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Abstract

Background: In elite football (soccer), periodic health examination (PHE) could provide prognostic factors to
predict injury risk.

Objective: To develop and internally validate a prognostic model to predict individualised indirect (non-contact)
muscle injury (IMI) risk during a season in elite footballers, only using PHE-derived candidate prognostic factors.

Methods: Routinely collected preseason PHE and injury data were used from 152 players over 5 seasons (1st July
2013 to 19th May 2018). Ten candidate prognostic factors (12 parameters) were included in model development.
Multiple imputation was used to handle missing values. The outcome was any time-loss, index indirect muscle
injury (I-IMI) affecting the lower extremity. A full logistic regression model was fitted, and a parsimonious model
developed using backward-selection to remove factors that exceeded a threshold that was equivalent to Akaike's
Information Criterion (alpha 0.157). Predictive performance was assessed through calibration, discrimination and
decision-curve analysis, averaged across all imputed datasets. The model was internally validated using
bootstrapping and adjusted for overfitting.

Results: During 317 participant-seasons, 138 I-IMls were recorded. The parsimonious model included only age and
frequency of previous IMIs; apparent calibration was perfect, but discrimination was modest (C-index = 0.641, 95%
confidence interval (Cl) = 0.580 to 0.703), with clinical utility evident between risk thresholds of 37-71%. After
validation and overfitting adjustment, performance deteriorated (C-index = 0.589 (95% Cl = 0.528 to 0.651);
calibration-in-the-large = — 0.009 (95% Cl = — 0.239 to 0.239); calibration slope = 0.718 (95% Cl = 0.275 to 1.161)).
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improve future risk prediction models in this field.
Trial registration: NCT03782389

Conclusion: The selected PHE data were insufficient prognostic factors from which to develop a useful model for
predicting IMI risk in elite footballers. Further research should prioritise identifying novel prognostic factors to
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Key Points

e Factors measured through preseason screening
generally have weak prognostic strength for future
indirect muscle injuries, and further research is
needed to identify novel, robust prognostic factors.

e Because of sample size restrictions and until the
evidence base improves, it is likely that any further
attempts at creating a prognostic model at individual
club level would also suffer from poor performance.

e The value of using preseason screening data to make
injury predictions or to select bespoke injury
prevention strategies remains to be demonstrated, so
screening should only be considered as useful for
detection of salient pathology or for rehabilitation/
performance monitoring purposes at this time.

Background

In elite football (soccer), indirect (non-contact) muscle in-
juries (IMIs) predominantly affect the lower extremities
and account for 30.3 to 47.9% of all injuries that result in
time lost to training or competition [1-5]. Reduced player
availability negatively impacts upon medical [6] and finan-
cial resources [7, 8] and has implications for team per-
formance [9]. Therefore, injury prevention strategies are
important to professional teams [9].

Periodic health examination (PHE), or screening, is a
key component of injury prevention practice in elite
sport [10]. Specifically, in elite football, PHE is used by
94% of teams and consists of medical, musculoskeletal,
functional and performance tests that are typically evalu-
ated during preseason and in-season periods [11]. PHE
has a rehabilitation and performance monitoring func-
tion [12] and is also used to detect musculoskeletal or
medical conditions that may be dangerous or perform-
ance limiting [13]. Another perceived role of PHE is to
recognise and manage factors that may increase, or pre-
dict, an athlete’s future injury risk [10], although this
function is currently unsubstantiated [13].

PHE-derived variables associated with particular injury
outcomes (such as IMIs) are called prognostic factors
[14], which can be used to identify risk differences be-
tween players within a team [12]. Single prognostic fac-
tors are unlikely to satisfactorily predict an individual’s
injury risk if used independently [15]. However, several

factors could be combined in a multivariable prognostic
prediction model to offer more accurate personalised
risk estimates for the occurrence of a future event or in-
jury [15, 16]. Such models could be used to identify
high-risk individuals who may require an intervention
that is designed to reduce risk [17], thus assisting deci-
sions in clinical practice [18]. Despite the potential bene-
fits of using prognostic models for injury risk prediction,
we are unaware of any that have been developed using
PHE data in elite football [19].

