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Background
Optic cup is an important retinal structure in ophthalmologic diagnosis such as glau-
coma [1, 2]. Glaucoma is the second leading disease to blindness worldwide [3]. Given 
the lack of visual symptoms in the early stages, several studies showed that more than 
90% of the patients were unaware of this disease until it has developed into the severe 
stages [4–6]. Since it is time cost and the precision of diagnosis by manual is limited, 
then the automatic technique for disease detection such as computer aided diagnosis 
(CAD) system is strongly needed [7].

With the development of computer science, medical image processing technique has 
been successfully applied to clinical diagnosis and treatment. Currently, digital fundus 

Abstract 

Background:  Optic cup is an important structure in ophthalmologic diagnosis such 
as glaucoma. Automatic optic cup segmentation is also a key issue in computer aided 
diagnosis based on digital fundus image. However, current methods didn’t effectively 
solve the problem of edge blurring caused by blood vessels around the optic cup.

Methods:  In this study, an improved Bertalmio–Sapiro–Caselles–Ballester (BSCB) 
model was proposed to eliminate the noising induced by blood vessel. First, morpho-
logical operations were performed to get the enhanced green channel image. Then 
blood vessels were extracted and filled by improved BSCB model. Finally, Local Chart-
Vest model was used to segment the optic cup. A total of 94 samples which included 
32 glaucoma fundus images and 62 normal fundus images were experimented.

Results:  The evaluation parameters of F-score and the boundary distance achieved 
by the proposed method against the results from experts were 0.7955 ± 0.0724 and 
11.42 ± 3.61, respectively. Average vertical optic cup-to-disc ratio values of the normal 
and glaucoma samples achieved by the proposed method were 0.4369 ± 0.1193 and 
0.7156 ± 0.0698, which were also close to those by experts. In addition, 39 glaucoma 
images from the public dataset RIM-ONE were also used for methodology evaluation.

Conclusions:  The results showed that our proposed method could overcome the 
influence of blood vessels in some degree and was competitive to other current optic 
cup segmentation algorithms. This novel methodology will be expected to use in clinic 
in the field of glaucoma early detection.

Keywords:  Optic cup, Digital fundus image, Segmentation, Blood vessel, BSCB model

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Yang et al. BioMed Eng OnLine  (2018) 17:130  
https://doi.org/10.1186/s12938-018-0560-y BioMedical Engineering

OnLine

*Correspondence:   
clyang@bjut.edu.cn 
1 College of Life Science 
and Bioengineering, Beijing 
University of Technology, 
Beijing 100124, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-018-0560-y&domain=pdf


Page 2 of 15Yang et al. BioMed Eng OnLine  (2018) 17:130 

image has been widely used in many hospitals. Thus, it is possible to develop the CAD 
system used for ophthalmologic diagnosis based on fundus image processing technique 
[8–11].

The OD includes two distinct parts, namely, a circumjacent zone called the rim and a 
central bright region called the optic cup [12]. The optic cup can be divided into nasal 
and temporal regions. The former is generally occluded by the main blood vessels. Phys-
iologically, the loss in optic nerve fibers (ONF) leads to the enlargement of optic cup 
which is called large cupping, and atrophy of neuroretinal rim which is called rim loss. 
Large cupping and rim loss are two important indicators of glaucoma. They could be 
detected by measuring the vertical optic cup-to disc ratio (CDR) [13]. Once more ONF 
disappear, the optic cup will become larger with respect to the optic disc, which corre-
sponds to CDR increasing. In generally, an abnormal vertical CDR indicate a high risk of 
glaucoma. Therefore, automatic segmentation of the optic cup is crucial for CAD system 
for glaucoma.

To date, there are few studies on optic cup segmentation algorithms, which include 
thresholding-based methods [14–16], region growing [17, 18], model-based methods 
(active contour models or snakes [19, 20], level sets [21, 22], and elliptical shape model 
[23]), anatomical evidence-based methods [24], and superpixel classification [25–27]. 
Optic cup segmentation is challenged because the intensity has a sudden change in areas 
which blood vessels pass across the cup-disc boundary. However, most studies haven’t 
solved this problem effectively. Thus, inpainting of the blood vessels is an important step 
in optic cup segmentation.

