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BACKGROUND: Evasion of apoptosis contributes to the pathogenesis of solid tumours including non-small cell lung cancer (NSCLC).
Malignant cells resist apoptosis through over-expression of inhibitor of apoptosis proteins (IAPs), such as X-linked IAP (XIAP).
METHODS: A phenylurea-based small molecule inhibitor of XIAP, XIAP antagonist compound (XAC) 1396-11, was investigated
preclincally to determine its ability to sensitise to clinically relevant cytotoxics, potentially allowing dose reduction while maintaining
therapeutic efficacy.
RESULTS: XIAP protein expression was detected in six NSCLC cell lines examined. The cytotoxicity of XAC 1396-11 against cultured
NSCLC cell lines in vitro was concentration- and time-dependent in both short-term and clonogenic assays. XAC 1396-11-induced
apoptosis was confirmed by PARP cleavage and characteristic nuclear morphology. XAC 1396-11 synergised with
vinorelbine±cisplatin in H460 and A549 NSCLC cells. The mechanism of synergy was enhanced apoptosis, shown by increased
cleavage of caspase-3 and PARP and by the reversal of synergy by a pan-caspase inhibitor. Synergy between XAC 1396-11 and
vinorelbine was augmented by optimising drug scheduling with superior effects when XAC 1396-11 was administered before
vinorelbine.
CONCLUSION: These preclinical data suggest that XIAP inhibition in combination with vinorelbine holds potential as a therapeutic
strategy in NSCLC.
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Lung cancer is the leading cause of cancer deaths among men
and women. In the United Kingdom, lung cancer accounts for 22%
of total cancer deaths with only a 7% 5-year survival (CR-UK,
2009). The major histological types of lung cancer are small cell
lung cancer (SCLC), adenocarcinoma, squamous carcinoma and
large cell carcinoma, the latter three of which are collectively
referred to as non-small cell lung cancer (NSCLC). NSCLC
represents approximately 80% of all cases and chemotherapy,
most commonly consisting of a platinum agent in combination
with another cytotoxic such as gemcitabine, vinorelbine or a
taxane, can provide palliation and prolong survival (Spira and
Ettinger, 2004). Despite encouraging progress with novel targeted
agents, for example, erlotinib and bevacizumab, mortality rates
remain dismal as over two-thirds of patients are diagnosed with
advanced, metastatic disease for which no curative treatment is
currently available.

One hallmark of cancer is evasion of apoptosis (Hanahan and
Weinberg, 2000). Cancer cells are assumed to be under continuous
pro-apoptotic stresses from genetic instability and their hostile
microenvironment (oxygen and nutrient deprivation), but selected

cell subpopulations adapt and de-couple these genetic and
microenvironmental stress stimuli from commitment to apoptosis.
The development of apoptosis-targeted therapies aims to lower the
threshold for apoptosis but it is not yet clear whether these agents
will be effective alone or in combination with chemotherapy or
radiation (Reed, 2003).

One mechanism by which cells resist apoptosis is the over-
expression of inhibitor of apoptosis protein (IAP) family of
proteins. Although IAP proteins have shown diverse roles, it is
their unique ability to inhibit distinct caspases that drive apoptotic
cell death that has driven research exploring their therapeutic
potential (Deveraux et al, 1997). Eight human IAPs have been
identified of which X-linked IAP (XIAP) protein is the best
characterised and most potent, inhibiting caspases-3 and -7
through its BIR2 domain (Scott et al, 2005) and caspase-9 through
its BIR3 domain (Deveraux et al, 1997). To ensure cells commit to
apoptosis when appropriately damaged, cells also use endogenous
antagonists of XIAP (including SMAC, HtrA2/Omi, ARTS and
XAF1) (Srinivasula et al, 2001b). These act by preventing XIAP
binding to caspases (Du et al, 2000; Verhagen et al, 2000) or
by triggering its redistribution from the cytosol to the nucleus
(Liston et al, 2001). XIAP is considered to be a valid therapeutic
target in malignancy because firstly it is over-expressed in the
majority of a panel of NCI tumour cell lines (Tamm et al, 2000);
secondly, XIAP over-expression correlates with resistance to
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apoptosis through stimulation of both the intrinsic (mitochondrial
directed) and extrinsic (death receptor directed) pathways (Holcik
et al, 2000; Wilkinson et al, 2004); thirdly, downregulation of XIAP
with siRNA or antisense oligonucleotides (ASOs) restores chemo-
sensitivity in various tumour cell lines (Sasaki et al, 2000;
McManus et al, 2004); and finally, XIAP knockout mice have
normal survival with no significant pathological features (Harlin
et al, 2001), consistent with XIAP-targeted therapeutics exerting
minimal toxicity to normal tissues.