Therefore, the aim of this study was to develop and in-
ternally validate a prognostic model to predict individua-
lised IMI risk during a season in elite footballers, using a
set of candidate prognostic factors derived from pre-
season PHE data.

Methods

The methods have been described in a published proto-
col [20] so will only be briefly outlined. This study has
been registered on ClinicalTrials.gov  (identifier:
NCT03782389) and is reported according to the Trans-
parent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD) state-
ment [21, 22].

Data Sources

This study was a retrospective cohort design. Eligible
participants were identified from a population of male
elite footballers, aged 16-40years old at Manchester
United Football Club. A dataset was created using rou-
tinely collected injury and preseason PHE data over 5
seasons (1st July 2013 to 19th May 2018). For each sea-
son, which started on 1st July, participants completed a
mandatory PHE during week 1 and were followed up to
the final first team game of the season. If eligible partici-
pants were injured at the time of PHE, a risk assessment
was completed by medical staff. Only tests that were ap-
propriate and safe for the participant’s condition were
completed; examiners were not blinded to injury status.

Participants and Eligibility Criteria

During any season, participants were eligible if they (1)
were not a goalkeeper and (2) participated in PHE for
the relevant season. Participants were excluded if they
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were not contracted to the club for the forthcoming sea-
son at the time of PHE.

Ethics and Data Use

Informed consent was not required as data were cap-
tured from the mandatory PHE completed through the
participants’ employment. The data usage was approved
by the Club and University of Manchester Research Eth-
ics Service.

Outcome

The outcome was any time-loss, index IMI (I-IMI) of
the lower extremity. That is, any [-IMI sustained by a
participant during matches or training, which affected
lower abdominal, hip, thigh, calf or foot muscle groups
and prohibited future football participation [23]. I-IMIs
were graded by a club doctor or physiotherapist accord-
ing to the validated Munich Consensus Statement for
the Classification of Muscle Injuries in Sport [24, 25],
during routine assessments undertaken within 24 h of
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injury. These healthcare professionals were not blinded
to PHE data.

Sample Size

We allowed a maximum of one candidate prognostic
factor parameter per 10 I-IMIs, which at the time of
protocol development, was the main recommendation to
minimise overfitting (Additional file 1) [20, 26]. The
whole dataset was used for model development and in-
ternal validation, which agrees with methodological rec-
ommendations [27].

Candidate Prognostic Factors

The available dataset contained 60 candidate factors
[20]. Because of the sample size considerations, before
any analysis, the set of candidate factors was reduced.
Initially, an audit was conducted to quantify missing
values and to determine the measurement reliability of
the eligible candidate factors [20]. Any candidate factors
which had greater than 15% missing data or where reli-
ability was classed as fair to poor (intraclass correlation

Table 1 Set of candidate prognostic factors (with corresponding number of parameters) for model development

Selection Candidate prognostic Measurement unit Number of model Measurement Data type Reliability (if applicable)
method factor parameters method
corresponding to PF
Systematic Age Years and days 1 Date of birth Continuous ~ N/A
reV|ew(cI|n|caI Frequency of previous Count 1 Medical records  Discrete N/A
reasoning L :
IMIs within 3 years prior (treated as
to PHE continuous)
Most recent previous IMI Never (ref); < 6 3 Medical records ~ Categorical N/A
within 3 years prior to months; 6-12
baseline PHE months; > 12
months
Data quality/ ~ CMJ peak power Watts 1 CMJ using force Continuous  Test-retest ICC = 0.92—
clinical plates 0.98 [28]
reasoning L ) .
PROM hip joint internal ~ Degrees 1 Supine ROM test  Continuous  Intra-rater ICC = 0.90 [29]
rotation difference® using digital
inclinometer
PROM hip joint external ~ Degrees 1 Supine ROM test  Continuous  Intra-rater ICC = 0.90 [29]
rotation difference* using digital
inclinometer
Hip flexor muscle length  Degrees 1 Thomas test Continuous  Inter-rater ICC = 0.89 [30]
difference* using digital
inclinometer
Hamstring muscle Degrees 1 SLR using digital  Continuous  Intra-rater ICC = 0.95—
length/neural mobility inclinometer 0.98 [31]; inter-rater ICC =
difference* 0.80-0.97 [32]
Calf muscle length Degrees 1 WBL using digital Continuous  Inter-rater ICC = 0.80-
difference* inclinometer 0.95 [33, 34]; intra-rater
ICC =0.88 [34]
BMI kg/m? 1 Composite Continuous ~ N/A
height (cm) and
weight (kg)