This study aims to develop an efficient method to overcome the aforementioned prob-
lem in optic cup segmentation. Morphological operations were first performed to get the 
enhanced green channel image. Then, blood vessels were extracted and filled by using an 
improved Bertalmio–Sapiro–Caselles–Ballester (BSCB) model. Finally, local chart-vest 
(LCV) model was used to segment the optic cup.

The remainder of this paper is organized as follows: first, we introduced the image data 
used in this study and presented the proposed methodology, an efficient optic cup seg-
mentation method decreasing the influences of blood vessels. The experimental results 
are then provided, followed by discussions and conclusions.

Methods
Data acquisition

Digital fundus images were acquired from local ophthalmologic hospital. The 24-bit 
color images were captured using digital fundus camera (Canon CR-DGi) with the 
array size of 1440 × 960 pixels. The photographic angle of the fundus camera was set 
to 60°, and the optic disc was adjusted at image center. The average optic cup bound-
ary identified by two experts was taken as the ground truth for the following evalua-
tion. All the experimented 94 images were acquired by the same instrument and the 
subjects were collected randomly to take the ocular disease screening. A total of 94 
images including 32 patients with glaucoma (18 male, 14 female) and 62 healthy sub-
jects (34 male, 28 female) were included in our experiment. For the 32 patients with 
glaucoma, the ages were ranged from 35 to 58 years old (45.23 ± 3.31 years). None of 
the left 62 normal subjects had history of hypertension, nor cardiovascular disease 
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and diabetes. Their ages were ranged from 31 to 63 years old (43.51 ± 5.27 years). In 
addition, 39 glaucoma images from the public dataset RIM-ONE (An Open Retinal 
Image Database for Optic Nerve Evaluation) were also used for evaluation [28].

Optic cup segmentation

The edge of optic cup is more difficult to identify compared with that of optic disc, 
primarily because the image is blurred where the blood vessels pass across the optic 
cup. After preprocessing such as image enhancement, blood vessels were extracted 
and inpainting. Then the optic cup was segmented by using LCV model.

Preprocessing

Among the image components of color which are red (R), green (G) and blue (B), the 
G channel shows the optimal image contrast for the optic cup (see Fig. 1). Therefore, 
the G channel image UG was selected for the subsequent processing.

In the proposed algorithm, both top-hat and bottom-hat transformations were 
applied to enhance the image contrast [27]. Top-hat transformation refers to the sub-
traction of the opening operation result from the image itself. By contrast, bottom-
hat transformation refers to the subtraction of the image from the result of closing 
operation. Both top-hat and bottom-hat transformations are based on a predefined 
neighborhood or structuring element (SE). The above two transformations are illus-
trated as Eqs. (1) and (2), respectively.

Here, a structuring element with a size of 5 × 5 pixels was used (more details of size 
selection were provided in “Results” section). The above two transformations could be 
represented as Eq. (3), the boundary of optic cup become clearer after the operations 
(see Fig. 2).

(1)That(UG) = UG − (UG ◦ SE)

(2)Bhat(UG) = (UG · SE)−UG

(3)U = (UG + That(UG))− Bhat(UG)

Fig. 1  Digital fundus images with different color channels. a Original image, b red channel image, c green 
channel image, d blue channel image
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Blood vessel extraction

Since the intensities of blood vessels were lower than those of background and other 
structures, the intensities of blood vessels will become higher after median filtering. 
Therefore, the blood vessels could be possibly identified based on the intensity differ-
ence. In order to capture the change of image intensity, the contrast enhanced image 
U was subtracted from the median filtered image Umed. Then the intensity differential 
image could be acquired which was represented by Eq. (4).

The binary image UD was generated according to the value of Usub [29]. Only the 
intensities of pixels with corresponding Usub > 0 were set to 1 according to Eq.  (5). 
These pixels were considered belonging to blood vessels (see Fig. 3d).

In this study, the size of median filtering was set to 9 × 9 pixels (more details of size 
selection were provided in “Results” section).

(4)Usub = Umed(i, j)−U(i, j)

(5)UD(i, j) =

{

1, if Usub > 0
0, otherwise

.