XIAP inhibition, using small molecule inhibitors (SMIs) that
target XIAP baculovirus (BIR) domains, gained momentum after
the discovery of short polypeptides based on endogenous inhibitor
SMAC, which are capable of selective BIR3 inhibition (Li et al,
2004; Oost et al, 2004). Subsequently, di- and tri-phenylurea-based
XIAP antagonist compounds (XACs) that bind near the BIR2
domain have also been identified by combinatorial chemical
library screening (Wang et al, 2004; Schimmer et al, 2004a). These
XACs, but not inactive structural analogs, induced apoptosis
directly in several haematologic and solid tumour cell lines in
vitro, and sensitised cancer cells to chemotherapeutic drugs
(Berezovskaya et al, 2005; Carter et al, 2005; Kater et al, 2005).
Active compounds also suppressed the growth of established
xenografts while displaying little toxicity (Karikari et al, 2007).
Here, XAC 1396-11, a phenylurea-based SMI of XIAP (that targets
near the BIR2 domain), was investigated as a potential therapy for
NSCLC. The effect of XAC 1396-11 as a single agent and in com-
bination with clinically relevant cytotoxic drugs was explored in
vitro. The importance of optimising treatment schedule when inhi-
biting XIAP is shown, showing that treatment effects are, in part,
dependent on when the ‘apoptotic brake’ is removed in relation-
ship to a cytotoxic insult. These results suggest that XIAP inhibi-
tion with XAC 1396-11 holds promise as a therapeutic strategy in
the treatment of NSCLC and that further studies are warranted.

MATERIALS AND METHODS

Human NSCLC cell lines

Human NSCLC cell lines H460, A549, H520, HCC827, H522 and
HCT116 were obtained from the American Type Culture Collection
(Manassas, VA, USA). MGH-4 and HCT116 XIAP�/� were kind
gifts from Dr M-S Tsao (Princess Margaret Hospital, Toronto) and
Dr B Vogelstein (Johns Hopkins University School of Medicine,
MD, USA), respectively. All cells lines were maintained in RPMI
1640 supplemented with 10% fetal bovine serum.

Reagents and chemicals

XAC 1396-11 was synthesised and purified as described (Schimmer
et al, 2004b), and dissolved in DMSO for in vitro assays. All
cytotoxics were purchased from Sigma-Aldrich (Gillingham, UK),
except for gemcitabine (Eli Lilly, Basingstoke, UK). The pan-
caspase inhibitor (Caspase Inhibitor III) was obtained from
Calbiochem (Merck Chemicals Ltd, Nottingham, UK).

Cell cytotoxicity

The sulforhodamine B (SRB) assay was used to determine cell
population number in response to XAC 1396-11. NSCLC cell lines
were plated in exponential growth phase in 96-well plates and
treated with varying concentrations of XAC 1396-11. At various
times, thereafter, cells were fixed and stained according to
standard SRB protocol (Vichai and Kirtikara, 2006), and
absorbance was measured using a microplate reader (Labsystems
Multiskan EX, (Thermo Scientific, Milford, MA, USA) at 540 nm.
Nuclear apoptotic morphology was assessed by UV-microscope
examination of fixed cells stained with DAPI. Treated cells were
trypsinised and re-suspended in PBS. The samples were cytospun

onto slides at 500 r.p.m. for 5 min before fixing in 1% formalde-
hyde in PBS-T. The slides were washed in PBS-T and the cells
stained with ProLong Gold antifade reagent with DAPI (Invitrogen,
Paisley, UK). Slides were analysed by fluorescence microscopy
(358/461 nm) using an Olympus BX51.