PF prognostic factor, PHE periodic health examination, IMI indirect muscle injury, ref reference category (does not count as a model parameter), WBL weight
bearing lunge, CMJ countermovement jump, ROM range of movement, PROM passive range of movement, ICC intraclass correlation coefficient, SLR straight leg

raise, BMI body mass index, kg kilos, m mass, N/A not applicable
*Denotes between limb differences
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coefficient < 0.70) were excluded [20] (Additional file 2).
Of the remaining 45 eligible factors, previous evidence
of prognostic value [19] and clinical reasoning were used
to select candidate prognostic factors suitable for inclu-
sion [20]. This process left a final set of 10 candidate fac-
tors, represented by 12 model parameters (Table 1). The
35 factors that were not included in model development
are also listed in Additional File 2, and will be utilised in
a related, forthcoming exploratory study which aims to
examine their association with indirect muscle injuries
in elite football players.

Statistical Analysis

Data Handling—Outcome Measures

Each participant-season was treated as independent. Par-
ticipants who sustained an I-IMI were no longer consid-
ered at risk for that season and were included for further
analysis at the start of the next season if still eligible.
Any upper limb IMI, trunk IMI or non-IMI injuries
were ignored, and participants were still considered at
risk.

Eligible participants who were loaned to another club
throughout that season, but had not sustained an I-IMI
prior to the loan, were still considered at risk. I-IMIs
that occurred whilst on loan were included for analysis,
as above. Permanently transferred participants (who had
not sustained an [-IMI prior to leaving) were recorded
as not having an I-IMI during the relevant season and
exited the cohort at the season end.

Data Handling—Missing Data

Missing values were assumed to be missing at random
[20]. The continuous parameters generally demonstrated
non-normal distributions, so were transformed using
normal scores [35] to approximate normality before im-
putation, and back-transformed following imputation
[36]. Multivariate normal multiple imputation was per-
formed, using a model that included all candidates and
I-IMI outcomes. Fifty imputed datasets were created in
Stata 15.1 (StataCorp LLC, Texas, USA) and analysed
using the mim module.

Prognostic Model Development

Continuous parameters were retained on their original
scales, and their effects assumed linear [22]. A full multi-
variable logistic regression model was constructed,
which contained all 12 parameters. Parameter estimates
were combined across imputed datasets using Rubin’s
Rules [37]. To develop a parsimonious model that would
be easier to utilise in practice, backward variable selec-
tion was performed using estimates pooled across the
imputed datasets at each stage of the selection procedure
to successively remove non-significant factors with p
values > 0.157. This threshold was selected to
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approximate equivalence with Akaike’s Information Cri-
terion [38, 39]. Multiple parameters representing the
same candidate factor were tested together so that the
whole factor was either retained or removed. Candidate
interactions were not examined, and no terms were
forced into the model. All analyses were conducted in
Stata 15.1.