Fig. 2  Flowchart of image contrast enhancement by top-hat and bottom-hat transforms. The top is the 
original image and the bottom is the result
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Blood vessels inpainting

Bertalmio et  al. [30] proposed the novel BSCB model for image inpainting in 2000 
based on theory of partial differential equation (PDE). The BSCB model uses Laplace 
operator to measure the neighborhood information for image inpainting. It smoothly 
propagates the information to the same region along the direction of isophote. At 
the same time, an anisotropic diffusion function is adopted to prevent the prolonga-
tion lines from crossing one to another. Generally, the model comprises two steps: 
inpainting and diffusion. In this study, the improved BSCB model was developed, that 
is, the neighborhood intensities were used as the propagation information, instead of 
using only one single pixel.

After the above processing, the intensity will become more uniform within the area 
of optic cup. The influence caused by the blood vessels will be decreased. The following 
were the detailed descriptions about the processing procedure.

Assuming Ω is the region to be inpainted and ∂D is the boundary of Ω. The BSCB 
model can be described by Eqs. of (6) and (7) [31, 32].

Equation (6) represents inpainting, where ∇L is the propagation information and �T  is the 
isophote direction. Equation (7) is used for diffusion, where k is the Euclidean curvature 

(6)
∂U

∂t
= ∇L · �T

(7)
∂U

∂t
= gεk|∇U |.

Fig. 3  Key steps in proposed optic cup segmentation. a Original image, b G channel image, c enhanced G 
channel image, d blood vessel identification, e result of blood vessel inpainting, f optic cup identification
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of the isophote and Ωɛ is the dilation of Ω with a balling radius of ε, and gɛ is a smooth-
ing function of Ωɛ.

To be easier understanding, Eqs. of (6) and (7) can be comprehensively described as 
follows.

Here Un+1(i, j) is the value of pixel intensity located at (i, j) in the n-th iteration image 
which Un

τ (i, j) = ∇L · �T  . Notably, U0(i, j) = U(i, j) and lim
n→∞

Un
(

i, j
)

= Ur

(

i, j
)

, where 
U0(i, j) is the input image, Ur(i, j) is the output of the algorithm, and Δt is the improve-
ment rate.

In the traditional BSCB model, propagation information Ln(i, j) is substituted by the 
discrete Laplace operator, which is shown in Eq. (10).

Although texture could be the transfer information for image inpainting, it is not 
necessary in optic cup segmentation. In contrast, local image information is more 
effective. Therefore, using neighborhood mean value as transfer information may 
eliminate the influence of noise. According to the above deduction, unxx

(

i, j
)

 and 
unyy

(

i, j
)

 were replaced by unxx
(

i, j
)

 and unyy
(

i, j
)

 in the following vascular inpainting, 
represented by Eqs. (11) and (12) respectively. In this study, the size of neighborhood 
was set to 3 × 3 pixels.

Optic cup boundary identification

Wang et al. [33] proposed a LCV model which included local statistical information 
in level set based segmentation framework. In the algorithm, extended structure ten-
sor (EST) was combined which intensity inhomogeneity could be decreased effec-
tively. In this study, the above-mentioned LCV model was used for the following optic 
cup segmentation.

First, the centroid (xc, yc) was selected from the region with relative high intensity, 
which was acquired according to the following criteria represented as Eq. (13)

(8)Un+1
(

i, j
)

= Un
(

i, j
)

+�tUn
τ

(

i, j
)

, ∀
(

i, j
)

∈ �,

(9)Un+1
(

i, j
)

= Un
(

i, j
)

+�tgε
(

i, j
)

k
(

i, j, n
)∣

∣∇U
(

i, j, n
)∣

∣, ∀
(

i, j
)

∈ �ε ,

(10)Ln
(

i, j
)

= unxx
(

i, j
)

unyy
(

i, j
)

.

(11)unxx
(

i, j
)

=
1

9

i+1
∑

m=i−1

j+1
∑

n=j−1

unxx(m, n)

(12)unyy
(

i, j
)

=
1

9

i+1
∑

m=i−1

j+1
∑

n=j−1

unyy(m, n)

(13)xc =
1

N

N
∑

i=1

xi, yc =
1

N

N
∑

i=1

yi
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Here N is the total number of pixels within the target region.
In this step, two parameters need dynamic adjusted in the LCV model, i.e., α and μ. 

