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ABSTRACT High-throughput 16S rRNA gene sequencing technologies have robust
potential to improve our understanding of bee (Hymenoptera: Apoidea)-associated
microbial communities and their impact on hive health and disease. Despite recent
computation algorithms now permitting exact inferencing of high-resolution exact
amplicon sequence variants (ASVs), the taxonomic classification of these ASVs
remains a challenge due to inadequate reference databases. To address this, we
assemble a comprehensive data set of all publicly available bee-associated 16S rRNA
gene sequences, systematically annotate poorly resolved identities via inclusion of
618 placeholder labels for uncultivated microbial dark matter, and correct for phylo-
genetic inconsistencies using a complementary set of distance-based and maximum
likelihood correction strategies. To benchmark the resultant database (BEExact), we
compare performance against all existing reference databases in silico using a variety
of classifier algorithms to produce probabilistic confidence scores. We also validate
realistic classification rates on an independent set of ;234 million short-read
sequences derived from 32 studies encompassing 50 different bee types (36 eusocial
and 14 solitary). Species-level classification rates on short-read ASVs range from 80
to 90% using BEExact (with ;20% due to “bxid” placeholder names), whereas only ;30%
at best can be resolved with current universal databases. A series of data-driven recom-
mendations are developed for future studies. We conclude that BEExact (https://github
.com/bdaisley/BEExact) enables accurate and standardized microbiota profiling across a
broad range of bee species—two factors of key importance to reproducibility and mean-
ingful knowledge exchange within the scientific community that together, can enhance
the overall utility and ecological relevance of routine 16S rRNA gene-based sequencing
endeavors.

IMPORTANCE The failure of current universal taxonomic databases to support the
rapidly expanding field of bee microbiota research has led to many investigators
relying on “in-house” reference sets or manual classification of sequence reads
(usually based on BLAST searches), often with vague identity thresholds and sub-
jective taxonomy choices. This time-consuming, error- and bias-prone process
lacks standardization, cripples the potential for comparative cross-study analysis,
and in many cases is likely to incorrectly sway study conclusions. BEExact is struc-
tured on and leverages several complementary bioinformatic techniques to ena-
ble refined inference of bee host-associated microbial communities without any other
methodological modifications necessary. It also bridges the gap between current practi-
cal outcomes (i.e., phylotype-to-genus level constraints with 97% operational taxonomic
units [OTUs]) and the theoretical resolution (i.e., species-to-strain level classification with
100% ASVs) attainable in future microbiota investigations. Other niche habitats could
also likely benefit from customized database curation via implementation of the novel
approaches introduced in this study.
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Next generation sequencing (NGS) technologies are heavily utilized for characteriz-
ing microbial communities. They can provide insight into the biological relevance

of interacting species as well as their ecological functions in a given ecosystem.
Subgenus-level identification of taxa is considered most valuable in gaining a deeper
functional understanding of host-associated microbial community dynamics, as many
ecologically important traits are specific for species to strains (1). However, accurate
microbial identification at high resolution (i.e., low taxonomic rank) remains a chal-
lenge when studying many niche environments due to the lack of high-identity taxo-
nomic references in publicly available “universal” databases.

For over a decade now, molecular biology-based profiling of bee (Hymenoptera:
family Apidae)-associated microbial communities has been a major global interest in
efforts to control the spread of infectious diseases and reduce population decline of
these important pollinators (2). Largely stemming from the desire to classify novel or
unannotated sequences into processable and comparable taxonomic groupings with-
out prior information of reference taxonomy, most published literature thus far has
used clustering algorithms to group similar sequences (usually at 97% identity) into
operational taxonomic units (OTUs) (3). Consequently, this approach constrains taxo-
nomic resolution to the genus level since sequence matching at 99 to 100% identity is
the only appropriate method for species- to strain-level assignment of 16S amplicon
data (4)—though this is not an intrinsic limitation to 16S rRNA gene sequencing tech-
nologies as a whole. Many newer denoising algorithms (e.g., DADA2, Unoise3, Deblur
[5], ampliCI [6]) that do not depend on similarity thresholds can parse sequence reads
into exact amplicon sequence variants (ESVs/ASVs; synonymous high-resolution ana-
logues of the traditional OTU) that can detect single-nucleotide polymorphisms and
allow species- to strain-level assignment of reads (7). The realization of amplicon
sequence variant superiority in terms of precise microbial identification has led to this
approach being implemented in several large-scale initiatives, including the American
Gut Project and the Earth Microbiome Project (8).