Assessment of Model Performance

The full and parsimonious models were used to predict
I-IMI risk over a season, for every participant-season in
all imputed datasets. For all performance measures, each
model’s apparent performance was assessed in each im-
puted dataset and then averaged across all imputed data-
sets using Rubin’s Rules [37]. Discrimination determines
a model’s ability to differentiate between participants
who have experienced an outcome compared to those
who have not [40], quantified using the concordance
index (C-index). This is equivalent to the area under the
receiver operating characteristic (ROC) curve for logistic
regression, where 1 demonstrates perfect discrimination,
whilst 0.5 indicates that discrimination is no better than
chance [41].

Calibration determines the agreement between the
model’s predicted outcome risks and those observed
[42], evaluated using an apparent calibration plot in each
imputed dataset. All predicted risks were divided into
ten groups defined by tenths of predicted risk. The mean
predicted risks for the groups were plotted against the
observed group outcome proportions with correspond-
ing 95% confidence intervals (CIs). A loess smoothing al-
gorithm showed calibration across the range of
predicted values [43]. For grouped and smoothed data
points, perfect predictions lie on the 45° line (i.e. a slope
of 1).

The systematic (mean) error in model predictions was
quantified using calibration-in-the-large (CITL), which
has an ideal value of 0 [40, 42], and the expected/ob-
served (E/O) statistic, which is the ratio of the mean pre-
dicted risk against the mean observed risk (ideal value of
1) [40, 42]. The degree of over or underfitting was deter-
mined using the calibration slope, where a value of 1
equals perfect calibration on average across the entire
range of predicted risks [22]. Nagelkerke’s pseudo-R*
was also calculated, which quantifies the overall model
fit, with a range of 0 (no variation explained) to 1 (all
variation explained) [44].

Assessment of Clinical Utility

Decision-curve analysis was used to assess the parsimo-
nious model’s apparent clinical usefulness in terms of
net benefit (NB) if used to allocate possible preventative
interventions. This assumed that the model’s predicted
risks were classed as positive (i.e. may require a
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preventative intervention) if greater than a chosen risk
threshold, and negative otherwise. NB is then the differ-
ence between the proportion of true positives and false
positives, where both were weighted by the odds of the
chosen risk threshold and also divided by the sample
size [45]. Positive NB values suggest the model is benefi-
cial compared to treating none, which has no benefit to
the team but with no negative cost and efficiency impli-
cations. The maximum possible NB value is the propor-
tion with the outcome in the dataset.

The model’s NB was also compared to the NB of de-
livering an intervention to all individuals. This is consid-
ered a treat-all strategy, offering maximum benefit to the
team, but with maximum negative cost and efficiency
implications [17]. A model has potential clinical value if
it demonstrates higher NB than the default strategies
over the range of risk thresholds which could be consid-
ered as high risk in practice [46].

Internal Validation and Adjustment for Overfitting

To examine overfitting, the parsimonious model was in-
ternally validated using 200 bootstrap samples, drawn
from the original dataset with replacement. In each sam-
ple, the complete model-building procedure (including
multiple imputation, backward variable selection and
performance assessment) was conducted as described
earlier. The difference in apparent performance (of a
bootstrap model in its bootstrap sample) and test per-
formance (of the bootstrap model in the original dataset)
was averaged across all samples. This generated opti-
mism estimates for the calibration slope, CITL and C-
index statistics. These were subtracted from the original
apparent calibration slope, CITL and C-index statistics
to obtain final optimism-adjusted performance esti-
mates. The Nagelkerke R* was adjusted using a relative
reduction equivalent to the relative reduction in the cali-
bration slope.

To produce a final model adjusted for overfitting, the
regression coefficients produced in the parsimonious
model were multiplied by the optimism-adjusted calibra-
tion slope (also termed a uniform shrinkage factor), to
adjust (or shrink) for overfitting [47]. Finally, the CITL
(also termed model intercept) was then re-estimated to
give the final model, suitable for evaluation in other pop-
ulations or datasets.

