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This is the second of a series of arti-
cles based on presentations at the
6th Annual World Congress on the

Insulin Resistance Syndrome held
25–27 September 2008 in Los Angeles,
California.

Gary Lewis (Toronto, Canada) dis-
cussed the effect of prolonged free fatty
acid (FFA) elevation on pancreatic �-cell
function. FFAs are essential for mainte-
nance of basal insulin secretion, and
acute FFA elevation increases glucose-
stimulated insulin secretion, but pro-
longed FFA elevation consistently impairs
glucose-stimulated insulin secretion
(GSIS) in vitro. There is no consensus re-
garding in vivo effects in part because of
FFA-induced insulin resistance, so that
lack of change in insulin levels may ac-
tually indicate failure of compensatory
increase in insulin secretion. Lewis de-
scribed studies of this with graded glu-
cose infusion. After doubling FFA levels
with heparin plus lipid infusion, compar-
ing acute with prolonged FFA elevation,
insulin secretion did not change, but
there was reduction in insulin sensitivity
(1). Given the hyperbolic relationship be-
tween insulin sensitivity and insulin se-
cretion, the product of the two, termed
the disposition index, is a more important
measure (2). With use of this measure,
GSIS increases by �50% with the acute
increase in FFA levels, countering FFA-
induced reduction in insulin sensitivity,
so that the disposition index is un-
changed, whereas with prolonged FFA el-
evation, �-cell compensation is not
shown—a phenomenon particularly ob-
served in obese nondiabetic subjects
(3,4). Elevated glucose has additive ef-
fects to FFA in reducing GSIS in obese
subjects (5). Monounsaturated (MUFA),
polyunsaturated (PUFA), and saturated
(SFA) fats appear to differentially affect
GSIS. Longer FFA chain length and de-
gree of saturation are associated with

greater insulin resistance. In a study com-
paring olive (78% MUFA), safflower
(78% PUFA), and palm (50% SFA) oils,
ingested over 24 h, insulin sensitivity was
particularly decreased by SFA, leading to
a greater reduction in the disposition in-
dex (6), although all three oil emulsions
similarly reduced �-cell function.

Lewis reviewed evidence that oxida-
tive stress inhibits �-cell function (7). He
discussed results of a study showing that
orally administered taurine, an effective
aldehyde scavenger, improved the FFA-
induced impairment in insulin sensitivity
and �-cell function, although oral N-
acetyl-L-cysteine, a precursor in the for-
mation of the free radical and aldehyde
scavenger glutathione, did not improve
insulin sensitivity or the disposition index
(8); in an animal model, both of these an-
tioxidants were effective in increasing in-
sulin secretion (9). FFA may increase
inflammatory markers in muscle, and
there is evidence that the anti-inflammatory
drug salsalate improves glycemia in obese
nondiabetic adults (10), although others
have reported that aspirin impairs insulin
sensitivity in healthy and in type 2 diabetic
subjects (11); Lewis’s group has found evi-
dence that salicylate reduces insulin sensi-
tivity and lowers the disposition index.

Ralph DeFronzo (San Antonio, TX)
discussed the question of whether there is
a role of hyperglycemia in macrovascular
atherosclerotic disease. Certainly, there is
a strong relationship between glycemia
and microvascular complications of dia-
betes, but the UKPDS (UK Prospective Di-
abetes Study) showed 14 and 12%
decrease in risk of myocardial infarction
and stroke per 1% reduction in A1C, con-
siderably less than the effect of glycemia
with microvascular outcomes (12). Opti-
mizing glycemia in the ADVANCE (Ac-
tion in Diabetes and Vascular Disease—
Preterax and Diamicron Modified
Re lease Contro l l ed Eva lua t ion) ,