Nonetheless, the potential of ASVs is often limited by sequence length, information
density of the specific hypervariable region(s) targeted, and especially the availability
of well-characterized reference databases for classification of reads. Recent advance-
ments in high-throughput sequencing instruments (e.g., PacBio, Oxford Nanopore, and
Illumina shotgun metagenomic sequencing) have made nearly full-length 16S rRNA
gene sequencing possible, which addresses sequence length concerns. However, while
these methods hold great promise for the future of microbial ecology, they do not solve
the issue of missing or poorly characterized reference sequences and their prohibitive
costs restrict feasibility in population-level or other large-scale studies. Moreover, the taxo-
nomic resolution achievable from sequencing of any given 16S rRNA gene region is highly
habitat specific (9). For example, in comparison to the commonly sequenced V3-V4 region,
the V1-V3 region was recently shown to be more effective for distinguishing taxa at the
species level in the human aerodigestive tract (9). It is therefore critical to assess which 16S
rRNA gene region(s) provides the most informative representation of taxa associated with
the specific environment being studied.

The importance of a comprehensive reference database and habitat-directed 16S rRNA
gene region selection is particularly relevant to closely related hosts, such as bee species
within the superfamily Apoidea. Corbiculate bees (subfamily Apinae, clade Anthophila)
likely provide the best example, given the consistency in observing a similar set of core
microbes across different lineages independent of geography or sympatry (10). Many of
these core microbiota members, such as various Gilliamella spp. for example (originally
grouped within the “Gamma-1” phylotype clustered at 97% identity [11]), have since been
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validly published as separate species and received their own names with Standing in
Nomenclature as per the International Code of Nomenclature of Prokaryotes (12). This
improved resolution has also revealed that many species are closely related anatomical
site specialists that share local resources but perform differential roles within distinct niche
communities along the intestinal tract (13). Thus, being able to accurately distinguish
between closely related species would add considerable value to routine 16S rRNA gene
sequencing studies. Corroborating this, a recent honey bee metagenomic survey has pro-
nounced the need to move beyond the long time standard of phylotype-level microbiota
characterization (14). While efforts have been initiated toward the development of dedi-
cated data portals, like BeeBiome (15), to date, these resources primarily support whole-ge-
nome sequencing and were last updated in 2016. Due to the overall lack of available
resources at large, bee researchers frequently rely on universal databases (e.g., SILVA, RDP,
GreenGenes) to achieve taxonomic classification of 16S rRNA gene sequencing data.

These large all-purpose databases contain an expansive set of phylogenetically diverse
reference sequences that are broadly applicable to a variety of habitats. In most cases, this
generality improves workflow simplicity and provides reasonable estimation of taxonomy
down to the genus level. In contrast, they lack comprehensiveness in habitat-specific taxo-
nomic references and do not encompass the full range of sequence representatives
expected to be found in any one habitat. Moreover, annotation error rates can reach near
20% using these databases due to the inclusion of misannotated 16S rRNA gene sequen-
ces and revision lag in adapting the most up-to-date taxonomic naming conventions (16).
Current approaches to overcoming this include constructing habitat-specific databases by
either (i) generating novel references using long-read sequencing technologies (e.g., RIM-
DP for rumen [17], HITdb for human colon [18], and eHOMD for human aerodigestive tract
[1]) or (ii) compiling a curated list of representatives already available in public data reposi-
tories (e.g., DictDB for termites [19], MiDAS 2.0 for biological wastewater treatment systems
[20], DAIRYdb for dairy products [21], FreshTrain1TaxAss for freshwater fish [22], and
HBDB for honey bees [23]). The latter database, HBDB, is largely outdated but was funda-
mental in early microbiota studies on Apis mellifera by significantly reducing misclassifica-
tion error rates and allowing phylotype (assigned at the family-level) taxonomic resolution.