Complete Case and Sensitivity Analyses

To determine the effect of multiple imputation and
player transfer assumptions on model stability, the
model development process was repeated: (1) as a
complete case analysis and (2) as sensitivity analyses
which excluded all participant-seasons where partici-
pants had not experienced an I-IMI up to the point of
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loan or transfer, which were performed as both multiple
imputation and complete case analyses.

Results

Participants

During the five seasons, 134 participants were included,
contributing 317 participant-seasons and 138 IMlIs in
the primary analyses (Fig. 1). Three players were classi-
fied as injured when they took part in PHE (which af-
fected three participant-seasons). This meant they were
unavailable for full training or to play matches at that
time. However, these players had commenced football
specific, field-based rehabilitation around this time, so
also had similar exposure to training activities as the un-
injured players. As such, these players were included in
the cohort because it was reasonable to assume that they
could also be considered at risk of an I-IMI event even
during their rehabilitation activities.

Table 2 describes the frequency of included
participant-seasons, and the frequency and proportion of
recorded I-IMI outcomes across all five seasons. For the
sensitivity analyses (excluding loans and transfers), 260
independent participant-seasons with 129 IMIs were in-
cluded; 36 participants were transferred on loan, whilst
14 participants were permanently transferred during a
season, which excluded 57 participant-seasons in total
(Fig. 1). Table 2 also describes the frequency of excluded
participant-seasons where players were transferred either
permanently or on loan, across the 5 seasons.

Table 3 shows anthropometric and all prognostic fac-
tor characteristics for participants included in the pri-
mary analyses. These were similar to those included in
the sensitivity analyses (Additional file 3).

Missing Data and Multiple Imputation

All I-IMI, age and previous muscle injury data were
complete (Table 3). For all other candidates, missing
data ranged from 6.31 (for hip internal and external ro-
tation difference) to 13.25% for countermovement jump
(CM])) power (Table 3). The distribution of imputed
values approximated observed values (Additional file 4),
confirming their plausibility.

Model Development

Table 4 shows the parameter estimates for the full
model and parsimonious model after variable selection
(averaged across imputations).

For both models, only age and frequency of previous
IMIs had a statistically significant (but modest) associ-
ation with increased I-IMI risk (p < 0.157). No clear evi-
dence for an association was observed for any other
candidate factor.
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Number of players who
underwent PHE (1% July 2013 —
19" May 2018)
n=152
Number of participants who
were not eligible (with reasons
for exclusion):
q Goalkeepers: 18
29 Players loaned in 1 season =
PRIMARY ANALYSIS 29 participant-seasons
excluded
134 Included players, where:
.. . 7 Players loaned in 2 seasons =
45 Players participated in 1 14 participant-seasons
season excluded
.. . X
34 Players participated in 2 y 14 Players transferred
seasons permanently (2 in July, 7 in
. . August, 5 in January) =
25 Players participated in 3 14 participant-seasons
seasons excluded
21 Players participated in 4 Total = 57 participant-seasons
seasons excluded
9 Players participated in 5 l
seasons
. SENSITIVITY ANALYSIS
= 317 participant-seasons
=260 participant-seasons
L 4 ¥
Main
e Complete case
. . Complete case sensitivity sensitivit
Ma}m analylsxs analysis analysis (using 1y
(using multiple multiple analysis
imputation) imputation)
L. 265 participant- .
317 participant- seasons 260 participant- 217 Sp;ll';:;}s)ant-
seasons (115 I-IMI seasons (106 1-IMI
(138 I-IMI events/ 150 (129 I-IMI T
events/179 non-events) events/ 131 cvents
non-events) non-events) non-events)
Fig. 1 Participant flow chart. Key: n = participants; I-IMI = index indirect muscle injury