ACCORD (Action to Control Cardiovascu-
lar Risk in Diabetes), and VADT (Veterans
Affairs Diabetes Trial), moreover, failed,
according to DeFronzo, to improve mac-
rovascular outcomes, although this is
somewhat controversial. Is glycemia, De-
Fronzo asked, not a major risk factor for
cardiovascular disease (CVD)? Was the
wrong patient population studied: pa-
tients with advanced disease and long-
standing diabetes? Was the wrong drug
used: insulin? DeFronzo suggested that
aggressive insulin treatment exacerbates
insulin resistance, is associated with
weight gain, activates inflammatory and
atherogenic pathways, increases VLDL,
lowers HDL, increases LDL transport in
vascular smooth muscle cells, and, per-
haps, promotes atherogenesis. He further
pointed out that the sample size of the
studies was inadequate, given the exem-
plary CVD risk factor treatment in the
three studies, with annual 2.3 and 2.2%
incidences in the ACCORD and AD-
VANCE studies. In a population with a
1.5% annual CVD rate, to demonstrate a
25% reduction in CVD, 3-, 5-, and 10-
year studies will require �28,000,
14,700, and 6,800 patients; in fact, it is
likely that populations with recent-onset
diabetes will have event rates below 1%
and that optimal glycemic treatment will
only reduce CVD by �15%, so that even
larger numbers of patients will need to be
followed to demonstrate macrovascular
benefit.

Insulin resistance includes obesity,
diabetes, hypertension, dyslipidemia, in-
creased plasminogen activator inhibitor-1
(PAI-1), endothelial dysfunction, hyper-
insulinemia, and atherosclerosis and is
likely to account for the residual risk after
optimal blood pressure, lipid, antiplate-
let, and glycemia treatment. Normal-
weight diabetic patients have insulin
resistance similar to that of obese nondi-
abetic patients, with the major defect in
the ability of tissues to take up glucose
and store it as glycogen (13), with similar
insulin resistance in patients with hyper-
tension and with hypertriglyceridemia
and in those with coronary artery disease.
Prospective epidemiological studies show
a relationship between insulin resistance
and CVD. In the San Antonio Heart
Study, the most insulin-resistant quintile

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Zachary T. Bloomgarden, MD, is a practicing endocrinologist in New York, New York, and is affiliated with
the Division of Endocrinology, Mount Sinai School of Medicine, New York, New York.

DOI: 10.2337/dc09-zb10
© 2009 by the American Diabetes Association. Readers may use this article as long as the work is properly

cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.
org/licenses/by-nc-nd/3.0/ for details.

R e v i e w s / C o m m e n t a r i e s / A D A S t a t e m e n t s
P E R S P E C T I V E S O N T H E N E W S

e114 DIABETES CARE, VOLUME 32, NUMBER 10, OCTOBER 2009 care.diabetesjournals.org



of 2,569 nondiabetic individuals followed
for 8 years had a 2.5-fold increase in CVD,
with remaining 2-fold increase after ad-
justment for age, sex, blood pressure, LDL
and HDL cholesterol, triglycerides, ciga-
rette use, exercise, and waist circumfer-
ence (14). DeFronzo suggested that “the
unexplained risk [in CVD after risk factor
adjustment (15)] is in fact insulin
resistance.”

The molecular etiology of insulin re-
sistance involves abnormality of insulin
receptor signal transduction (16), the
pathway leading to GLUT4 activation also
responsible for generating nitric oxide
(NO), involving serine rather than ty-
rosine phosphorylation of insulin recep-
tor substrate-1 (IRS-1), whereas the
mitogen-activated protein kinase path-
way remains insulin sensitive, leading to
atherogenesis and inflammation. In a
study of lean offspring of two diabetic
parents, the metabolic pathway was un-
deractive while the mitogenic pathway of
insulin signaling was overactive (17). The
offspring, DeFronzo said, “are not only
sitting in a sea of [cardiovascular] risk fac-
tors, they have the molecular defect that is
driving atherogenesis.”

Lipotoxicity involves increased plasma
FFA, increased tissue fat content, altered
fat distribution, and/or increased adipo-
cytokine release, with elevation of FFA
alone able, in a dose-responsive fashion,
to increase hepatic glucose production
while decreasing muscle glucose uptake
(18), which DeFronzo termed “the two
major core defects.” In contrast, FFA low-
ering with acipimox reduces FFA during a
euglycemic insulin clamp and improves
insulin signaling (19).