Commonly, α was set to 0.1 or 1, depending on whether the image has intensity inho-
mogeneity. For μ, two corresponding values are adopted: 0.01 × 2552 and 0.1 × 2552. 
If several targets need to be detected, μ should be small, and vice versa. Because the 
optic cup area has intensity inhomogeneity and only the optic cup be the target, the 
values of α and μ were then set to 0.1 and 0.1 × 2552 respectively.

Evaluation

The experimental results were evaluated by three statistical criteria, namely, F-score 
(area-based), distance (curve-based) and vertical CDR, which were explained in 
“F-score (F)”, “Distance (D)”, and “Vertical CDR” sections.

Besides the proposed algorithm, the experiments were also performed by two other 
known methods, proposed by Joshi et al. [17] and Liu et al. [21]. There are two rea-
sons why the above methods were selected to be compared. First, since the optic 
cup segmentation could be classified into framework of region based, edge based 
and hybrid, the proposed algorithm and another two selected methods all belong to 
region based method. Second, the proposed method aimed at decreasing the influ-
ence of blood vessels, which was similar to the other selected methods putting for-
ward to the solutions.

In details, Joshi et al. [17] imposed the expected symmetry of optic cup region by 
setting threshold to recover the under-segmentation areas located in the blood ves-
sels. Liu et al. [21] used ellipse to redraw the optic cup boundary after employing a 
combinative algorithm with level set and threshold setting, which was to weaken the 
noising by blood vessels.

For each method, the evaluation of F-score and distance were compared. The ver-
tical CDR values were presented against manual segmentation results achieved by 
experts.

F‑score (F)

The pixel-wise precision and recall values were computed to assess the overlap area 
between the computed region and the ground truth. These values were defined as 
Eqs. (14) and (15),

where TP, FP, and FN represented the number of true positive, false positive, and false 
negative pixels respectively. The harmonic mean of the precision and recall values, called 
F-score (F), was computed to better appreciate the results. The F-score was expressed in 
Eq. (16),

(14)precision =
TP

TP + FP

(15)recall =
TP

TP + FN
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Given that both recall and precision are evenly weighted, the F-score value lies 
between 0 and 1, and the recall, precision, F-score should be all ideally close to 1.

Distance (D)

To assess the accuracy of the boundary, a curve-based evaluation is performed. Let Ce be 
the boundary identified by the ophthalmologist and Cm be the boundary achieved by the 
proposed algorithm. The distance (D) which was computed in pixels between two curves 
was expressed as Eq. (17),

Here, n is the number of angles, the distance from centroid of Ce to the points on Ce in 
direction of θ was defined as dθe , similar with the definition of dθm. D should be close to 0 
for an accurate algorithm.

Vertical CDR

To estimate the vertical CDR, the optic disc must be segmented ahead. Compared to 
optic cup, optic disc segmentation is relatively easier. In this study, to ensure the accu-
racy of the CDR and evaluate the effectiveness of the proposed algorithm, the optic disc 
was manually delineated by experts. The vertical CDR was calculated by Eq.  (18) pro-
posed by Gloster et al. [34],

where CV represented the vertical diameter of optic cup, and DV represented the vertical 
diameter of optic disc. CV and DV were determined by the distances from the top to the 
bottom of these diameters, as shown in Fig. 4. In clinic, the risk of suffering glaucoma 
increases with the value of CDR.

Results
A total of 94 digital fundus images, including 32 glaucoma images, were experimented 
using the proposed algorithm. The algorithm was individually evaluated against manual 
segmentation results by expert-1 and expert-2, and also against the average expert mark-
ing called expert-X. For comparison, the results obtained by two other known methods 
of Joshi et al. [17] and Liu et al. [21], were also presented in evaluation of F-score and 
distance.

The optic cup segmentation results were shown in Fig.  5. In order to compare with 
the other above mentioned methods, more examples were shown in Fig. 6. The evalu-
ation results of F-score and distance were shown in Tables 1 and 2. The values of CDR 
achieved by experts and the proposed method were also compared shown in Fig. 7. The 
statistical results of CDR for normal and glaucoma data were listed in Table 3.