Clonogenic assay

Cells were plated at 200 per well in six-well tissue culture plates
(Costar, Corning, NY, USA) and allowed to attach overnight. Cells
were treated with varying concentrations of XAC 1396-11 for 24 h,
before the medium was aspirated, cells washed with PBS and fresh
medium added. Plates were kept in a tissue culture incubator at
371C and 5% CO2 for 7 days to allow colony growth. Colonies were
fixed with 70% methanol and stained with methylene blue, and
colonies (450 cells) were counted. All assays were performed in
triplicate. Surviving fraction was calculated as number of colonies
in the test condition/number of colonies in the untreated well and
plotted logarithmically against drug concentration.

Immunoblot assay

For immunoblot analysis, cells were treated with XAC 1396-11 or
with vehicle control for various times. Protein lysates were
prepared using lysis buffer (10� ) (Cell Signalling Technology,
Danvers, MA, USA) and protease inhibitor cocktail (Sigma-
Aldrich). All samples were sonicated at 10 Hz for 10 s. Protein
lysates were resolved by electrophoresis in appropriate percent-
age polyacrylamide gels and transferred to PVDF membranes
(Immobilon, Millipore, Watford, UK). Standard immunoblotting
procedures were followed with overnight incubation at 41C with
the following primary antibodies: XIAP 1 : 1000 (BD Transduction
Laboratories, Oxford, UK), cIAP-1 1 : 1000 (R&D Systems,
Minneapolis, MN, USA), cIAP-2 (R&D Systems), Survivin (Novus
Biologicals, Littleton, CO, USA), SMAC 1 : 1000 (BD Transduction
Laboratories), XAF1 1 : 1000 (Imgenex, San Diego, CA, USA) and
PARP (Cell Signalling). Blots were visualised with the enhanced
chemiluminescence system (Amersham, Chalfont St Giles, UK)
and analysed using a Fuji LAS-1000 Plus imaging system with
AIDA software (Fuji, Bedford, UK). The proportion of cleaved
caspase-3 was measured using the Meso Scale Discovery MULTI-
SPOT Cleaved/Total Caspase-3 Assay.

Drug combination assays

The combination index (CI) method was used to determine
multiple drug –effect interaction using the computer software
CalcuSyn (Biosoft, Cambridge, UK). The method is based on the
multiple drug– effect equation of Chou–Talalay derived from
enzyme kinetic models (Chou and Talalay, 1977) in which values
for drug additivity are in the range CI¼ 0.9–1.1 and values for
synergy and antagonism are o0.9 and CI 41.1, respectively. The
ratios of XAC 1396-11 and cytotoxic drugs were fixed using IC50

values from the SRB assay. Cells were co-treated for 72 h using
XAC 1396-11 and various cytotoxic drugs. Six drug concentrations
were used covering the concentration–effect. Linear correlation
coefficients (r) were generated for each concentration response
curve to determine the applicability of the data to the method of
analysis. To confirm the synergistic drug interactions identified by
CI analysis, the three-dimensional (3D) response surface model of
Pritchard and Shipman (Pritchard and Shipman, 1990) was
applied. The 3D method is based on a five by eight ‘checkerboard’
matrix (40 data points) of XAC 1396-11/cytotoxic drug combina-
tions plus each drug tested alone, covering the concentration –
effect curve. Data from the SRB assay, performed in triplicate, were
used to calculate theoretical (individual dose responses) and
experimental surfaces (drug combinations minus 2 s.d.). The
theoretical surface is then subtracted from the experimental
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surface to reveal regions of synergy (above the baseline) and
antagonism (below the baseline). Positive values are summed
together to give the overall synergy value (mM

2%) across the
response surface at the 95% confidence interval.

Statistics

Statistical significance for a change in percentage cells with nuclear
apoptotic morphology was determined by two-tailed paired t-tests
(assuming equal variance) between the drug combination counts
and the single agents.

RESULTS

IAPs are widely expressed in NSCLC cell lines

Immunoblot analysis of a panel of NSCLC cell lines confirmed that
XIAP is widely expressed at levels comparable with the colon
cancer cell lines HCT116, known to express XIAP at a level above
the average reported for the NCI 60 tumour cell line panel
(Figure 1) (Tamm et al, 2000). Additionally, cIAP-1, cIAP-2,
Survivin and SMAC were also expressed in the NSCLC lines tested,
albeit with levels varying among cell lines.