Table 2 Frequency of included participant-seasons, I-IMI outcomes and participant-seasons affected by transfers, per season (primary

analysis)
Season

1(2013/2014) 2 (2014/2015) 3 (2015/2016) 4 (2016/2017) 5 (2017/2018) Total
Included participant-seasons 58 66 66 61 66 317
Participant-seasons with an I-IMI outcome (%) 26 (44.83) 21 (31.82) 29 (43.93) 28 (45.90) 34 (51.52) 138 (44.00)
Participant-seasons where players transferred on 16 10 7 4 6 43
loan
Participant-seasons where players transferred 1 4 5 3 1 14
permanently

I-IMI index indirect muscle injury
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Table 3 Characteristics of included participants in the primary analysis

Characteristic/candidate Measurement method Data Freg. (%) if Min Lower  Median Upper  Max Missing values
prognostic factor type categorical quartile quartile n (%)
Anthropometrics
Age at PHE (years) Birthdate Cont. - 16.01 17.80 19.69 23.56 3959  0(0)
Height (cm) Standing height Cont. - 164.3 176.0 180.0 185.5 195.0 18 (5.68)
Weight (kg) Digital scales Cont. - 56.8 69.2 736 80.0 94.0 18 (5.68)
BMI (kg/mz) Calculated using the Cont. - 18.1 218 227 237 29.1 23 (7.26)
formula: kg/m?
Past medical history
Freq. of previous IMIs Medical records Dis/cont. - 0 0 1 2 7 0 (0)
in 3 years prior to PHE
Most recent previous IMI
in 3 years prior to PHE
Never Medical records Cat. 143 (45.11) - - - - - 0 (0)
< 6 months Medical records Cat. 48 (15.14) - - - - - 0 (0)
6-12 months Medical records Cat. 52 (16400 - - - - - 0 (0)
> 12 months Medical records Cat. 74 (2334) - - - - - 0(0)
Musculoskeletal examination
PROM hip internal Supine ROM test with Cont. - -250 -30 0.0 5.0 20.0 20 (6.31)
rotation difference digital inclinometer
(deg.)
PROM hip external Supine ROM test with Cont. - —-200 -50 0.0 50 25.0 20 (6.31)
rotation difference digital inclinometer
(deg.)
Hip flexor length Thomas test with Cont. - -200 =20 0.0 3.0 140 23 (7.26)
difference (deg.) digital inclinometer
Hamstring length/ SLR with digital Cont. - -200 00 0.0 0.0 150 23 (7.26)
neural mobility inclinometer
difference (deg.)
Calf muscle length WBL with digital Cont. - -200 -20 0.0 3.0 150 20 (6.31)

difference (deg.)

Lower extremity power

CMJ power (watts)

inclinometer

CMJ using force platform — Cont.

- 26250 37070 41500 46620 65770 42 (13.25)

PHE periodic health examination, /-IMI index indirect muscle injury, IMI indirect muscle injury, min minimum, max maximum, n observations, Freq frequency, WBL
weight bearing lunge, CMJ countermovement jump, ROM range of movement, PROM passive range of movement, deg. degrees, SLR straight leg raise, BMI body
mass index, kg/m? kilograms/body height (metres) squared, cm centimetres, kg kilograms, Cont. continuous, dis./cont. discrete treated as continuous,

cat. categorical

Model Performance Assessment and Clinical Utility

Table 4 shows the apparent performance measures for
the full and parsimonious models, all of which were
similar. Figure 2 shows the apparent calibration of the
parsimonious model in the dataset used to develop the
model (i.e. before adjustment for overfitting). These were
identical across all imputed datasets because the retained
prognostic factors contained no missing values. The par-
simonious model had perfect apparent overall CITL and
calibration slope by definition, but calibration was more
variable around the 45° line between the expected risk
ranges of 28 to 54%. Discrimination was similarly mod-
est for the full (C-index = 0.670, 95% CI = 0.609 to
0.731) and parsimonious models (C-index = 0.641, 95%
CI = 0.580-0.703). The apparent overall model fit was

low for both models, indicated by Nagelkerke R? values
of 0.120 for the full model and 0.089 for the parsimoni-
ous model.

