
INTERNATIONAL JOURNAL OF MOlecular medicine  43:  1709-1722,  2019

Abstract. Glioblastoma multiforme (GBM) is the most 
common and aggressive primary malignant brain tumour. 
However, the causes of GBM are not clear, and the prognosis 
remains poor. The aim of the present study was to elucidate the 
key coding genes and long non‑coding RNAs (lncRNAs) asso-
ciated with the survival time of GBM patients by obtaining the 
RNA expression profiles from the Chinese Glioma Genome 
Atlas database and conducting weighted gene co‑expression 
network analysis. Modules associated with overall survival 
(OS) were identified, and Gene Ontology and pathway enrich-
ment analyses were performed. The hub genes of these modules 
were validated via survival analysis, while the biological func-
tions of crucial lncRNAs were also analysed in the publicly 
available data. The results identified a survival‑associated 

module with 195 key genes. Among them, 33 key genes were 
demonstrated to be associated with OS, and the majority of 
these were involved in extracellular matrix‑associated and 
tyrosine kinase receptor signalling pathways. Furthermore, 
LOC541471 was identified as an OS‑associated lncRNA, and 
was reported to be involved in the oxidative phosphorylation 
of GBM with pleckstrin‑2. These findings may significantly 
enhance our understanding on the aetiology and underlying 
molecular events of GBM, while the identified candidate 
genes may serve as novel prognostic markers and potential 
therapeutic targets for GBM.

Introduction

Glioblastoma multiforme (GBM) is an aggressive carcinoma 
that was first described in 1800 (1). According to the World 
Health Organisation classification of tumours of the central 
nervous system (CNS), GBM is classified as a grade IV malig-
nant glial neoplasm with astrocytic differentiation (2). As one 
of the most commonly diagnosed malignant CNS tumours, it 
accounts for 45.6% of primary malignant brain tumours, with 
an annual incidence of 3.1 cases per 100,000 individuals in 
the United States (3). GBM is considered to be one of the most 
malignant primary intracranial tumours and has a dismal prog-
nosis, <5% of patients surviving 5 years after diagnosis (3). 
Even after microsurgery and adjuvant temozolomide‑based 
radio‑chemotherapy or radiotherapy alone, the prognosis of 
patients remains poor, with a median survival of 14 months (4). 
In recent years, clinical trials of angiogenesis inhibitor thera-
pies have been performed on patients with recurrent GBM; 
however, no survival benefit was achieved (5). Furthermore, a 
randomised phase III clinical trial of epidermal growth factor 
receptor (EGFR) variant III‑targeted drugs failed to confirm 
any survival benefit compared with the control group  (6). 
Therefore, searching for novel candidate genes and studying 
the underlying mechanisms driving tumourigenesis are impor-
tant to generate new therapeutic targets.

The development of microarray and high‑throughput 
sequencing technology has provided new methods for 
investigating the molecular mechanisms underlying tumour 
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behaviour and for screening drug targets. In 2012, the Chinese 
Glioma Genome Atlas (CGGA) was built, which provides 
genomic and clinical data for hundreds of samples that have 
been examined by whole‑genome sequencing, whole‑exome 
sequencing, DNA methylation microarray detection, as well 
as microRNA (miRNA), circular RNA, long non‑coding RNA 
(lncRNA) and mRNA sequencing (7). This database repre-
sents a landmark achievement in glioma research in China.

Weighted gene co‑expression network analysis (WGCNA) is 
a powerful method for describing the correlations among genes 
using microarray or RNA sequencing data. WGCNA can be 
applied to search for candidate biomarkers or therapeutic targets, 
as well as phenotype‑associated modules or gene clusters based 
on co‑expression networks (8). Compared with other analytical 
methods, WGCNA has the advantage of summarising and stan-
dardising the methods and functions in the R software package. 
Currently, this systematic method is widely used to study a 
number of complex diseases, particularly cancer. For instance, 
Lv et al (9) observed that LINC01314 functions as a tumour 
suppressor in hepatoblastoma. Furthermore, Clarke et al (10) 
indicated that KCNK5 was associated with poor outcomes of 
the basal‑like molecular subtype in breast cancer. Using this 
analysis, the pathways involved in the co‑expression network 
of cancer models and target genes can be identified. However, 
relevant research is currently lacking in GBM.