XAC 1396-11 induces apoptotic cell death in a time- and
concentration-dependent manner in NSCLC cell lines

XAC 1396-11 caused concentration-dependent growth inhibition
in H460, A549, H520 and MGH-4 cell cultures (shown for H460
and A549 in Figure 2A), as measured by the SRB assay. The IC50

for a 72 h drug challenge was 2.8 and 4.0 mM for H460 and A549
cells, respectively. In both of these cell lines, a 1 h drug exposure
had minimal effect on growth inhibition but by 24 h, near maximal
effect was observed. Similar growth inhibition was observed at
48- and 72 h exposure to XAC 1396-11.

The long-term effects of XAC 1396-11 were assessed by
clonogenic assay (Figure 2B). The clonogenic IC50 values after
24 h XAC 1396-11 treatment were 4.5 and 7.8mM for H460 and
A549 cells, respectively, showing higher sensitivity for H460 cells
consistent with the SRB assay.

Analysis of the levels of cleaved PARP in XAC 1396-11-treated
H460 cells confirmed time- and concentration-dependent activa-
tion of endogenous caspases, suggesting that the observed cell loss
occurred by apoptosis (Figure 2C). To provide further confirma-
tory evidence of apoptotic cell fate, H460 cells treated in both a
time- and concentration-dependent manner were also stained with
DAPI to reveal nuclear morphology. Concentrations of XAC 1396-
11 X7.5 mM were sufficient to induce apoptotic morphology after
24 h drug exposure (Figure 2D upper panel). Increased apoptotic
indices were evident as early as 16 h after treatment with 10mM

XAC 1396-11 (Figure 2D, lower panel).

XAC 1396-11 synergises with cytotoxic anticancer
drugs in NSCLC lines

Pre-clinical data on apoptosis-targeted agents suggest that their
ultimate clinical use will be in combination with cytotoxics, in
which an enforced reduction in the cellular threshold for apoptosis
by the former should sensitise to the latter. Therefore, the effects of
XAC 1396-11 in combination with a variety of chemotherapeutics
that are conventionally used in NSCLC were explored using the CI
and Pritchard and Shipman methods. Table 1 shows the CI values
derived from treatment with XAC 1396-11 and various cytotoxic
anticancer drugs. XAC 1396-11 showed synergy with vinorelbine,
cisplatin and gemcitabine in both H460 and A549 cell lines.
However, the combination of XAC 1396-11 with taxotere was not
synergistic. Particularly, striking was the synergy at IC25, IC50 and
IC75 observed for the combination of XAC 1396-11 and vinorelbine

in both the H460 and A549 cell lines after 72 h co-administration.
Synergy was also noted in the concentration –effect graph
(Figure 3C) as a left shift for the combination treatment, that is
the surviving fraction is less for the combination using the same
concentrations compared with single drug treatments. In H460
cells, the XAC 1396-11/vinorelbine combination was also syner-
gistic at 24 and 48 h drug exposure (data not shown). Further
confirmatory evidence of synergy between XAC 1396-11 and
vinorelbine was shown using the Pritchard and Shipman method.
Figures 3A and B show the 3D checkerboard plots from combining
5 dilutions of XAC 1396-11 (dilution factor 1.5 in H460 cells, 1.3 in
A549) with 8 dilutions of vinorelbine (dilution factor 1.3 in both
cell lines). The most synergistic concentrations were 2.2 mM XAC
1396-11 and 3.4 nM vinorelbine in H460 cells, and 2.5 mM XAC
1396-11 and 3.6 nM vinorelbine in A549 cells. The overall synergy
values show that over the entire response surface, synergy was
comparable between the two cell lines, H460 175 mM

2% and A549
cells 193mM

2% at the 95% confidence interval.