Figure 3 displays the decision-curve analysis. The NB
of the parsimonious model was comparable to the treat-
all strategy at risk thresholds up to 31%, marginally
greater between 32 and 36% and exceeded the NB of ei-
ther default strategies between 37 and 71%.

Internal Validation and Adjustment for Overfitting

Table 4 shows the optimism-adjusted performance sta-
tistics for the parsimonious model, with full internal val-
idation results shown in Additional file 9. After
adjustment for optimism, the overall model fit and the
model's  discrimination  performance  deteriorated
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(Nagelkerke R* = 0.064; C-index = 0.589 (95% CI =
0.528 to 0.651). Furthermore, bootstrapping suggested
the model would be severely overfitted in new data (cali-
bration slope = 0.718 (95% CI = 0.275 to 1.161)), so a
shrinkage factor of 0.718 was applied to the parsimoni-
ous parameter estimates, and the model intercept re-
estimated to produce our final model (Table 4).

Complete Case and Sensitivity Analyses

The full and parsimonious models were robust to
complete case analyses and excluding loans and transfers,
with comparable apparent performance estimates. For the
full models, the C-index range was 0.675 to 0.705, and
Nagelkerke R* range was 0.135 to 0.178, whilst for the par-
simonious models, the C-index range was 0.632 to 0.691,
and Nagelkerke R* range was 0.102 to 0.154 (Additional
files 5, 6, 7, 8 and 9). The same prognostic factors were se-
lected in all parsimonious models. The degree of esti-
mated overfitting observed in the complete case and
sensitivity analyses was comparable to that observed in
the main analysis (calibration slope range = 0.678 to
0.715) (Additional files 5, 6, 7, 8 and 9).

Discussion

We have developed and internally validated a multivari-
able prognostic model to predict individualised I-IMI
risk during a season in elite footballers, using routinely,
prospectively collected preseason PHE and injury data
that was available at Manchester United Football Club.

This is the only study that we know of that has devel-
oped a prognostic model for this purpose, so the results
cannot be compared to previous work.

We included both a full model which did not include
variable selection and a parsimonious model, which in-
cluded a subset of variables that were statistically signifi-
cant. The full model was included because overfitting is
likely to increase when variable inclusion decisions are
based upon p values. In addition, the use of p value
thresholds for variable selection is somewhat arbitrary.
However, the overfitting that could have arisen in the
parsimonious model after using p values in this way was
accounted for during the bootstrapping process, which
replicated the variable selection strategy based on p
values in each bootstrap sample.

The performance of the full and parsimonious models
was similar, which means that utilising all candidate fac-
tors offered very little advantage over using two for mak-
ing predictions. Indeed, variable selection eliminated 8
candidate prognostic factors that had no clear evidence
for an association with I-IMIs. Our findings confirm pre-
vious suggestions that PHE tests designed to measure
modifiable physical and performance characteristics typ-
ically offer poor predictive value [10]. This may be be-
cause unless particularly strong associations are
observed between a PHE test and injury outcome, the
overlap in scores between individuals who sustain a fu-
ture injury and those who do not results in poor dis-
crimination [10]. Additionally, after measurement at a
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single timepoint (i.e. preseason), it is likely that the prog-
nostic value of these modifiable factors may vary over
time [48] due to training exposure, environmental adap-
tations and the occurrence of injuries [49].

The variable selection process resulted in a model
which included only age and the frequency of previous
IMIs within the last 3 years, which are simple to measure
and routinely available in practice. Our findings were
similar to the modest association previously observed
between age and hamstring IMIs in elite players [19].
However, whilst a positive previous hamstring IMI his-
tory has a confirmed association with future hamstring
IMIs [19], we found that for lower extremity I-IMIs, cu-
mulative IMI frequency was preferred to the time prox-
imity of any previous IMI as a multivariable prognostic
factor. Nevertheless, the weak prognostic strength of
these factors explains the parsimonious model’s poor
discrimination and low potential for clinical utility.