The present study aimed to explore the underlying molec-
ular mechanisms, and identify novel prognostic biomarkers 
and treatment targets of GBM. The expression profiles of 
lncRNAs and mRNAs in GBM compared with those of normal 
controls were investigated, and differentially expressed RNAs 
were identified from the CGGA database. Next, the enriched 
pathways participating in the tumourigenesis of GBM were 
determined, and protein‑protein interaction (PPI) networks 
were constructed. Finally, using public databases, potential 
prognostic biomarkers were confirmed, and the clinical 
significance and biological functions of survival‑associated 
lncRNAs were identified.

Materials and methods

Data collection. RNA sequencing and clinical data of GBM 
patients were obtained from the CGGA database (http://www.
cgga.org.cn). The gene expression levels were measured in 
terms of fragments per kilobase of transcript per million 
mapped reads. Various clinical data were also downloaded 
from the database, which included the patient gender, age, The 
Cancer Genome Atlas (TCGA) subtype, overall survival (OS), 
radiotherapy and chemotherapy details, and the mutation status 
of the genes isocitrate dehydrogenase (IDH), tumour protein 
p53 (TP53), EGFR, ATRX and enhancer of zeste homolog 2 
(EZH2) (11,12). All cases with pathological diagnosis of GBM 
were included in the analysis. The exclusion criteria applied in 
the present study were as follows: i) Histologic confirmation 
of the diagnosis of any brain tumour type other than primary 
GBM; ii) history of radiotherapy or chemotherapy prior to 
histologic diagnosis; iii)  patients with missing follow‑up 
records; and iv) missing mutation information for the five 
aforementioned genes. According to these criteria, a total of 
88 GBM samples were selected for inclusion in the current 
study (Table I). Furthermore, another gene expression and 

clinical dataset of GBM patients was downloaded from the 
TCGA database (https://cancergenome.nih.gov/), from which 
162 GBM cases were selected. The dataset obtained from 
TCGA was analysed, and served as the validation dataset.

Construction of the gene co‑expression network and identifi‑
cation of preserved modules. First, the expression data profiles 
from the CGGA were tested to confirm that they were suitable 
for the analysis. The standard deviation value for all samples 
of each gene was calculated, and the top 5,000 genes with 
the lowest standard deviation values were selected for subse-
quent analysis. Next, the co‑expression network of genes was 
constructed using the WGCNA package in R (8). To calculate 
the scale‑free topology fitting index r2 that corresponded to 
different soft‑thresholding parameter β values, functional 
pickSoftThreshold was used, and the β value was selected if 
r2 reached 0.9. The soft‑thresholding power β value was then 
set to 6, and the minModuleSize was set to 30. Subsequently, 
the gene expression profile was transformed into an adjacency 
matrix and a topological overlap matrix (TOM), which was 
defined as the sum of adjacency between the gene and all 
other genes for network generation. Next, the corresponding 
dissimilarity of TOM (dissTOM) was calculated, and 
dissTOM‑based hierarchical clustering was used to produce 

Table I. Summary of patient characteristics.

Characteristic	 Value

No. of patients	 88
Age	
  ≥40 years	 73
  <40 years	 15
Sex	
  Male	 55
  Female	 33
TCGA subtype	
  Classical	 32
  Mesenchymal	 36
  Neural	 7
  Proneural	 13
OS	
  ≥12 months	 43
  <12 months	 45
History of radiotherapy	 59
History of chemotherapy	 52
Gene mutation	
  IDH	 12
  TP53	 44
  EGFR	 23
  ATRX	 9
  EZH2	 13

TCGA, The Cancer Genome Atlas; OS, overall survival; IDH, isoci-
trate dehydrogenase; TP53, tumour protein p53; EGFR, epidermal 
growth factor receptor; EZH2, enhancer of zeste homolog 2.
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a hierarchical clustering dendrogram of genes. Modules of 
clustered genes were then generated using the Dynamic Tree 
Cut algorithm. The module eigengene was calculated using the 
function moduleEigengenes, and a number of modules were 
merged according to a cut‑off line for the module dendrogram. 
The interactions (correlations) of each module were analysed 
and visualised by heatmaps. To identify modules associated 
with patient characteristics, the Pearson's correlation test was 
used to evaluate the correlation of module eigengenes with the 
clinical traits, OS and mutation status, and correlations with 
P‑values of <0.05 were considered to be statistically significant.