XAC 1396-11 and vinorelbine induce schedule-dependent
apoptotic cell death of H460 cells

To determine whether the observed synergy between XAC 1396-11
and vinorelbine resulted from enhanced apoptosis, H460 cells were
exposed to either of the single agents at low concentrations that
did not result in a significant elevation in cleaved caspase-3 or
PARP. The combination of XAC 1396-11 and vinorelbine, at the
same low concentrations, increased cleaved caspase-3 and induced
PARP cleavage (Figure 4A arrow). Significantly, higher apoptotic
index values were seen for the combination than either single agent
alone (Po0.01), data not shown. This process could be reversed by
the addition of a pan-caspase inhibitor providing further evidence
that synergy is mediated through apoptosis. Immunoblot analysis
shows that in cells treated with low concentrations of XAC 1396-11,
no compensatory increases the levels of XIAP, c-IAP1, c-IAP2 and
Survivin were observed (confirmed by densitometry measurements).

Schedule dependency of vinorelbine and XAC
1396-11 synergy

To determine whether the sequence of drug addition impacts on
resulting synergy, cells were treated for 36 h with XAC 1396-11,
followed by removal of the supernatant, and treatment for 36 h
with the vinorelbine, or vice versa. The CI results show that
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Figure 1 Immunoblot analysis of IAP family members in NSCLC lines.
(A, B) Cell lysates were prepared from cell lines, normalised for total
protein content (15 mg per lane), and analysed by SDS–PAGE using
antibodies recognising XIAP, c-IAP1, c-IAP2, Survivin and SMAC. Tubulin or
GAPDH was used as a protein loading control. Data are representative of
n¼ 3 independent repeat experiments.
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treatment with XAC 1396-11 followed by vinorelbine is more
synergistic than sequencing these agents in the reverse order, or
for 72 h co-treatment, (Figure 4B).

XAC 1396-11, cisplatin and vinorelbine are a
synergistic drug regimen

As cisplatin and vinorelbine are conventionally used together
in the treatment of NSCLC, the impact of both cytotoxics with
XAC 1396-11 was investigated (Table 1). The three drug
combination showed greatest synergy at low concentrations IC25

consistent with the hypothesis that XAC 1396-11 can sensitise
to clinically relevant cytotoxics, potentially permitting dose-
reduction while maintaining efficacy.

DISCUSSION

NSCLC is the most prevalent cancer worldwide yet mortality rates
remain dismal. Although some progress has been made in the
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11 at the indicated concentrations. Colonies were grown for 7 days before the plates were fixed. Surviving fraction was calculated as the number of colonies
in the test condition divided by the number of colonies in the untreated well and plotted logarithmically against drug dose (mean±s.e.m.; n¼ 3). (C) H460
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(D) H460 cells were treated as for (C), but fixed and DAPI stained for assessing percentage apoptotic nuclear morphology (mean±s.e.m.; n¼ 3).
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Table 1 XAC 1396-11 synergizes with cytotoxic anticancer drugs in
H460 and A549 cell lines

Cell
line

XAC 1396-11
Combination IC25 IC50 IC75

H460 Vinorelbine 0.40 (+++) 0.37 (+++) 0.35 (+++)
H460 Cisplatin 0.80 (++) 0.74 (++) 0.50 (+++)
H460 Vinorelbine and cisplatin 0.65 (+++) 0.70 (++) 0.74 (++)
H460 Gemcitabine 0.72 (++) 0.74 (++) 0.87 (+)
H460 Taxotere 1.02 (±) 1.09 (±) 1.11 (�)
A549 Vinorelbine 0.36 (+++) 0.24 (++++) 0.33 (+++)
A549 Cisplatin 0.84 (++) 0.79 (++) 0.73 (++)
A549 Vinorelbine and cisplatin 0.69 (+++) 0.78 (++) 0.85 (+)
A549 Gemcitabine 0.78 (++) 0.93 (±) 1.09 (±)
A549 Taxotere 1.08 (±) 1.04 (±) 1.02 (±)