DeFronzo suggested that FFA is “the
neglected lipid” in atherosclerosis, in-
creasing nuclear factor-�B (NF-�B)–cells
and reducing the inhibitor of �B (I�B) be-
cause increased fatty acyl-CoA activates
IkB kinase, causing it to dissociate from
NF-�B, with I�B kinase also serine phos-
phorylating IRS-1. Dissociated NF-�B en-
ters the nucleus, activating production of
inflammatory cytokines and growth fac-
tors that lead to inflammation and athero-
sclerosis. Physical exercise increases the
reassociation of I�B with NF-�B (20).
Cultured human myocytes show in-
creased NF-�B activity when incubated
with the fatty acid palmitate, associated
with production of cytokines. Toll-like
receptor (TLR) 4 is a plasma membrane
receptor that plays an important role in
the innate immune system, which is acti-
vated by circulating FFA, setting in mo-

tion a series of phosphorylation reactions
leading to I�B phosphorylation. TLR4
mRNA and protein are increased in mus-
cle of insulin-resistant individuals, while
I�B content is decreased and TLR4 corre-
lates with insulin resistance as measured
by the homeostasis model assessment
(HOMA). Thiazolidinediones reverse li-
potoxicity, reducing plasma FFA, nor-
malizing fat distribution, and improving
insulin sensitivity (21). In nonalcoholic
steatohepatitis, the thiazolidinedione pio-
glitazone reduced liver fat, lowered ala-
nine transaminase, and improved
histological findings of inflammation, bal-
looning necrosis, steatosis, and fibrosis
(22). Pioglitazone also improved coro-
nary (23) and carotid (24) atherosclerosis
in diabetic patients.

H. Bryan Brewer (Washington, DC)
gave an update on the role of HDL cho-
lesterol in insulin resistance and CVD. He
extended DeFronzo’s discussion of resid-
ual CVD risk by pointing out that with
maximal clinical LDL cholesterol reduc-
tion there is still an unmet clinical need
“to add to the statins” even with LDL cho-
lesterol �70 mg/dl (25). The lipoprotein
profile of the at-risk person is the athero-
genic dyslipidemia of increased triglycer-
ide and dense LDL and decreased HDL
cholesterol levels associated with elevated
blood pressure, abnormalities of glyce-
mia, hypercoagulability, and all the com-
ponents of metabolic syndrome. There is
controversy about the diagnostic criteria,
but clearly HDL cholesterol is a significant
component of the state, although there is
insufficient evidence to support HDL
cholesterol lowering. HDL cholesterol
certainly is a risk factor for CVD in the
Framingham (26) and PROCAM (PRO-
spective CArdiovascular Münster) (27)
studies. For each 1-mg increase in HDL
cholesterol, CVD risk decreases 3%. Low
HDL cholesterol is highly prevalent, seen
in 30% of nondiabetic and 45% of dia-
betic patients (28).

There are a number of mechanisms by
which HDL may decrease atherosclerosis.
HDL acts to mediate reverse cholesterol
transport. Cholesterol derived from LDL
is modified and binds to scavenger recep-
tor SR-B1 in tissues, particularly the vas-
culature, activating macrophage ATP-
binding cassette, subfamily A (ABCA1)
and ABCG1 receptors, leading macro-
phage cholesterol to be taken up by lipid-
poor apolipoprotein A1 after binding
with the ABCA1 transporter. Lecithin-
cholesterol acyltransferase (LCAT) leads
to formation of pre–�-HDL, comprising

5% of circulating HDL. Further action of
LCAT leads to formation of �-HDL, com-
prising 95% of circulating HDL, which
binds to the SR-B1 receptor and ABCG1
transporter, then delivering cholesterol to
LDL via cholesteryl ester transfer protein
(CETP). LDL cholesterol can return to the
liver or can be delivered to tissues, or di-
rect uptake of �-HDL to the liver can oc-
cur via SR-B1. HDL may also exhibit anti-
inflammatory (29) and antioxidant
effects, the latter by blocking oxidized-
LDL formation and taking up oxidized
fatty acids. HDL can also decrease adhe-
sion molecules, can increase NO synthase,
can act to transport other molecules, can
increase endothelial stem cells, may have
role in binding endotoxin and acting as an
anti-infectious agent, and may have anti-
thrombotic effects.