(16)F = 2
precision · recall

precision+ recall

(17)D =
1

n

θn
∑

θ=1

∣

∣dθe − dθm
∣

∣,

(18)CDR = CV

/

DV
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The selections of parameters used in the algorithm were also evaluated. For the SE 
used in morphometric operations of preprocessing, the size from 2 × 2  pixels to 
15 × 15 pixels have been experimented. Representative results were shown in Fig. 8 and 

Fig. 4  Illustration of vertical CDR measurement criteria

Fig. 5  The optic cup segmentation results. From top to bottom are original images, results achieved by our 
proposed method and by experts respectively
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Table 4. Representative results of median filtering (window size is from 3 × 3 pixels to 
15 × 15 pixels, interval of 2 × 2 pixels) were shown in Fig. 9 and Table 5.

From the results of Figs. 5 and 6, the proposed algorithm achieved the satisfied seg-
mentation results which were better than the methods proposed by Joshi et al. [17] and 
Liu et  al. [21]. Although both of them also considered the influence caused by blood 
vessels and proposed the corresponding ways trying to decrease the influence, our pro-
posed method showed competitive to overcome the difficulty in areas with a lot of blood 

Fig. 6  Illustration of comparisons among the segmentation results. From left to right are original images, 
results achieved by experts, by Joshi et al., by Liu et al. and our proposed method

Table 1  F-score acquired by different methods

Expert Joshi et al. [17] Liu et al. [21] Proposed

Expert-1 0.6125 ± 0.1139 0.7010 ± 0.0901 0.7955 ± 0.0724

Expert-2 0.6235 ± 0.0999 0.7245 ± 0.1032 0.7780 ± 0.0794

Table 2  Boundary distance in radial direction acquired by different methods (in pixels)

Expert Joshi et al. [17] Liu et al. [21] Proposed

Expert-1 22.82 ± 5.00 16.78 ± 3.95 11.42 ± 3.61

Expert-2 20.82 ± 4.08 15.78 ± 4.40 12.32 ± 3.71
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Fig. 7  Comparison results of CDR achieved by experts and the proposed method. a CDR values achieved by 
experts vs. by proposed method, b errors between the results by experts and the proposed algorithm

Table 3  Average CDR values for normal and glaucoma

Method Normal Glaucoma

Proposed 0.4369 ± 0.1193 0.7156 ± 0.0698

Expert 0.4516 ± 0.1176 0.7444 ± 0.0666

Fig. 8  Comparison results with different SE size. From left to right are optic cup segmentation results 
acquired without morphometric operation, with size of 2 × 2 pixels, 5 × 5 pixels, 10 × 10 pixels, 15 × 15 pixels 
and by the experts

Table 4  The precisions of  optic cup segmentation with  different size of  structuring 
element used in the morphometric operations

Image type 2 × 2 pixels 5 × 5 pixels 10 × 10 pixels 15 × 15 pixels

Normal 0.7950 ± 0.0600 0.8914 ± 0.0300 0.6964 ± 0.0600 0.5900 ± 0.1600

Glaucoma 0.5753 ± 0.2000 0.7218 ± 0.0400 0.4415 ± 0.2100 0.2519 ± 0.1100

Fig. 9  Comparison results with different window size of median filtering. From left to right are optic cup 
segmentation results acquired with size of 5 × 5 pixels, 7 × 7 pixels, 9 × 9 pixels, 11 × 11 pixels and by the 
experts
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vessels. In addition, both the maximum F-score and minimum distance of our proposed 
method were acquired. That is, the accuracy of the proposed method is better than the 
other two. Furthermore, the standard deviations of F-score and distance were also lower 
which showed the robustness of the proposed method.

From results of Fig. 8 and Table 4, the size of SE was suggested to be selected as 5 × 5. 
From results of Fig. 9 and Table 5, the window size of median filtering was suggested to 
be selected as 9 × 9.

In order to evaluate whether our proposed method is feasible and comparable to 
the most recent published optic cup segmentation algorithms [35–37], also 39 glau-
coma images from the public database RIM-ONE were experimented. F-score and 
CDR acquired by our proposed method and these referenced algorithms were listed in 
Table 6. From the results, F-score acquired by our proposed method is acceptable and 
the corresponding CDR is more close to the manual results by experts.