Non-small cell lung cancer (NSCLC) cells were treated for 72 h with equipotent
concentrations of XAC 1396-11 and the cytotoxic, before being fixed and analysed
by SRB assay. Six concentrations of drugs were used starting at 4� IC50 values and
covering the dose–effect curve. Additivity is taken to be in the range CI¼ 0.9–1.1
(±), synergy CI o0.9 (+) and antagonism CI 41.1(�).
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development of targeted agents for NSCLC, palliative chemo-
therapy remains the mainstay of treatment for the majority of
patients who present with advanced metastatic disease and who
often have co-morbidities making them unfit for radical surgery or
chemo-radiation. After a large-scale combinatorial screen of
chemical libraries, Schimmer et al (2004a) discovered multiple
small molecules with XIAP inhibitory activity, including the
compound XAC 1396-11. The preclinical effects of these XIAP
inhibitors have been confirmed by their ability to induce apoptosis
of both haematologic and solid tumour cell lines in vitro, and their
ability to sensitise cancer cells to chemotherapeutic drugs
(Schimmer et al, 2004a; Carter et al, 2005). Our rationale was to
investigate whether XIAP inhibition with XAC 1396-11, in NSCLC,
could sensitise to chemotherapy with the potential to dose-reduce
cytotoxic treatment, thus preventing chemotherapy-induced toxi-
city but maintaining therapeutic efficacy.

This is the first report to explore the efficacy of a small molecule
XIAP antagonist in NSCLC. Using XAC 1396-11 in combination

with cytotoxics in vitro, evidence is presented that XIAP inhibition
sensitises cancer cells to death induced by a variety of
chemotherapeutic agents. This cytotoxic effect was most pro-
nounced with vinorelbine in H460 and A549 NSCLC lines.
Furthermore, the synergy data for the XAC 1396-11/vinorelbine
combination are consistent using two differing methodologies in
which the mechanism of synergy is through enhanced apoptosis,
as shown by cleavage of caspase-3 and PARP and by the reversal
of synergy using a pan-caspase inhibitor. Vinorelbine, a Vinca
alkaloid, interferes with microtubule assembly leading to mitotic
arrest and/or cell death. It is approved for use as a single agent or
in combination with platinum in the first line treatment of stage III
or IV NSCLC. Our results suggest the addition of XAC 1396-11
to vinorelbine alone or in combination with a platinum agent may
sensitise patients to the effects of chemotherapy. The drug
sequencing experiments reported here data support the notion
that vinorelbine is most effective at inducing apoptosis once the
‘apoptotic brake’ has been removed with XAC 1396-11. The data
presented show that at every inhibitory concentration, that is IC25,
IC50 and IC75, pretreatment with XAC 1396-11 followed by
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with vinorelbine, XAC 1396-11 or the combination±pan-caspase inhibitor
(caspase In.), at the indicated concentrations below. Lysates were then
prepared for immunoblot analysis using antibodies recognising PARP (full-
length and cleaved ‘c’ PARP), XIAP, cIAP1, cIAP2, Survivin and GAPDH.
Low concentrations of the single agents failed to induce PARP cleavage,
whereas combination treatment provoked PARP cleavage (arrow).
V1¼ vinorelbine 2.5 nM; X1¼XAC 1396-11 5 mM; Caspase In.¼ 50 mM;
V2¼ vinorelbine 10 nM; X2¼XAC 1396-11 10mM; CTL¼ control (B).
H460 cells were treated for 36 h with the first agent followed by removal of
the supernatant and treatment for 36 h with the second agent, covering the
concentration–effect curve (V¼ vinorelbine; X¼XAC 1396-11). The
plates were fixed and growth inhibition was determined by SRB. The CI
results at the IC25, IC50 and IC75 are shown. All experiments were repeated
in triplicate, error bars show s.e.m.
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vinorelbine was more synergistic than the reverse sequence. This
supports the concept that blockade of an endogenous apoptosis
suppressor allows drug damage to be coupled to the engagement of
apoptosis.