Although animal models suggest that
HDL has antiatherosclerotic effects (30),
clinical studies showing benefit from in-
creasing HDL are limited. Niacin reduced
events in the coronary drug project (31),
and niacin appears to improve the effect
of statins (32,33). Infusion of A-1 Milano
improved atherosclerosis, as measured by
intravascular ultrasound (34). “The chal-
lenge,” Brewer said, “has been to develop
a good HDL-raising drug.” Statins raise
HDL cholesterol level by 6–14%, fibrates
by 15%, and niacin by 20–30% but with
poor tolerability; although CETP inhibi-
tors double HDL, “we’ll have to find out if
they are safe and effective,” with adverse
outcome seen with such an agent in a re-
cent large clinical trial (35).

Ronald Krauss (Oakland, CA) dis-
cussed nutritional and genomic regula-
tion of atherogenic dyslipidemia and
focused on small dense LDL particles.
LDL consists of four distinct subsets,
classes 3 and 4, smaller particles with
greater arterial proteoglycans binding,
greater oxidative susceptibility, greater
endothelial transport, and reduced LDL
receptor binding; medium size class 2
particles, the most abundant species in
plasma of healthy individuals; and large
LDL class 1 particles that carry the largest
cholesterol mass but do not have adverse
arterial effects, explaining the relatively
weak correlation of LDL with CVD. Apo-
lipoprotein B and, even more, particle
number may be better measures than LDL
cholesterol per se. The identification of
LDL subpopulations is aided by plasma
triglyceride levels, with two clusters of
subjects, those with peak LDL diameter
�260 and those with LDL peak �260 A,
the latter having higher triglyceride levels.
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VLDL secreted by the liver is acted upon
by lipoprotein lipase, forming LDL. High
triglyceride levels are associated with
large VLDL production, forming remnant
particles that are slowly acted on by li-
poprotein and hepatic lipase to produce
small LDL. HDL interacts with small LDL
via CETP.

LDL subclass phenotype is 40–75%
determined by heredity; however, age,
male sex, adiposity, insulin resistance,
and diet are important additional factors.
The prevalence of small LDL is linearly
related to BMI (36); adiposity increases
FFA and cytokines, increasing the hepatic
triglyceride pool size, driving production
of larger VLDL particles. A low-fat, high-
carbohydrate (CHO) diet can induce ex-
pression of the phenotype B small LDL
particle size (37), driven by large VLDL
particles secreted as increased dietary
CHO raises triglyceride levels (38). Kraus
noted that individuals with the genetic
tendency to small, dense LDL particles
also have an increased LDL response to
dietary fat. Kraus therefore addressed the
questions of whether lowering dietary
CHO would reverse phenotype B,
whether weight loss reversed phenotype
B independent of dietary composition,
and whether CHO limitation and/or
weight loss would attenuate the lipopro-
tein response to SFA intake.

In the NuGAT (Nutritional Genomics
of Adipose Tissue) study of 178 healthy
men with BMI 26–35 kg/m2, the basal
diet was 54% CHO and 16% protein and
the moderate CHO diet was 39% CHO,
29% protein, and 29% fat, followed by a
reduction to 26% CHO, increasing to
45% fat, with either more SFAs or
MUFAs. After a 3-week stabilization, cal-
ories were reduced to induce weight loss.
CHO limitation reduced expression of
phenotype B, with weight loss addition-
ally improving the atherogenic dyslipide-
mia, particularly with high CHO diets
(39). Reducing dietary CHO from 54 to
26% markedly improved phenotype B
and triglyceride levels, with the amount of
SFA not having great influence on the
lipid pattern, with both weight loss and
CHO restriction reducing triglyceride lev-
els. LDL cholesterol reduction was actu-
ally greater with more SFA. Adipose tissue
biopsy showed that reducing dietary
calories and CHO decreased fatty acid
desaturase and diacylglycerol O-
acyltransferase 2 gene expression, corre-
lating with triglyceride response (40).
Interestingly, dietary factors of this sort
decrease eicosanoids, which may have ef-

fects on inflammation and endogenous
cannabinoid levels.