Gene ontology (GO) and pathway enrichment analysis. The 
functional enrichment of the genes of the identified module 
was assessed based on GO terms (13) and Kyoto Encyclopaedia 
of Genes and Genomes (KEGG) pathway (14) annotations. 
GO term analyses were performed using the DAVID database 
(https://david.ncifcrf.gov/) and Panther database (http://www.

pantherdb.org) (15), which are essential tools for the success 
of high‑throughput gene function analysis. Pathway analysis 
was also conducted using multiple online databases, 
including the DAVID database, KEGG pathway database 
(http://www.genome.jp/kegg) and STRING online database 
(http://string‑db.org) (16). P‑values of <0.05 were considered to 
denote statistically significant differences in GO term enrich-
ment and KEGG pathway analyses, and the false discovery 
rate was utilised to correct the P‑values.

PPI network construction and analysis. To identify the 
gene‑encoded proteins and construct the PPI network of the 
identified module, the genes were mapped to the STRING 
database. The results obtained from this database were then 
imported into Cytoscape software (version 3.6.0; https://cyto-
scape.org/) to analyse the interactional associations among 
the gene‑encoding proteins and their degrees in GBM (17). In 
addition, significant genes from the PPI network complex were 

Figure 1. Network visualization plots of weighted gene co‑expression network analysis. (A) Dendrogram of samples and heatmap of clinical and molecular 
traits. (B) Analysis of network topology for different soft‑thresholding powers. The higher panel displays the influence of soft‑thresholding power (x‑axis) on the 
scale‑free fit index (y‑axis). The lower panel shows the influence of soft‑thresholding power (x‑axis) on the mean connectivity (degree; y‑axis). (C) Clustering of 
MEs. Hierarchical clustering of module eigengenes that summarise the modules yielded in the clustering analysis. Joint branches of the dendrogram represent 
genes that are positively correlated. (D) Dendrogram of selected genes, indicating clusters with dissimilarity based on topological overlap, along with the 
assigned module colours. ME, module eigengene; CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer Genome Atlas; OS, overall survival; IDH, 
isocitrate dehydrogenase; TP53, tumour protein p53; EGFR, epidermal growth factor receptor; EZH2, enhancer of zeste homolog 2.
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selected according to their degree of importance. The corre-
sponding proteins may be the core proteins or key candidate 
genes that have significant physiological regulatory functions.

Survival analysis and validation of the genes in the TCGA 
dataset. To confirm the reliability of the identified genes from 
the CGGA data, GBM data from TCGA were then used to 
perform validation with the GEPIA database (http://gepia.
cancer‑pku.cn)  (18). Through this database, the expression 
levels of all genes of interest in GBM and other tumours can be 
obtained. Furthermore, Kaplan‑Meier curves were generated 
based on the GEPIA database. The OS was estimated using 
the log‑rank test, and P<0.05 was considered to denote statisti-
cally significant data.

KEGG analysis of lncRNA‑correlated mRNAs in GBM. In 
TCGA data, mRNAs having a Spearman's correlation with 
lncRNA of >0.4 were considered to be lncRNA‑correlated 
mRNAs. These were then analysed by KEGG pathway enrich-
ment analysis. A P‑value of <0.05 was applied to identify the 
significant pathways.

Further analysis of candidate lncRNAs in GBM. The genes 
nearby lncRNAs were analysed by genomic region enrichment 

of annotations tool (GREAT version 3.0.0) (19). The potential 
targets of lncRNA were predicted by searching the miRDB 
database (http://www.mirdb.org).

Results

Gene co‑expression network of GBM. To detect and explore the 
possible biological function of the key survival‑associated genes, 
WGCNA was performed based on the mRNA and lncRNA 
profiles derived from the CGGA database. According to the 
exclusion criteria mentioned earlier, RNA sequencing results 
and the clinical data of 88 GBM samples were downloaded 
from the CGGA database. For module detection, 5,000 coding 
and non‑coding RNAs were selected for further analysis from 
the original 21,000 genes according to the standard deviation 
values. One outlier sample was removed from the sample 
network. The TCGA subtype, gender, age, OS, radiotherapy 
and chemotherapy information, and the mutation status of IDH, 
TP53, EGFR, ATRX and EZH2 were defined as clinical traits 
(Fig. 1A). Analysis of the network topology was first performed 
for various soft‑thresholding power β values to determine the 
relative balanced scale independence and mean connectivity of 
the weighted gene co‑expression network. As shown in Fig. 1B, 
power 6 was the lowest power at which the scale‑free topology 