XAC 1396-11 targets near the BIR2 domain of XIAP (Schimmer
et al, 2004a), which is responsible for inhibition of caspases-3 and -7,
down-stream effector proteases operating at the convergence of
both intrinsic and extrinsic apoptotic pathways. However, it is not
clear whether blocking BIR2 to mediate release of effector
caspases, or selectively targeting the BIR3 domain, which binds
to inhibit the upstream initiator protease caspase-9, is the more
effective strategy (Srinivasula et al, 2001a; Nikolovska-Coleska
et al, 2004; Sun et al, 2006). It has been shown in H460 cells that
disruption of XIAP–caspase-9 binding with SMAC mimetics
restored apoptosis (Yang et al, 2003). However, intratumoural
injections of SMAC mimetics alone in an H460 xenograft model
did not have any apparent tumour-suppressive effect. Theoreti-
cally, SMIs that target both the BIR2 and BIR3 domains should
be most efficacious. In interpreting the results of experiments
with IAP-family proteins, it should be noted that complex effects
have been documented beyond reversal of caspase inhibition.
For example, compounds that target SMAC-binding sites on BIR
domains activate the intrinsic E3 ligase activity of IAPs, causing
their self-ubiquitinylation and subsequent proteasome-dependent
degradation (Zhang et al, 2004). Compound-triggered clearance of
cIAP1 and cIAP2 from cells causes accumulation of NIK and
induces other events that stimulate NF-kB activity and induce
TNFa production (Varfolomeev et al, 2007). Recently, it has also
been shown that efficient induction of cell death by SMIs requires
antagonism of both c-IAPs and XIAP proteins but whether
this pan-IAP inhibition is associated with higher toxicities
remains untested (Ndubaku et al, 2009). Further analysis of the
phenylurea-series XIAP inhibitors, such as XAC 1396-11, is
required to ascertain their effects on caspase-independent aspects
of XIAP biology (such as NF-kB activation mediated by TAK/TAB
binding) and to elucidate whether they target other members of the
IAP or have off-target activities that contribute to their cytotoxic
activity.

Another approach to targeting XIAP is the use of small
interfering RNA (siRNA) to induce degradation of the target
mRNA. XIAP siRNA enhances sensitivity to methotrexate in
hepatoma (Chen et al, 2006), to cisplatin, fluorouracil and
etoposide in oesophageal carcinoma (Zhang et al, 2007), to TRAIL
in melanoma, breast cancer and pancreatic cancer (Chawla-Sarkar
et al, 2004; McManus et al, 2004) and also sensitises pancreatic
cancer cell lines to g-irradiation (Giagkousiklidis et al, 2007). The
XIAP siRNA approach confirmed the validity of XIAP as a

therapeutic target but the problem of in vivo delivery of siRNAs
regimens still must be overcome.

An alternative nucleic acid-directed strategy for targeting XIAP
is the use of ASOs that form a duplex with native mRNA, inducing
its degradation through RNAase H enzymes. The undertaking of
this study was encouraged by reports that XIAP downregulation in
lung cancer using ASOs can be synergistic with other therapeutic
modalities used in the treatment of the disease. XIAP ASOs have
also been combined with cytotoxics (doxorubicin, paclitaxel,
vinorelbine and etoposide) in H460 cells in vitro, showing synergy
using the CI method. In H460 tumour-bearing mice, XIAP ASOs
have also been combined with vinorelbine (Hu et al, 2003) and
g-irradiation (Cao et al, 2004), showing a significant delay in tumour
establishment and reduction in tumour volume, respectively. In
addition, in vivo tumour xenograft models of prostate (PC-3),
colon (LS174T) and NSCLC (H460) cancer showed that XIAP ASO
was effective as a single agent (LaCasse et al, 2006). Phase I/II trial
results for XIAP ASOs both as a single agent and in combination
with chemotherapy in refractory/relapsed AML have recently been
published using a variety of dosing schedules (AEG35156, Aegera
Therapeutics Inc. Montreal, Québec, Canada) (Dean et al, 2009;
Schimmer et al, 2009). AEG35156 was well tolerated in the 7-day
and 3-day infusion regimens with predictable toxicities (raised
hepatic enzymes, hypophosphatemia and thrombocytopenia),
pharmacokinetic properties and clinical evidence of antitumour
activity. These early clinical data bode well for SMIs targeting XIAP
that are approaching the clinic.

In summary, the results presented here are the first to address
the potential therapeutic role of XAC 1396-11, an SMI of XIAP for
NSCLC, and the possibility for synergy with cytotoxics commonly
used in the treatment of the disease. Using two independent
methods, XAC 1396-11 was shown to synergise with clinically used
cytotoxic agents in NSCLC cell lines and evidence was obtained that
the mechanism of synergy is through increased apoptosis.
Pretreatment with the XIAP-targeting drug produced optimal
synergy. Thus, combining small molecule therapeutics targeting
apoptosis regulators, such as XIAP with conventional cytotoxic
agents, promises to improve the management of highly resistant
malignancies such as lung cancer, warranting further pre-clinical in
vivo studies to evaluate the potential of such combination therapies.
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