Gunther Boden (Philadelphia, PA)
discussed the role of matrix metalopro-
teinases (MMPs) in insulin resistance and
their relationship to the question of
whether insulin resistance per se can
cause atherosclerosis. In hyperinsuline-
mic rats, the active forms of MMP-2, -9,
and -14 increase, particularly with lipid
and heparin infusion to raise FFA levels
(41). Tissue inhibitors of MMP increase to
some extent, but the ratio of MMP to tis-
sue inhibitors is increased during eugly-
cemic hyperinsulinemia, particularly
with concomitant elevation in FFA levels
(42). Tissue factor (TF) is present in the
adventitia of blood vessels and atheroscle-
rotic plaques, leading to an increase in
coagulation with vessel wall injury. It is
now recognized that TF is also present on
monocytes and microparticles and that
circulating TF is thrombogenic. TF-
procoagulant activity (PCA) may be
stimulated by hyperglycemia and/or hy-
perinsulinemia. TF-PCA increased mini-
mally with hyperglycemia alone in
nondiabetic individuals, to a greater ex-
tent with hyperinsulinemia alone, and
was particularly increased by the combi-
nation of hyperglycemia and hyperinsu-
linemia. Boden showed analysis of
monocyte TF-PCA revealing increases in
both mRNA and protein. There is evi-
dence of generation of thrombin and
platelet activation by TF-PCA suggesting
this to be an important pathogenic pro-
cess contributing to hypercoagulable state
of insulin resistance (43). Boden pointed
out that somatostatin increases TF-PCA
but abolishes the effects of hyperglycemia
and hyperinsulinemia on TF and throm-
bin activation, so use of somatostatin to
characterize insulin sensitivity is invalid
in these studies (44).

Type 2 diabetes is associated with
marked elevation in TF-PCA, which does
not improve after glucose levels are nor-
malized for 24 h (45), and Boden pointed
out that in type 1 diabetic patients hyper-
glycemia increases TF-PCA to a lesser de-
gree than it does in type 2 diabetic
patients, suggesting that hyperglycemia is
not itself the direct initiator of the hyper-
coagulable state, but rather should be
seen as a potentiator, acting then as a fac-
tor enhancing the CVD risk of insulin re-
sistance. Equally, Boden suggested that
there may be adverse effects of “massive
doses of insulin” in treatment of type 2
diabetic patients.

Mark Kearney (Leeds, U.K.) dis-

cussed vascular insulin resistance as a
therapeutic target, asking whether insulin
resistance causes endothelial dysfunction,
whether endothelial insulin resistance
specifically causes atherosclerosis, and
whether improvement in whole body in-
sulin sensitivity improves vascular func-
tion. The arterial wall abnormalities
associated with insulin resistance are well
characterized, with changes in the endo-
thelial cell phenotype, particularly de-
creased NO production, preceding the
development of atherosclerosis. The en-
dothelium should then be considered a
target tissue for insulin action, with NO
synthase activation causing antiathero-
sclerotic effects, whereas defects in endo-
thelial insulin signaling impact NO
synthase (46). In human studies, insulin
resistance appears to worsen over time,
progressively reducing NO bioavailabil-
ity. Kearney speculated that the residual
risk affecting diabetic patients with coro-
nary disease despite statins, �-blockers,
and ACE inhibitors, even with excellent
blood pressure and lipid levels, may be
mediated in part by reduction in endothe-
lial NO, perhaps explaining the reduction
in coronary microvascular function, as
well as some of the apparent resistance to
aspirin (47). Kearney reviewed evidence
that NAD(P)H oxidase is upregulated in
insulin resistance, with oxidative stress as
a mediator of atherosclerosis in insulin
resistance.

Burton Sobel (Burlington, VT) sug-
gested that “there is more to this than gly-
cemic control . . . [and] Insulin resistance
is a pivotal determinant” of macroangi-
opathy. He discussed three sites—the
blood, the vessel wall, and the heart—in
introducing the topic of insulin resistance
and heart failure. Every aspect of coronary
disease occurs approximately twice as fre-
quently in diabetic patients. Fibrinolysis
involves conversion of plasminogen to
plasmin to degrade fibrin clots, with un-
derstanding of this pathway leading to
development of tissue plasminogen acti-
vator (tPA) as a therapy for acute throm-
bosis. PAI-1 is the natural inhibitor of
plasmin generation.