Our study is the first to utilise decision-curve analysis
to examine the clinical usefulness of a model for identi-
fying players at high risk of IMIs and who may benefit
from preventative interventions such as training load
management, strength and conditioning or physiother-
apy programmes. Our parsimonious model demon-
strated no clinical value at risk thresholds of less than
36%, because its NB was comparable to that of providing
all players with an intervention. Indeed, the only clinic-
ally useful thresholds that would indicate a high-risk
player would be 37-71%, where the model's NB was

greater than giving all players an intervention. However,
because of the high baseline IMI risk in our population
(approximately 44% of participant-seasons affected), the
burden of IMIs [1-5] and the minimal costs [10] versus
the potential benefits of such preventative interventions
in an elite club setting, these thresholds are likely to be
too high to be acceptable in practice. Accordingly, it
would be inappropriate to allocate or withhold interven-
tions based upon our model’s predictions.

Because of severe overfitting our parsimonious model
was optimistic, which means that if used with new
players, prediction performance is likely to be worse
[39]. Although our model was adjusted to account for
overfitting and hence improve its calibration perform-
ance in new datasets, given the limitations in perform-
ance and clinical value, we cannot recommend that it is
validated externally or used in clinical practice.

This study has some limitations. We acknowledge that
the development of our model does not formally take ac-
count of the use of existing injury prevention strategies,
including those informed by PHE, and their potential ef-
fects on the outcome. Rather, we predicted I-IMIs under
typical training and match exposure and under routine
medical care. In addition, it should be noted that injury
risk predictions at an elite level football club may not
generalise to other types of football clubs or sporting in-
stitutions, where ongoing injury prevention strategies
may not be comparable in terms of application and
equipment.
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We measured candidate factors at one timepoint each
season and assumed that participant-seasons were inde-
pendent. Whilst statistically complex, future studies may
improve predictive performance and external validity by
harnessing longitudinal measurements and incorporating
between-season correlations.

We did not perform a competing risks analysis to ac-
count for players not being exposed to training and
match play due to injuries other than I-IMIs. That is,
our approach predicted the risk of [-IMIs in the follow
up of players, allowing other injury types to occur and
therefore possibly limiting the opportunity for I-IMIs
during any rehabilitation period. The competing risk of
the occurrence of non-IMIs was therefore not explicitly
modelled and players remained in the risk set after a
non-IMI had occurred.

We also merged all lower extremity I-IMIs rather than
using specific muscle group outcomes. Although less
clinically meaningful, this was necessary to maximise
statistical power. Nevertheless, our limited sample size
prohibited examination of complex non-linear associa-
tions and only permitted a small number of candidates
to be considered. A lack of known prognostic factors
[19] meant that selection was mainly guided by data
quality control processes and clinical reasoning, so it is
possible that important factors were not included.

Risk prediction improves when multiple factors with
strong prognostic value are used [15]. Therefore, future
research should aim to identify novel prognostic factors,
so that these can be used to develop models with greater
potential clinical benefit. This may also allow updating
of our model to improve its performance and clinical
utility [50].

Until the evidence base improves, and because of sam-
ple size limitations, it is likely that any further attempts
to create a prognostic model at individual club level
would suffer similar issues. Importantly, this means that
for any team, the value of using preseason PHE data to
make individualised predictions or to select bespoke in-
jury prevention strategies remains to be demonstrated.
However, the pooling of individual participant data from
several participating clubs may increase sample sizes suf-
ficiently to allow further model development studies
[51], where a greater number of candidate factors could
be utilised.

Conclusion

Using PHE and injury data available preseason, we have
developed and internally validated a prognostic model to
predict I-IMI risk in players at an elite club, using
current methodological best practice. The paucity of
known prognostic factors and data requirements for
model building severely limited the model’s performance
and clinical utility, so it cannot be recommended for
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external validation or use in practice. Further research
should prioritise identifying novel prognostic factors to
improve future risk prediction models in this field.
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