Another important aspect of assigning taxonomy to sequence reads is the classifier
used, which can impact overall consistency and accuracy of classifications irrespective
to that of the taxonomic references provided. Current 16S pipelines like mothur (24),
KRAKEN2 (25), DECIPHER (26), DADA2 (27), and QIIME2 (28) implement a variety of clas-
sifiers. Notably, the naïve Bayesian classifier (29) is the one most commonly used due
to availability of frequently updated universal taxonomy databases formatted for its
use, its computational efficiency, and its adaptability for improving classification rates
(29–31). The latter is potentiated through supervised learning (i.e., machine learning
that maps an input to an output, based on inference from input-output training data)
for which unambiguous classification of sequences is conditionally dependent on the
occurrence and abundance of differentiating examples provided in the reference train-
ing set. According to these stipulations, supplying a comprehensive and accurately
annotated reference training set tailored to a specific environment is expected to
greatly enhance confidence, accuracy, and depth of classification for sequences found
in the same or similar environments. Recently developed classifier algorithms like
SINTAX (32) and IDTAXA (33) also provide similar performances but report reduced
error rates compared to standards set by the naïve Bayesian classifier (29). Importantly,
despite the algorithm used, classification rates are restricted by the accuracy and com-
pleteness of the applied reference sequences used in training steps.

There continues to be persistent biotic and abiotic threats to bee species, which are
major pollinators for the world’s food supply. Thus, it is critical to understand how
associated microbial communities modulate resistance to these stressors. Currently,
bee microbiota investigations suffer from inconsistent use of classification methods,
unclear 16S rRNA gene region selection, and jejune representation of habitat-specific
references in commonly applied universal training databases. To address these issues,
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in this study, the goals were as follows: (i) to identify the most informative 16S rRNA
gene region for profiling bee-associated microbial communities as a selective guide for
future studies, (ii) to develop a comprehensively annotated reference sequence data-
base (BEExact) for high-precision assignment of taxonomy to high-resolution ASVs, (iii)
to benchmark the developed database against existing universal databases using a va-
riety of taxonomic classifier algorithms, and (iv) to validate realistic classification per-
formance on available 16S rRNA gene sequencing data sets from past bee microbiota
studies.

RESULTS
BEExact database construction and curation. A schematic overview of the study

design is provided in Fig. 1. Initial construction of BEExact was performed by searching
for bacterial 16S rRNA gene sequences available from the International Nucleotide
Sequence Databases (INSD) (including NCBI, EMBL, and DDBJ) using all known bee
families within the clade Anthophila as keywords (e.g., “Apidae,” “Megachilidae,”
“Stenotritidae,” etc.) as well as respective common names when applicable. Additional
sequence representatives were also collected from relevant literature sources (34–48).
This initial compilation step captured 8,869 total sequence representatives with the top 10
bee hosts (per genus by the number of associated 16S rRNA gene sequences) being Apis
(4,106), Bombus (637), Hesperapis (349), Diadasia (347), Megachile (338), Redviva (333),
Halictus (305), Xylocopa (305), Colletes (301), and Calliopsis (282). Lower-quality sequences
were filtered out based on sequence length (,1,300bp) and replaced, if possible, with
higher-quality representatives (.99% percent identity) from the latest SILVA v138,
GreenGenes v13.8, RDP v18, and GTDB r95 databases. After removal of duplicates, chime-
ras, sequences with suspiciously long V4 regions, and contaminating sequences of non-
bacterial origin, the intermediate BEExact database contained 4,518 bee host-associated
16S rRNA gene sequence representatives. The preprocessed redundant accession list con-
taining the original 8,869 sequences (see Data Set S1A in the supplemental material) and
the mapping file to the nonredundant 4,518 quality-filtered identifiers (Data Set S1B) are
provided for completeness and traceback inquiries.

Strictly based on designations of taxonomy identifiers (NCBI:txid numbers) associ-
ated with each accession, only 1,620 sequences (35.9%) were initially annotated at the
species level—likely representing an artifact of either lacking reference taxonomy at
the time of sequence submission, misannotated environmental sequences, or public
database inconsistencies preventing consensus labels. To improve taxonomic resolution in
the data set, unannotated sequences were queried against type strain material (at .98.7%
similarity based on species-level cutoff [49]) in GenBank as well as the latest reference (i.e.,
nonclustered) versions of SILVA and RDP. This step successfully increased total annotations
at the species level to 3853 (85.3%). The remaining dark matter sequences lacking adequate
similarity to be assigned taxonomy at the species level were instead annotated down to
their lowest common rank (LCR) based on established thresholds (49, 50). Subsequently, we
implemented a novel method of de novo taxonomy approximation (see Materials and
Methods for details) to generate phylogenetically consistent placeholder names and achieve
complete taxonomic lineage integrity for all sequences in the BEExact database (Table 1).