The fibrinolytic system is activated in
blood from young survivors of myocar-
dial infarction, with increased PAI-1 and
decreased tPA activity (48), suggesting
predisposition to thrombosis. Plasma
PAI-1 antigen and activity have been rec-
ognized to be increased in obesity and in
diabetes (49). Insulin stimulates PAI-1
formation in vitro and in animal models,
and after infusion of glucose and lipid,
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PAI-1 levels increase. This predisposes to
the increased thrombosis rate in diabetic
patients.

The PAI-1 system also is present in
the vessel wall, and plasminogen activator
is expressed in cells migrating into the
vascular wall, activating MMPs—a pro-
cess inhibited by PAI-1. Vascular wall
PAI-1 mRNA and protein increase after
insulin infusion (50). In the Bypass An-
gioplasty Revascularization Investigation
(BARI) 1, mortality was greater for dia-
betic patients undergoing angioplasty
compared with coronary artery bypass
grafting (CABG) as a result of high rates of
restenosis and thrombosis. PAI-1 levels
are increased in coronary atheromas from
diabetic patients (51). Sobel contrasted
the stable plaque, having a vascular
smooth muscle cell infiltrate causing flow
restriction, with the unstable coronary ar-
tery plaque, which is prone to rupture. In
mice that do not express apolipoprotein
E, with or without PAI-1 overexpression,
vulnerable plaques are seen. These
plaques evolve with decreased proteolysis
secondary to increased PAI-1, decreased
vascular smooth muscle migration, and
decreased MMP activity.

For a given size myocardial infarc-
tion, diabetes is associated with increased
risk of subsequent congestive heart failure
(CHF). Even without CHF, there is evi-
dence of decreased heart function with
diabetes (52). CHF is more common in
type 2 diabetic patients (53), and, after
revascularization for acute coronary syn-
drome and after myocardial infarction
(54), diabetes is a major determinant of
CHF and mortality. In a myocardial in-
farction model, echocardiographic seg-
mental wall abnormality correlates with
creatine kinase levels, with increase in
PAI-1 content at the site of the infarct,
potentially increasing local fibrosis. PAI-1
is located in the interstitium and perivas-
cular spaces, and insulin resistant animals
overexpress PAI-1, in association with in-
creased hydroxyproline, a marker of fi-
bros i s . PAI -1 overexpress ion in
nondiabetic animals decreases heart func-
tion. Sobel noted that thiazolidinediones
decrease PAI-1 antigen and activity in in-
sulin-resistant states, with their adverse
effect in CHF because of renal-mediated
fluid retention (55) rather than being
caused by adverse effect on cardiac func-
tion (56).

Ronald Witteles (Stanford, CA) dis-
cussed the evidence of cardiomyopathy in
insulin resistance. Insulin resistance is as-
sociated with hypertension and diabetes,

both potential causes of heart failure, and
heart failure causes insulin resistance;
however, beyond this, there is evidence
that insulin resistance itself can cause
heart failure, potentially via inefficient
utilization of energy substrates, with in-
flammation as another possible factor.
The heart utilizes an immense amount of
ATP, completely turning over its supply
every 13 s. Cardiac muscle can utilize
FFA, glucose, and lactate, with FFA pro-
viding 70% of energy requirements for
the normal heart. FFAs generate more en-
ergy per molecule of substrate metabo-
lized, but in the ischemic heart, glucose
has the advantage of generating more en-
ergy per oxygen molecule used. Uncou-
pling proteins are induced by high FFA,
further making this substrate less desir-
able for the stressed heart. Furthermore,
fatty acids stored in the heart may have
toxic effects, whereas glucose stored in
the heart as glycogen has a membrane-
stabilizing effect.