Figure 2. Module‑trait associations were evaluated according to the correlations between MEs and clinical traits. Each row corresponds to an ME, while each 
column corresponds to a trait. Each cell contains the corresponding correlation (top line) and P‑value (bottom line). The table is colour‑coded by correlation, 
according to the coloured legend. ME, module eigengene; TCGA, The Cancer Genome Atlas; OS, overall survival; IDH, isocitrate dehydrogenase; TP53, 
tumour protein p53; EGFR, epidermal growth factor receptor; EZH2, enhancer of zeste homolog 2.
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fitting indices r2 reached 0.90; thus, this power was selected in 
order to produce a hierarchical clustering tree (dendrogram) of 
the 5,000 genes. In total, 21 modules were identified by hierar-
chical clustering and dynamic branch cutting, and each module 
was assigned a unique colour as an identifier (Fig. 1C and D). 
The largest module contained 826 genes, while the smallest 
contained 58 genes. The grey module represented a gene set 
that was not assigned to any of the modules.

Identification of the modules significantly associated with 
survival. To explore the survival significance of the selected 
modules, correlations between the OS and module eigengenes 
were analysed. It was observed that three modules (black, 
brown and light cyan) were positively correlated with OS 
(P<0.05). Among them, the black module had the lowest 
P‑value. Another five modules (turquoise, blue, purple, tan and 

grey) were negatively correlated with OS (Fig. 2; P<0.05), with 
the purple module exhibiting the lowest P‑value. According to 
the previous analysis of the survival significance of modules, 
the black and purple modules were selected for further analysis 
with OS, since they had the lowest P‑values. Limited progress 
in targeted therapy for GBM has been made in recent years, and 
the majority of the therapeutic targets for this disease are onco-
genes (20); thus, the purple module was further analysed in the 
present study, since the genes in purple module are considered to 
be oncogenes. In total, 195 genes, including 193 protein‑coding 
and 2 non‑coding genes, were identified in the purple module. 
The locations of certain of these identified genes on human 
chromosomes are displayed in the Circos plot in Fig. 3.

Enrichment analysis of coding genes in the purple module. 
The functions and pathway enrichment of the candidate 

Figure 3. Identification of significant genes and their chromosomal locations in the purple module. The Circos plot shows the significant genes on the human 
chromosomes. From the outside and inwards, the first layer of the Circos plot is a chromosome map of the human genome; the black and white bars represent 
chromosome cytobands, while red bars represent centromeres. Due to limited space, a number of the genes are labelled in the second circle. In the third layer, 
coding and non‑coding RNAs are marked in blue and red, respectively. The fourth layer represents the GS values of genes, while the innermost circle indicates 
the P‑value of the GS. The network in the centre of the plot represents the core network. GS, gene significance.
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genes in GBM identified from the purple module were anal-
ysed using multiple online databases, including the DAVID, 
Panther, KEGG pathway and STRING databases. The GO 
functional enrichments of genes were determined with the 
DAVID and Panther databases, with a P‑value of <0.05 indi-
cating statistical significance of the data. The protein‑coding 
genes in the purple module were mapped to the GO data-
base to determine their potential functions. GO terms were 
divided into three functional groups, including biological 
processes (BP), cell composition (CC) and molecular func-
tion (MF). The enriched GO terms for the genes are presented 
in Fig.  4. For the candidate genes in the purple module, 
the top three enriched GO terms in each category were as 
follows: Extracellular structure organisation, extracellular 
matrix (ECM) organisation and multicellular organismal 
macromolecule metabolic process in the BP category; ECM, 
extracellular region and extracellular space in the CC cate-
gory; and collagen binding, ECM structural constituent and 
growth factor binding in the MF category (Fig. 4A and B). 
These results revealed that the majority of the genes were 
significantly enriched in extracellular structure, binding, cell 
parts and cell growth.

Subsequently, functional and signalling pathway enrich-
ment of genes in the purple module was performed using 
the online databases DAVID, STRING and KEGG. The top 
enriched KEGG pathways for the candidate genes included 
ECM organisation, collagen formation, integrin cell surface 
interactions, degradation of the ECM, collagen biosynthesis 
and modifying enzymes, ECM proteoglycans, assembly of 
collagen fibrils and other multimeric structures, ECM‑receptor 
interaction, collagen degradation and signalling by receptor 
tyrosine kinases (Fig. 5). The majority of the identified path-
ways were cancer‑associated signalling pathways.