Discussion
The proposed algorithm and the other two above mentioned methods used for com-
parison all put forward the solutions aimed at reducing optic cup segmentation errors 
caused by blood vessels. Given the figures listed in results, it can be concluded that 
the proposed method will give rise to higher F and lower D, which was hence bet-
ter in optic cup segmentation. Joshi et  al. [17] imposed the expected symmetry of 
cup region in nasal and temporal side after threshold processing to recover the vessel 
errors. A vertical axis of symmetry passing through optic disc center was considered 
and nasal region was obtained by mirroring the temporal region. Therefore, the seg-
mentation results were decided completely by the segmentation quality of temporal 
region. However, most of the cups are not symmetrical about the vertical axis pass-
ing through optic disc center. What is more, as the acquisition conditions like pho-
tographic angle changes, the shapes of both sides are various which also causes the 
uncertainty of the relative size on both sides, leading to under-segmentation or over-
segmentation of nasal side after the operation of symmetry. Liu et  al. [21] applied 
ellipse fitting to redraw the cup boundary for weakening vessel influence in the seg-
mentation process. Nevertheless, the ellipse fitting was implemented after employing 
combinative algorithm of level set and color intensity thresholds which didn’t take 

Table 5  The precisions of optic cup segmentation with different size of median filtering

Image type 5 × 5 pixels 7 × 7 pixels 9 × 9 pixels 11 × 11 pixels

Normal 0.5250 ± 0.0600 0.7114 ± 0.0300 0.8914 ± 0.0300 0.6900 ± 0.1600

Glaucoma 0.3951 ± 0.2000 0.5618 ± 0.0400 0.7218 ± 0.0400 0.5219 ± 0.1100

Table 6  Comparison with the recent algorithms based on public database RIM-ONE

Criteria Haleem et al. [35] Al-Bander 
et al. [36]

Bechar et al. [37] Proposed Expert

F-score – 0.6903 0.8643 0.8127 –

CDR 0.60 ± 0.17 – – 062 ± 0.17 0.66 ± 0.18
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the vessel into account because of its low intensity. Thus only the minor remission of 
the errors caused by vessels could be reached after fitting, serious under-segmenta-
tion still cannot be avoided. By contrast, the proposed scheme firstly fills the blood 
vessels by an improved BSCB model, making the whole cup area more uniform for 
the following segmentation,then the optic cup is determined through the LCV model 
approach which can capture the unsharp boundary of cup, reducing under-segmenta-
tion or over-segmentation to a great extent compared with other methods.

For the CDR evaluation in Table 3, the CDR values by the proposed algorithm are 
little smaller than those by expert, which indicates that the cup region determined by 
the proposed method was little smaller toward upper cup edge and lower cup edge 
than that determined by expert. The CDR values are little too small caused the mis-
diagnosis of four patients with glaucoma as normal in the experiment. The reason is 
that, for the dense vascular area near the cup edge, the grayscale is close to that of 
the neuroretinal rim after inpainting, leading to little local insufficient segmentation. 
But the difference of CDR between the proposed method and expert is small, thus the 
CDR was in the range of normal.

To sum up, we have proposed a novel automatic optic cup segmentation algorithm 
based on inpainting of blood vessels in this study. Compared with other techniques, 
the proposed methodology has several advantages.

1.	 The proposed algorithm repaired the vascular regions by using an improved BSCB 
model, reducing the errors caused by blood vessels to a large degree and improving 
the segmentation accuracy;

2.	 In LCV model, the centroid point located in area with higher intensity was selected 
as the starting point, which realized the automatic selection of the seed point. In 
addition, the loose selection of circular radius make the initial contour easily be auto-
matically selected.

3.	 The proposed algorithm realized fully automatic segmentation with high accuracy, 
which reduced the human intervention of the traditional semi-automatic method.

The proposed method also has some limitations. First, the region of optic cup seg-
mented by the proposed method was slightly smaller than that identified by experts, 
especially in the dense vascular area. It may be because parts of the image intensities 
near the edge of optic cup are close to these of the neuroretinal rim after inpainting. 
Accordingly, local insufficient segmentation will be happened. Second, the robustness 
of the algorithm is expected to improve. Since the used experimental data were col-
lected from the same type of camera, more data from different type of camera should 
be tested and the robustness of the algorithm will be improved.

Conclusion
This study proposed a novel optic cup segmentation method based on inpainting of 
blood vessels using an improved BSCB model. The proposed algorithm realized fully 
automatic segmentation, which captured the optic cup boundary more accurately 
compared with other previous methods also dedicating to reduce the influence of 
blood vessels. Future work is needed to experimented more samples acquired from 
different type of camera and also developed more robust algorithms.
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