FFA levels correlate strongly with car-
diac uncoupling protein levels and in-
versely with cardiac GLUT4 activity.
Lipotoxicity appears to occur with over-
expression of myocardial long-chain acyl-
CoA. Peroxisome proliferator-activated
receptor-� overexpression reduces the
ejection fraction (EF), particularly with a
diet rich in long-chain fatty acids. In the
failing human heart, fatty acid transport
protein levels are decreased with insulin
resistance. In a positron emission tomog-
raphy imaging study of patients with non-
ischemic dilated cardiomyopathy, fatty
acid oxidation decreased and glucose ox-
idation increased. The response to injury,
then, is to change from FFA to glucose
metabolism. Insulin resistance, however,
reduces glucose metabolism, increasing
reliance on FFA metabolism, increasing
uncoupling protein activity, and reducing
the efficiency of energy generation. In the
failing heart, glucose metabolism is in-
creased and FFA metabolism decreased,
resulting in more efficient energy utiliza-
tion under circumstances of limited oxy-
gen availability. Decreased glucose and
increased FFA metabolism in the insulin-
resistant setting promote worse response
to injury.

Heart failure is an insulin-resistant
state that causes insulin resistance and el-
evated plasma FFA levels. Glycemic ab-
normality—presumptive evidence of
insulin resistance—is associated with in-
creased prevalence of CHF (57), whereas
patients discharged from hospital with
CHF have a 60% increase in prevalence of

diabetes (58), and glycemic abnormality
is seen in patients with idiopathic dilated
cardiomyopathy (59). Glycemic abnor-
malities appear to antedate the develop-
ment of heart failure, leading to the
concept that insulin resistance is causally
related to CHF—a finding demonstrable
in individuals without evidence of coro-
nary disease (60). Proinsulin levels are in-
creased when measured 20 years before
clinical evidence of heart failure (61); the
presence of insulin resistance predicts the
development of CHF (62), and patients
who have heart failure with greater insu-
lin sensitivity have better survival
(63,64). Carvedilol leads to a shift from
FFA to glucose metabolism and has ben-
efit in CHF; in a study of subjects treated
with this agent, insulin resistance is asso-
ciated with worse outcome (65). An im-
portant question, then, is whether
treatment of insulin resistance will either
prevent development of CHF or improve
its outcome when already present.

These considerations have led to the
concept that inhibition of FFA metabo-
lism or improvement in glucose metabo-
lism might be used to treat CHF (66).
Trimetazidine is an agent approved in Eu-
rope for angina that blocks long-chain
3-ketoacyl-CoA thiolase activity, the last
enzyme in fatty acid oxidation. This agent
increases EF, particularly in patients with
nonischemic CHF (67). In a study of such
patients treated with 25 mg trimetazidine
twice daily for 3 months, insulin sensitiv-
ity (HOMA) and HDL cholesterol levels
increased, with a small reduction in �-ox-
idation of FFA �-oxidation and increase
in EF, which decreased in the placebo
group. Perhexiline, which blocks carni-
tine palmitoyltransferase-1, is another
agent not approved in the U.S., whose use
may be limited by neuropathy; it im-
proved EF and maximal oxygen con-
sumption in individuals with CHF (68).
Ranolazine, which is available in the U.S.,
inhibits slow inactivating sodium/
calcium exchange, although prolonging
the QT interval, leading to concern about
arrhythmia induction. Glucagon-like
peptide 1 is another potential treatment,
more fully discussed by Fonseca in his
assessment of gut peptides (vide supra).
Thiazolidinedione treatment causes so-
dium retention and so must be used with
great caution in CHF; however, Witteles
described a study in which positron emis-
sion tomography of nondiabetic patients
receiving rosiglitazone showed improve-
ment in insulin sensitivity in association
with increase in myocardial glucose up-
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take. He concluded that insulin resistance
“is the worst of all worlds in heart failure,”
with the development of treatment op-
tions to shift substrate utilization both
feasible and promising (69).