PPI network analysis of survival‑associated coding genes in 
GBM. Data from the STRING database revealed that several 
of the genes interacted with each other. In total, 113 of the 
193 candidate protein‑coding genes were filtered to form the 
PPI network complex (Fig. 6). The network contained 113 nodes 
and 648 edges. Among the 113 nodes, the most significant 
19 hub node genes were identified using a degree of ≥10 as 
the filtering criterion. These genes were COL1A1, COL1A2, 
DCN, COL3A1, FN1, MMP9, COL6A1, COL5A2, COL6A2, 
ITGA5, FBN1, CTGF, ITGA4, PDGFRB, LUM, PPIB, 

Figure 4. GO analysis and significantly enriched GO terms of significant genes in glioblastoma multiforme. GO analysis classified the significant genes into 
three categories: Biological process, molecular function and cellular component. (A) Top 50 significantly enriched GO terms ordered by (A) their function and 
(B) gene counts. GO, Gene Ontology.
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MMP14, ITGA11 and COPB1 (Table II). Among these genes, 
COL1A1 exhibited the highest node degree (degree =30), and 
FN1 shares the highest degree with 33 validated coding genes.

Validation of the survival‑associated genes in TCGA dataset. 
To confirm the reliability of the 193 survival‑associated 
coding genes identified from the CGGA, GBM datasets were 
also downloaded from TCGA database (including 162 GBM 
samples), and the RNA sequencing data and survival infor-
mation of these datasets were subjected to Kaplan‑Meier 
survival analysis. The results revealed significantly different 
OS between the high and low expression groups for 33 genes 
in the TCGA GBM, including ADAM12, B4GALT7, CD248, 
CHPF2, COL6A1, COL6A2, CYGB, DCBLD2, DERL2, 
DUSP6, EFNB2, EMILIN1, EPHA2, FAP, FBLN1, FN1, FZD1, 
HOXB2, HSP90B1, IGFBP4, LAMB1, LOXL1, MMP11, 
NID2, P4HB, PCOLCE, PDIA3, PLOD1, PMAIP1, PPIB, 
RARRES1, TBL2 and THY1 (P<0.05; Fig. 7). Therefore, the 
expression levels of these 33 genes may be used as predictors 
of OS in GBM patients, indicating that they may be candidate 
genes involved in GBM that deserve further investigation.

Validation and survival analysis of candidate lncRNAs in 
GBM. According to the co‑expression network, two lncRNAs, 
namely LOC541471 and LOC284494, were identified as 
survival‑associated key non‑coding genes in GBM. Next, the 
genes nearby these two lncRNAs were analysed. The results 
demonstrated that 8 genes were located near the transcrip-
tion start site (Fig. 8A and B). To confirm the reliability of 
the identified lncRNAs, TCGA GBM data were subsequently 
used to perform validation by GEPIA. As shown in Fig. 8C, 
LOC541471 was significantly overexpressed in the GBM data-
sets obtained from TCGA. Next, the expression levels of these 

two lncRNAs in other types of cancer were explored using 
TCGA. It was observed that LOC541471 was overexpressed 
in 17 other cancer types (Fig. 8D), while LOC284494 was 
overexpressed in 3 other cancer types, as compared with their 
corresponding normal tissues (data not shown). Subsequently, 

Figure 5. Significantly enriched pathways of significant genes in glioblastoma multiforme, included in the purple module. The top 20 enriched pathways are presented.

Table II. Degrees of the top 19 key genes in the protein‑protein 
interaction network.

Gene symbol	D egree

COL1A1	 30
COL1A2	 25
DCN	 24
COL3A1	 22
FN1	 20
MMP9	 20
COL6A1	 18
COL5A2	 16
COL6A2	 16
ITGA5	 16
FBN1	 16
CTGF	 14
ITGA4	 13
PDGFRB	 12
LUM	 11
PPIB	 11
MMP14	 11
ITGA11	 11
COPB1	 10
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survival analysis was performed in the TCGA GBM data, and 
a significant association with survival was observed only for 
LOC541471 (Fig. 8E). Therefore, LOC541471 was regarded 
as a core lncRNA in the network and warrants further 
investigation.

Functional analysis of lncRNA LOC541471 in GBM. As 
mentioned earlier, LOC541471 was found to be the core 

lncRNA in the co‑expression network. To understand how this 
lncRNA is involved in GBM, a deeper insight into the GBM 
expression data from TCGA was required. Spearman's corre-
lation of LOC541471 was calculated with ~24,300 coding 
genes in 156 GBM patients. It was observed that pleckstrin‑2 
(PLEK2) is the mRNA exhibiting the highest correlation index 
(r=0.68) with lncRNA LOC541471, and this gene is located 
on human chromosome 3p24.1 (Fig. 9A and B). According 

