice compared with WT mice,
independent of SA treatment (Figure 2A, both p < 0.05). The AUC for the insulin tolerance
test was reduced in the SA-treated groups for both WT and TRPV1−/− mice (Figure 2B,
both p < 0.05). Fasting insulin and leptin concentrations were lower in both strains with SA
vs. vehicle treatment (Figure 2C,D, all p < 0.05). There were no differences in insulin and
leptin levels between WT and TRPV1−/− mice despite treatment with SA.

3.3. Effects of SA on Autonomic Nerve Activity

SA treatment significantly decreased urinary noradrenaline in WD-fed WT mice, while
it increased it in WD-fed TRPV1−/− mice (Figure 3A, both p < 0.05). Capsaicin, a TRPV1
agonist, was perfused into the renal pelvis, which stimulated ARNA in WT mice but not
in TRPV1−/− mice (Figure 3B). The capsaicin-induced increase in ipsilateral ARNA was
enhanced by SA treatment in WD-fed WT mice (Figure 3B, p < 0.05). These results suggest
that SA treatment suppressed RSNA and improved ARNA, likely through TRPV1.

3.4. Effects of SA Treatment on Baroreflex Sensitivity

Baroreflex sensitivity was evaluated by measuring the changes of HR and RSNA
in response to phenylephrine- and nitroprusside-induced increase and decrease of MAP,
respectively. The baroreflex sensitivity was improved with SA vs. vehicle treatment in
WD-fed WT mice, but not in WD-fed TRPV1−/− mice (Figure 4). These results suggest that
SA improved baroreflex sensitivity, which was dependent on intact TRPV1 channels.
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Figure 3. Effects of SA on autonomic nerve activity. (A) Urinary norepinephrine levels of WD-fed WT mice and TRPV1−/−

mice treated with or without SA. (B) Intra-renal pelvic infusion of capsaicin-induced afferent renal nerve activity (ARNA).
Differences among groups were performed by two-way ANOVA analysis followed by the Tukey–Kramer multiple compari-
son test. Values are mean ± SEM; n = 6–7; * p < 0.05 vs. isogenic mice treated without SA; # p < 0.05 vs. WT mice with the
same treatment.
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Figure 4. Effects of SA treatment on baroreflex sensitivity. Baroreflex sensitivity of heart rate (HR)
in response to intravenous injection of sodium nitroprusside (50µg/mL) (A) and phenylephrine
(125 µg/mL) (B) in WD-fed WT mice and TRPV1−/− mice treated with or without SA. Baroreflex
sensitivity of RSNA in response to intravenous injection of sodium nitroprusside (50 µg/mL) (C)
and phenylephrine (125 µg/mL) (D) in WD-fed WT mice and TRPV1−/− mice treated with or
without SA. Differences among groups were performed by two-way ANOVA analysis followed by
the Tukey–Kramer multiple comparison test. Values are mean ± SEM; n = 5–7; * p < 0.05 vs. isogenic
mice treated without SA; # p < 0.05 vs. WT mice with the same treatment.

3.5. Effects of SA on Renal Blood Flow

Infusions of Ang II (0.5 to 12.5 ng/Kg, i.v.) dose-dependently reduced CBF, and a
further decrease was observed in the WD-fed TRPV1−/− mice compared with WD-fed WT
mice (Figure 5A). SA treatment had no significant effects on CBF in either WT or TRPV1−/−

mice (Figure 5A). Infusions of Ang II dose-dependently increased MBF in WD-fed WT mice,
while they significantly decreased MBF in WD-fed TRPV1−/− mice (Figure 5B), indicating
TRPV1 ablation abolished the response of CBF and MBF to Ang II infusion in mice fed WD.
Moreover, SA decreased the response of MBF to Ang II infusion in WD-fed TRPV1−/−

mice compared to WD-fed WT mice.

3.6. Effects of SA on Renal Inflammatory Markers

SA treatment significantly decreased the binding activity of renal NF-κB p65 and urine
PGE2 and PGF1α levels in both WD-fed WT and WD-fed TRPV1−/− mice (Figure 6A–C,
all p < 0.05). SA lowered urine Il-6 levels in WD-fed WT mice (p < 0.05) but not in
WD-fed TRPV1−/− mice (Figure 6D). In addition, WD-fed TRPV1−/− mice had higher
renal NF-κB p65 binding activity and urine PGF1α and IL-6 levels than WD-fed WT mice
(Figure 6A,C,D, all p < 0.05).
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3.7. Effects of SA on Renal Function

SA treatment decreased GFR and increased plasma creatinine and urine Kim-1 levels
in both WD-fed WT and TRPV1−/− mice (Figure 7A–C, all p < 0.05), to a greater magnitude
in TRPV1−/− mice than in WT mice (Figure 7A–C, all p < 0.05). SA increased urinary
albumin levels in WD-fed TRPV1−/− mice but not in WD-fed WT mice (Figure 7D, p < 0.05).
Urinary Kim-1 and albumin levels in WD-fed TRPV1−/− mice were higher than those in
WT mice fed with WD (Figure 7C,D, p < 0.05).These results indicate that SA caused more
significant renal dysfunction in TRPV1−/− mice than in WT mice.
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4. Discussion

There are three main findings in the present study. Firstly, SA treatment attenuated
renal inflammation and improved insulin resistance in both obese WT and TRPV1−/− mice,
indicating that the beneficial effects of SA on insulin sensitivity are independent of TRPV1.
Secondly, SA treatment suppressed RSNA, increased ARNA, and improved baroreflex
sensitivity in obese WT mice but not in obese TRPV1−/− mice, suggesting the nerve-
protecting effects of SA were dependent on TRPV1. Thirdly, SA treatment caused renal
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dysfunction in obese WT mice, and this detrimental effect was exacerbated in TRPV1−/−

mice, indicating that SA-induced renal dysfunction was dependent on whether TRPV1
channels were intact.