As an additional form of quality assurance, manual inspection of taxonomy was per-
formed as previously described (16) by correcting taxonomic inconsistencies in which
members of the same taxonomic rank were present with dissimilar taxonomic lineages
due to mislabeling or outdated naming conventions. Furthermore, we recruited a set
of close neighbor (CN) type strain sequences as authoritative points of reference which
were used with an established semiautomated phylogeny-aware taxonomy improvement
and validation algorithm (51) to correct for branching errors in monophyletic taxonomic
groups. Altogether, these curations steps enabled a stable taxonomic reference point to
be developed for all sequence representatives and greatly improved overall robustness
and accuracy.

The BEExact reference data set (BEEx-FL-refs) that was used for all subsequent
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benchmarking and validation experiments contains 4,518 nearly full-length bee host-
associated bacterial 16S rRNA gene sequences consisting of 11 phyla, 17 classes, 57
orders, 96 families, 219 genera, and 643 species (Data Set S1C). Gammaproteobacteria
(52.9%), Bacilli (25.2%), Alphaproteobacteria (11.6%), and Actinobacteria (7.8%) dominated
the database at the class level. Additionally, enrichment in many of the species that make
up the core microbiota of eusocial corbiculate bees (52), including Gilliamella,

FIG 1 Overview of study design. Briefly, the initial BEExact database was generated by collecting a set of all bee-associated 16S rRNA gene sequences
available from public databases or literature sources. The sequences were then extensively curated to correct for mislabeled taxonomic representatives as
well as to provide placeholder names to uncultured microbial dark matter. The performance of classifier algorithms was compared in silico to determine
the optimal choice, followed by comparisons to existing databases. In a final validation step, BEExact was tested on 32 data sets to demonstrate its
capacity to enable confident classification of bee host-associated microbial communities. Sequence representatives from missed taxa were supplemented
to the final database to maximize comprehension.
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Snodgrassella, Lactobacillus, Apilactobacillus, and Bombilactobacillus spp., was
observed.

Evaluation of primer sets used for 16S rRNA gene sequencing. Primer pair selec-
tion determines which hypervariable region of the 16S rRNA gene is amplified, and
thereby can strongly influence the results attained in microbiota studies (53–55).
Calculation of pairwise entropy at each nucleotide site showed expected regions of
hypervariability among sequences in the BEEx-FL-refs data set (Fig. 2A). Two intrinsic
limitations to 16S rRNA gene-based microbial identification using current sequencing
technologies are primer bias and ambiguity of shorter sequence reads. Accordingly, in
silico PCR was performed to provide an informative assessment of which routinely
used primer sets (Data Set S1D) offer the most valid representation of bacterial com-
munity structure based on the sequences present in BEEx-FL-refs. Extraction rates var-
ied substantially across hypervariable regions, with primer sets targeting the V1-V3
region performing very poorly (;40% extraction; Fig. 2B). In contrast, primer sets tar-
geting V3-V4, V4, V4-V5, or V5-V6 regions demonstrated the highest extraction rates
during in silico PCR (;90% in each case; Fig. 2B) and were further assessed for their
ability to detect and accurately characterize bee-associated taxonomic representatives.
Assuming zero mismatches in primer binding, the sequence length of extracted in sil-
ico amplicons demonstrated minor variance for V4 (95% confidence interval [CI] = 252
to 255 bp; interquartile coefficient of variation [QCV] = 1.19%), V4-V5 (95% CI = 372 to
377 bp; QCV= 1.60%), and V5-V6 (95% CI = 299 to 301 bp; QCV= 1.33%) primer sets
(Fig. 2C). The extraction set obtained using the V3-V4 (95% CI=404 to 431bp; QCV=6.52%)
primer set also showed minimal variance in the primary amplicon (;429bp) but exhibited a
multimodal distribution in sequence length with approximately 15% divergence toward
shorter secondary amplicons (;409bp)—a feature which has the potential to negatively
impact some but not all classifier algorithms (33).