Figure 6. PPI network of the significant genes in glioblastoma multiforme. Using the STRING online database, 113 genes were selected and used to construct 
the PPI network. PPI, PPI, protein‑protein interaction.
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to the TCGA data, PLEK2 is significantly overexpressed in 
GBM tissues as compared with the normal tissue (Fig. 9C). 
Next, a total of 436 mRNAs that had a Spearman's correlation 
with LOC541471 of >0.4 were further examined by KEGG 
pathway analysis. Pathways were considered as enriched at a 
P‑value of <0.05 (Fig. 9D), and the most enriched pathway was 
oxidative phosphorylation (OXPHOS). Finally, the expression 
data of GBM samples obtained from TCGA and CGGA were 
analysed, and the expression of LOC541471 in IDH1 wild‑type 
was observed to be much higher compared with that in the 
IDH1 mutant group (Fig. 10).

Cytoplasmic lncRNAs can act as competing endogenous 
RNAs to modulate the functions of miRNAs (21). By searching 
the miRDB database (22), it was observed that LOC541471 

was located in the cytoplasm, and 37 possible targets miRNAs 
were identified (Table III). The top 5 target miRNAs were 
hsa‑miR‑548t‑3p, hsa‑miR‑548ap‑3p, hsa‑miR‑548aa, 
hsa‑miR‑4288 and hsa‑miR‑3138. Taken together, these results 
predicted the potential mechanism of LOC541471; however, 
further studies are required to demonstrate this additional 
mechanism of LOC541471 in GBM.

Discussion

GBM is the most common and aggressive primary brain 
tumour type. The therapeutic options consist of microsurgery, 
and treatment with radiotherapy plus adjuvant chemotherapy 
with temozolomide and targeted drugs. Despite a large number 

Figure 7. Survival rate calculated by the Kaplan‑Meier survival curve in patients separated according to the median expression level of each gene, using data 
collected from The Cancer Genome Atlas. The top 8 of the 33 key genes are presented in the figure, while the analysis of the remaining genes is not shown. 
Survival curves of (A) ADAM12, (B) B4GALT7, (C) CD248, (D) CHPF2, (E) COL6A1, (F) COL6A2, (G) CYGB and (H) DCBLD2 are shown.
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of basic and clinical studies that have revealed the mechanisms 
underlying the formation and development of GBM in the past 
decades, the prognosis for this disease remains considerably 
poor (23‑25). Therefore, searching for new candidate genes 
is an important part of studying the disease tumourigenesis 
and would help identify novel therapeutic targets. A number 
of previous studies have used regulatory network methods to 
analyse gene expression data, and these approaches focus not 
only on the differences, but also on the correlations between 
gene expression datasets (26‑28). Such studies have provided 
numerous relevant molecular mechanisms and valuable 
biomarkers for GBM. However, these methods use a hard 
threshold to determine the correlation between genes and do 
not consider the changes in the correlation intensity between 
genes under different conditions. Therefore, more appropriate 
methods are required.

WGCNA is a novel statistical method analysing gene 
correlations that is based on scale‑free topology and construc-
tion of a weighted network via soft thresholds. It is not only 
used to construct gene networks and detect sub‑networks, 
but also to identify hub genes and select candidate biomarker 
genes (8). In general, module checking in WGCNA requires 
a knowledge‑independent process, and has been widely and 

successfully applied in biological function analysis in various 
diseases (29‑31). Furthermore, it is well known that the muta-
tion of genes contributes to GBM tumourigenesis; however, 
the role of lncRNAs has not yet been fully researched.

In the present study, a comprehensive analysis of lncRNA 
and mRNA profiling data of GBM patients obtained from 
the public database CGGA was performed. Subsequently, the 
modules associated with the OS of GBM cases were identified, 
the coding genes of the module were analysed by GO and KEGG 
enrichment analyses, and the PPI network was constructed. Next, 
genes associated with survival were identified by Kaplan‑Meier 
survival analysis. Finally, the core lncRNAs and their biological 
functions were identified, and their expression was validated 
using the GBM dataset obtained from TCGA. In conclusion, 
our work has identified a gene set involving the survival and 
tumourigenesis of GBM in which lncRNAs play a critical role.

The gene expression profile of GBM obtained from 
CGGA was initially examined in the present study. A total of 
5,000 genes with the lowest standard deviation values were 
selected, since these were considered as more likely to provide 
good data quality. Next, the purple module was identified by 
WGCNA, in which genes were significantly associated with 
OS of GBM patients.