Activation of TRPV1 expressed in afferent sensory nerve fibers leads to an increase
in ARNA [10]. Increased ARNA contributes to the maintenance of a low efferent RSNA,
which is essential in preventing renal sodium retention and the regulation of arterial
pressure [11,13]. The function of sensory nerves, especially TRPV1-positive nerves, is
impaired in obesity. Obesity decreased capsaicin-induced transmitter release from sensory
nerves [14]. Previous studies showed that TRPV1 were expressed throughout the entire
baroreceptive afferent pathway, and TRPV1 ablation impaired the baroreflex control of
efferent RSNA and HR [22]. The baroreceptor dysfunction is an initial change in obesity,
which is followed by sympathetic overactivation and hypertension [17]. TRPV1−/− mice
fed with WD had increased urinary Kim-1 and albumin levels compared with WD-fed
WT mice, indicating a reno-protective role of TRPV1 in obese mice. The present study
demonstrated that SA treatment suppressed RSNA, increased ARNA, and improved
baroreflex sensitivity in obese WT mice, likely through TRPV1. Renal afferent nerves could
be damaged and afferent nerve activity impaired by inflammation in obesity [26,27]. SA
may increase ARNA through its anti-inflammatory effects.

SA reverses hyperglycemia, hyperinsulinemia, and hyperleptinemia in WD-induced
obese mice [28–31]. The present study demonstrated that SA treatment decreased plasma
insulin, glucose, and leptin levels in obese WT mice as well as in obese TRPV1−/− mice.
These results suggest that the metabolic benefits of SA are probably not mediated by its
nerve-protective effects, as the latter is dependent on intact TRPV1 channels. Leptin is an
important factor driving obesity-associated arterial hypertension. Leptin-induced increases
in RSNA can be suppressed by baroreflex activation [32]. Impaired baroreflex leads to
increased RSNA and hypertension in patients with type 2 diabetes [33–35]. Therefore,
it is possible that the nerve-protective effects of SA are mediated by its effects on leptin
levels. It is worth mentioning that SA may exert vasodilatory effects and acutely lower
blood pressure in hypertensive rats [36]. In the present study, the long-term blood pressure
raising effects of SA were more likely due to its action on the kidney.

COX enzymatic products can have antihypertensive and prohypertensive properties,
depending on the profile of prostanoids produced [37]. Long-term use of non-steroidal anti-
inflammatory drugs and COX-2 inhibitors increased arterial blood pressure and induced
edema and congestive heart failure in a significant proportion of patients [37]. SA inhibits
COX, leading to increased metabolism of arachidonic acid via lipoxygenase (LOX) and cy-
tochrome P450 (CYP) pathways. Products of the LOX pathway, 12- and 15-(S)-HPETE and
5- and 15-(S)-HETEs, can directly activate TRPV1 [38]. TRPV1 activation improves endothe-
lial function, increases endothelium nitric oxide (NO) production, improves vasorelaxation,
and may prevent hypertension [39]. Moreover, NO can also reduce RSNA [40], which
might contribute to the increase in renal blood flow. However, SA treatment in TRPV1−/−

mice might lose these beneficial effects and cause further impairment on renal function.
SA suppressed urinary 6-keto PGF1α and PGE2 in obese WT and TRPV1−/− mice,

which might be related to a further increase in RSNA and elevation of blood pressure in
obese TRPV1−/− mice. COX-2 inhibitors prevent inflammatory response via inhibition
of PG synthesis, which may also lead to blood pressure elevation, as PGE2 and PGI2 are
important vasodilators. In response to WD feeding, the kidney increases synthesis of
PGI2 and PGE2, which may be more pronounced in WD-fed TRPV1−/− mice because
TRPV1 ablation may decrease NO production [39] and other vasodilators such as calcitonin
gene-related peptide (CGRP) and SP release. The present study showed that TRPV1
ablation increased urinary levels of 6-keto PGF1α, a major metabolite of PGI2 in obese
TRPV1−/− mice. PGI2 and PGE2 can activate and sensitize TRPV1 and increase SP and
CGRP release [26,27], and these effects are absent in TRPV1−/− mice. Taken together, SA
treatment in obese TRPV1−/− mice further decreased the release of vasodilators including
SP, CGRP, PGE2, and PGI2, which might contribute to elevation of blood pressure and
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deterioration of renal function. SA-induced renal dysfunction in obese mice is dependent
on whether the TRPV1 channels are intact.

Taken together, our data suggest that the inhibition of COX with SA in mice fed a
WD diet increases ARNA and improves baroreflex control of sympathetic activity. SA-
mediated nerve protective effects are abolished when TRPV1 is ablated, accompanied by
exacerbated renal functional impairment and elevated blood pressure. These data may
have significant clinical implications for obese and diabetic patients with impaired TRPV1
that may contribute to the development of resistant hypertension in these patients when
treated with nonsteroidal anti-inflammatory drugs.
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