Martin LeWinter (Burlington, VT)
further discussed the interrelationships
between insulin resistance, diabetes, and
heart failure and pointed out that al-
though type 2 diabetes doubles the risk of
CHF in men and more than triples it in
women, insulin resistance independently
confers a 50% increase in risk, with both
factors synergistically interacting with hy-
pertension and coronary disease, and an
interaction effect of diabetes with sex on
mortality among individuals hospitalized
with CHF (70). Metabolic syndrome is as-
sociated with CHF in older people,
LeWinter stated, with proinflammatory
biomarkers such as C-reactive protein
and interleukin-6 appearing to explain
the increased risk. Not only is diabetes a
major independent risk for heart failure,
but there is a high incidence of diastolic
dysfunction and left ventricular hypertro-
phy in otherwise healthy, normotensive
diabetic patients, with myocardial abnor-
mality invariably found in animal models
of diabetes, so that the existence of dia-
betic cardiomyopathy is currently ac-
cepted, recognizing that further risk
factors, such as coronary disease and hy-
pertension, usually contribute to the clin-
ical syndrome. Diastolic dysfunction may
be associated with normal EF in diabetic
patients with CHF (71). Determinants of
diastolic dysfunction in diabetes include
increased ventricular mass-to-volume ra-
tio and reduced arterial compliance,
caused by “stiff vessels,” increasing after-
load (72). Diastolic dysfunction occurs in
asymptomatic normotensive type 2 dia-
betic patients, and LeWinter reviewed
studies of epicardial biopsies performed
during CABG from diabetic patients with
normal EF and normal wall motion with
increased carboxymethyllysine staining
in collagen fibrils and increased fibrosis,
particularly affecting extracellular matrix.
Diabetic patients with normal EF under-
going CABG exhibit decreased cardiac re-
serve during exercise, a phenomenon
particularly occurring in female subjects,
potentially caused by abnormalities of
calcium cycling and altered myofilament
function.

Cardiomyocyte damage in diabetes
may be related to effects of FFA, insulin
resistance, hyperinsulinemia, endothelial
dys func t ion , r en in -ang io t ens in -
aldosterone system (RAAS) activation,

and hyperglycemia (although this ap-
pears to be of lesser importance). All these
factors lead to cardiac hypertrophy (acti-
vated by inflammatory signaling), apo-
ptosis, oxidative stress, protein kinase C
activation, uncoupling of mitochondrial
oxidation, and lipotoxicity. Extracellular
matrix remodeling occurs in the heart in
diabetes, with RAAS activation as a well-
recognized signaling system for fibrosis,
and second, advanced glycation end
products (AGEs) crosslinking adjacent
collagen fibers and rendering them resis-
tant to degradation, as well as activating
the receptor for AGE, causing cytokine-
induced collagen production. Another
mediator may be the increase in myocar-
dial triglyceride content associated with
insulin resistance (73).

Pharmacological management of dia-
betic patients with systolic dysfunction
that causes CHF includes the standard
treatment modalities of �-adrenergic
blockers, particularly carvedilol, and
RAAS blockers, increasingly recognizing
the importance of aldosterone, with spi-
ronolactone (74) and eplererinone as use-
ful agents. Diet may be more beneficial
than generally recognized, with 16 weeks
of a very-low-calorie diet in type 2 dia-
betic patients associated with reduction in
myocardial triglyceride, in left ventricular
mass, and in diastolic dysfunction (75).
There is no evidence that improved gly-
cemic control is beneficial in CHF; obser-
vational studies actually suggest that high
A1C is associated with lower mortality
(76), and individuals receiving insulin
treatment have increased mortality rates
(77), recognizing that the inference of
causality from such analyses may be
somewhat tenuous. Insulin may, how-
ever, have anti-inflammatory or energy
metabolism benefits, so this area deserves
further research. LeWinter pointed out
that in 2006 the metformin “black box
warning” against use in individuals with
heart failure was removed and that an ob-
servational study shows reduced mortal-
ity in diabetic patients receiving this agent
(78), although caution is, of course, re-
quired with renal disease. He also ad-
dressed the question of whether there
may be cardiovascular benefit of thiazo-
lidinediones and pointed out that they
improve lipids and blood pressure, can be
shown to reduce vascular smooth muscle
cell proliferation/migration and to de-
crease cardiac remodeling, and may have
other cardioprotective effects. The occur-
rence of CHF with thiazolidinedione
treatment reflects vascular permeability

and/or renal collecting duct effects super-
imposing fluid retention on underlying
diastolic dysfunction rather than being a
direct adverse effect on the myocardium.
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