Figure 8. Location, expression and survival analysis of candidate lncRNAs in GBM data obtained from TCGA. (A) Distribution of the distances to the nearest 
transcription start site of the two lncRNAs. (B) Absolute distance to transcription start site. (C) Expression of LOC541471 in GBM and normal brain tissue. 
(D) Expression of LOC541471 in other tumours and corresponding normal tissues. (E) Kaplan‑Meier analysis of the overall survival of patients with high or 
low LOC541471 expression levels in the TCGA dataset. lncRNA, long non‑coding RNA; GBM, glioblastoma multiforme; TCGA, The Cancer Genome Atlas.
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Figure 9. Functional analysis of lncRNA LOC541471 in GBM. (A) Schematic representation of the location of the PLEK2 gene on human chromosome 
14q24.1. (B) Spearman's correlation analysis examining the association of LOC541471 with PLEK2 in the GBM dataset obtained from The Cancer Genome 
Atlas. (C) Expression of PLEK2 in GBM and normal brain tissue. (D) Top 20 significantly enriched pathways of all protein‑coding genes with Pearson's 
correlation with LOC541471 of >0.4. lncRNA, long non‑coding RNA; GBM, glioblastoma multiforme; PLEK2, pleckstrin‑2.
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Subsequent GO and KEGG pathway analyses of mRNAs 
in the purple module revealed that the majority of the genes 
were significantly enriched in extracellular structure, binding, 
cell part and cell growth. They were also involved in pathways 
relevant to tumour progression and migration, such as ECM 
organisation, collagen formation, integrin cell surface inter-
actions, degradation of the ECM, collagen biosynthesis and 
modifying enzymes, and ECM‑receptor interactions. These 
results can explain the correlations between the purple module 
and the OS of GBM patients.

According to the present study analysis, the top enriched 
GO terms were associated with ECM. It is well known that 
ECM is considered to be the key component in the spread of 

gliomas throughout the brain (32). In addition, the ECM micro-
environmental composition (33) and its mechanical force (34) 
influence the migration of glioma cells. ECM‑binding proteins 
were considered to be indispensable elements of GBM migra-
tion (35). Furthermore, the degradation of ECM‑components 
involves various proteases and hyaluronidases, which are 
important not only in promoting glioma cell migration by 
ECM decomposition, but also in releasing various growth 
and chemotactic factors that stimulate growth, survival and 
migration of GBM (36).

The current study identified 195 genes in the purple module, 
which were markedly associated with OS. Additionally, there 
were 33 candidate genes associated with the OS of patients 
with GBM according to TCGA data, and these may serve as 
prognostic biomarkers for GBM. Data from the STRING 
database further revealed that 113 genes of the 193 candidate 
protein‑coding genes were filtered into the PPI network complex. 
Among these candidate genes, COL1A1 exhibited the highest 
degree in the network. COL1A1 encodes the major component 
of type I collagen, which is the fibrillar collagen found in the 
majority of connective tissues. Previous studies have reported 
that COL1A1 is upregulated in the microvasculature of prolif-
erating GBMs (37). In addition, COL1A1 may be considered for 
use in stratifying patients with GBM into subgroups according 
to the risk of recurrence at diagnosis, as well as for prognostic 
and therapeutic evolution (38). These previous observations are 
consistent with the current research findings, suggesting that 
COL1A1 may also be a potential target for GBM therapy.

Figure 10. Association between LOC541471 and the IDH1 subtype of GBM. 
(A) Expression data of LOC541471 in the GBM dataset obtained from 
(A) TCGA and (B) CGGA. ***P<0.001. GBM, glioblastoma multiforme; 
CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer Genome Atlas; 
IDH1, isocitrate dehydrogenase 1.

Table III. Predicted miRNAs targeted by LOC541471.