Since redundancy of extracted sequences can occur in a hypervariable region-de-
pendent manner (i.e., sequences which are unique at full length can be identical to
close relatives when fragmented), we assessed how primer selection may impact com-
mon diversity metrics used in bee microbiota studies. On the basis of Shannon’s H
index (accounting for species abundance and evenness) and the Berger-Parker index
(proportional abundance of the most abundant species, or species dominance), primer
sets targeting V4 and V4-V5 regions demonstrated the lowest divergence from spe-
cies-level alpha diversity of the parent data set (Fig. 2D and E). Conversely, V5-V6-tar-
geting primers seemingly produced the least accurate representation of microbial
community structure in terms of alpha diversity. To provide an estimate of how this
bias may impart discrepancies between microbiota studies using different primer sets,
we performed in silico PCR under realistic conditions allowing for incremental mis-
matches (m= 1 to 3) during primer binding (Fig. 2F).

Overall, no “perfect” primer set was identifiable for profiling of bee-associated mi-
crobial communities, though for all intents and purposes, V3-V4 primers likely offer the
most comprehensive and accurate assessment. V4 primers also demonstrated that

TABLE 1 Number of placeholder names for unculturable (or yet to be cultured) taxa
following phylogenetic correction to distance-based group memberships at each taxonomic
rank

Taxonomic rank
No. of valid
species namesa

No. of de novo placeholder
(bxid) namesb

Phylum 4,518 0
Class 4,518 0
Order 4,514 4
Family 4,509 9
Genus 4,437 81
Species 3,900 618
aSequences with species-level annotations based on.98.7% identity with type strain representatives.
bPlaceholder names given to sequences with less than,98.7% identity with type strain representatives.
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they were adequate at capturing bee-associated sequences but cannot distinguish
between closely related Gilliamella spp. that occur in different bee hosts due to a lack
of information density in the shorter spanning sequence length (Fig. 2C) (see Fig. S1A
and B in the supplemental material for type strain comparisons). In contrast, V4-V5
primer sets are particularly poor at detecting Bifidobacterium and Bombiscardovia spp.
(complete extraction failure at m= 0) which are important microbiota members in cor-
biculate bees. Whereas V5-V6 primers demonstrated the lowest overall performance,
failing to extract many species even after allowing up to m=2 mismatches in primer
site binding including that of pathogenic intracellular Spiroplasma spp. (Fig. 2F). For
inquiries on specific taxa of interest, an extended breakdown table is provided which
lists exact values for each of the primer sets tested against all reference sequences in
the BEEx-FL-refs data set (Data Set S1E).

Classifier comparisons and selection. Taxonomic classifiers are considered to be of
secondary importance compared to the reference database and sequencing technologies

FIG 2 Comparison of hypervariable regions and common primer sets for classification of honey bee-specific taxa encompassed within the BEExact
database. (A) Shannon’s entropy was calculated for each position on a 50,000 bp alignment of the 16S rRNA gene. Data shown as de-gapped
representative sequences of equal length matching aligned E. coli 16S rRNA gene positions 30-1390. Orange arrows indicate regions of highest
sequence conservation. (B) In silico PCR was performed on the regions of interest using the ‘pcr.seq’ function in mothur with zero mismatches allowed
(m = 0). (C) Variance in amplicon sizes produced by in silico PCR using the top four primer sets. Each open circle represents a non-redundant sequence
for the given region. QCV = Interquartile coefficient of variation. (D and E) Species-level alpha diversity metrics were calculated using the Shannon’s H
and Berger-Parker indices for the top four 16S gene regions showing the highest extraction rates following in silico PCR. (F) Genus-level breakdown of
16S rRNA gene sequence extraction efficiencies using the top four primer sets tested. Calculations were performed using the ‘extract-reads’ command
of the q2-feature-classifier in QIIME2, allowing for up to 3 mismatches (m = 3) between the forward and reverse primer sequences combined. The lower
the extraction efficiency, the higher likelihood that taxa will be underrepresented or potentially missed in a given sample.
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used (54), though their impact on study outcome is not negligible and distinct advantages
exist, particular in terms of accuracy (50). To evaluate the relevant classifier algorithms, the
BEEx-FL-refs data set was first trimmed to the hypervariable regions of interest to generate
several training sets (BEEx-FL-TS, BEEx-V4-TS, BEEx-V3V4-TS, BEEx-V4V5-TS, and BEEx-V5V6-
TS) which were then converted into a compatible format based on classifier specifications.
Recent reports suggest that trimmed training sets offer improvement in performance over
their full-length counterparts (1), which we also independently validated in this study can
reduce classification error by up to ;1.5% (Fig. S1C). Next, we compare several classifiers
(Fig. 3) including KRAKEN2, SINTAX, IDTAXA, the naïve Bayesian classifier implemented in
DADA2 (DADA2-NBC), and the naïve Bayes scikit-learn classifier implemented in QIIME2
(QIIME2-NB) for their ability in accurately annotating query sequences in simQS-V3V4-i to
simQS-V3V4-iii—simulated short-read data sets generated by introducing realistic error
rates (;1%) to bee-associated V3-V4 sequences (randomly sampled from the parent data-
base BEEx-FL-refs during in silico PCR) using established Mosla Error Simulator (MESA) soft-
ware (56) (see Materials and Methods section for more details).