Target rank	 Target score	 miRNA name

  1	 84	 hsa‑miR‑548t‑3p
  2	 84	 hsa‑miR‑548ap‑3p
  3	 84	 hsa‑miR‑548aa
  4	 82	 hsa‑miR‑4288
  5	 77	 hsa‑miR‑3138
  6	 76	 hsa‑miR‑93‑3p
  7	 74	 hsa‑miR‑4508
  8	 71	 hsa‑miR‑939‑3p
  9	 69	 hsa‑miR‑5585‑5p
10	 68	 hsa‑miR‑4668‑5p
11	 66	 hsa‑miR‑4278
12	 66	 hsa‑miR‑4492
13	 65	 hsa‑miR‑2110
14	 65	 hsa‑miR‑519d‑5p
15	 64	 hsa‑miR‑3148
16	 63	 hsa‑miR‑1246
17	 62	 hsa‑miR‑4456
18	 62	 hsa‑miR‑1178‑3p
19	 61	 hsa‑miR‑3945
20	 61	 hsa‑miR‑4306
21	 60	 hsa‑miR‑877‑3p
22	 60	 hsa‑miR‑1302
23	 59	 hsa‑miR‑7975
24	 59	 hsa‑miR‑1252‑5p
25	 59	 hsa‑miR‑6853‑3p
26	 58	 hsa‑miR‑6794‑5p
27	 58	 hsa‑miR‑4716‑3p
28	 58	 hsa‑miR‑146b‑3p
29	 57	 hsa‑miR‑6754‑5p
30	 57	 hsa‑miR‑3622a‑5p
31	 57	 hsa‑miR‑542‑3p
32	 55	 hsa‑miR‑651‑3p
33	 55	 hsa‑miR‑1296‑5p
34	 55	 hsa‑miR‑1231
35	 54	 hsa‑miR‑136‑5p
36	 54	 hsa‑miR‑874‑3p
37	 54	 hsa‑miR‑4267
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The current study also identified that FN1 shares the 
highest degree with 33 validated coding genes. Fibronectin 
is a high‑molecular‑weight (~440 kDa) glycoprotein of the 
ECM that binds to membrane‑spanning receptor proteins, 
known as integrins (39). Researchers have proven that FN1 
is upregulated by TWIST1, which is known to promote 
epithelial‑mesenchymal transition and/or GBM invasion (40). 
Furthermore, FN1 is associated with glioblastoma recurrence 
and can be regarded as a target for antiangiogenic therapy (41). 
The current study findings suggest that COL1A1 and FN1 are 
associated with migration, invasion, angiogenesis, recurrence 
and OS in GBM patients. Thus, these genes may serve impor-
tant roles in the tumourigenesis of GBM.

The important roles of certain lncRNAs in GBM were 
clearly demonstrates in the current study. However, under-
standing the functions of these lncRNAs is challenging, since 
numerous lncRNAs are not included in the public databases. 
In the present study, it was demonstrated that LOC541471 
was highly correlated with PLEK2 in GBM. Therefore, the 
biological functions of the lncRNA LOC541471 were further 
examined, and it was observed that it participates in the 
regulation of biological networks. KEGG pathway enrichment 
analysis for all protein‑coding genes exhibiting Spearman's 
correlations with lncRNA LOC541471 of >0.4 revealed that 
the most enriched pathway was OXPHOS. OXPHOS is the 
metabolic pathway in which cells use enzymes to oxidise 
nutrients, thereby releasing energy that is used to produce 
adenosine triphosphate (42). This pathway serves an important 
role in the energy supply of GBM. Researchers have reported 
that IMP2 controls oxidative phosphorylation and is crucial for 
preserving glioblastoma cancer stem cells (43). Additionally, 
OXPHOS complexes may be clearly altered in GBM compared 
with normal brain tissue (44). Research progress in targeted 
therapies also indicates that the simultaneous targeting of 
glycolysis and OXPHOS is highly effective in blocking GBM 
tumourigenic phenotypes (45). Therefore, the present study 
results revealed that LOC541471 may serve a core role in the 
tumourigenesis of GBM, and may be a novel oncogene worth 
further study.

It should be noted that the current study examined a limited 
number of cases. The CGGA database only discloses a small 
part of the data, and these include gliomas from Grade I to 
Grade IV, as well as certain recurrent GBM cases. Therefore, 
only 88 cases met the requirements of the present study. It was 
attempted to add more data from other databases, however, 
standardisation of data from different sequencing platforms 
is not possible. Therefore, these 88 cases were selected for 
analysis. As more data become available in the CGGA data-
base, more cases will be included in future studies.

In conclusion, using GBM data from the CGGA database 
and integrated WGCNA, a survival‑associated gene module 
was identified, and 195 candidate key genes were obtained 
from this gene module. Among them, 33 key genes were 
proven to be correlated with OS, and the majority of the 
genes were involved in pathways associated with the ECM, 
ECM proteoglycans and tyrosine kinases receptor signalling. 
Furthermore, the lncRNA LOC541471 was identified as an 
OS‑associated lncRNA, and appeared to serve a role in the 
OXPHOS of GBM through the PLEK2 gene. These findings 
may significantly enhance our understanding on the aetiology 

and underlying molecular events of GBM, and these candidate 
genes and pathways may serve as novel prognostic markers 
and potential therapeutic targets for GBM.
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