Similar to previous reports using human gut and soil sample data sets (50), SINTAX,
QIIME2-NB, and DADA2-NBC achieved comparable classification rates and demonstrated a

FIG 3 Classifier comparisons against simulated error and novel sequence decisions. (A) BEEx-V3V4-TS was used as the training set to classify n= 3 randomly
sampled test subsets (simQS-V3V4-i to -iii; 500 sequences each) which were derived from the parent data set but had ;1% simulated error introduced. (B)
k-fold cross validation (k= 10) tests were performed to assess the ability of each classifier to accurately assign novel sequences in the case when using a
training set which does not contain any common sequences with the corresponding test set being classified. Plots represents the species-level
misclassification rate (MCR) and underclassification rate (UCR) for the labeled classifier. Default classifier settings were used, and confidence thresholds were
set at increasing increments of 10 (across the available range of 0 to 100) to approximate optimal performance error rate (oPER) where MCR � UCR (shown
above the gray indicator arrows in each graph). (C) Visual summary of species-level classification rates for the error-simulated query sets. (D) Optimal
performance error rate (oPER) comparisons. Data depict means 6 standard deviations (error bars) (one-way ANOVA with Tukey’s multiple comparisons) of
n=3 classification runs using the simQS-V3V4-i to -iii data sets. (E) Overclassification rates (OCRs) shown for V3V4-trimmed sequences as determined by
cross validation by identity (CVI) using TAXXI benchmark scripts.
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nearly perfect trade-off between decreased true-positive and false-positive annotation
rates as confidence thresholds (i.e., bootstrap support cutoffs) increased (Fig. 3A). The
mean optimal performance error rate (oPER 6 standard error [SE]) for SINTAX, QIIME2-NB,
and DADA2-NBC, calculated using the confidence threshold at which sequence misclassifi-
cation rates (MCRs) and underclassification rates (UCRs) were at their combined lowest,
was determined to be 2.4%6 0.2%, 3.9%6 0.6%, and 5.86 0.4%, respectively (Fig. 3A).
The KRAKEN2 classifier, which has been reported to be faster and more accurate than
QIIME2-NB (25), demonstrated very low error rates supporting past accuracy claims but
also left many sequences unclassified resulting in the overall worst performance
(oPER=8.7%6 0.94%; Fig. 3C). Conversely, IDTAXA demonstrated a significantly lower
oPER (1.2%6 0.1%) compared to KRAKEN2, DADA2-NBC, and QIIME2-NB classifiers and
trended toward being lower than SINTAX (Fig. 3D). Uniquely, IDTAXA also demonstrated a
sharp decline in error rates as bootstrap support increased and had the lowest error rates
across all confidence thresholds tested (Fig. 3A to D)—a distinguishing feature potentially
explainable by its de novo detection of putative mislabeling errors in reference training
sets and the ability to automatically correct for spurious query matches (33). To demon-
strate robustness, we also performed these same tests on simulated V4, V4-V5, V5-V6, and
full-length query sets and show that IDTAXA reliably exhibits the best performance in
nearly every case (Fig. S2).

Under realistic scenarios, the training set will not always possess adequately similar
matches to enable species-level classification of all sequences in the query set, which
increases the number of decisions made for assigning taxonomy based on lowest com-
mon rank (LCR). Thus, we performed k-fold cross-validation (57) to stress test the classi-
fiers against novel sequences (i.e., all query sequences were completely absent from
the training set). Classifiers unanimously demonstrated substantially higher error rates
and worse oPRs during classification of (k=10) V3-V4 query sequence sets, but as in
the simulated error test runs, IDTAXA performed best with similar trends existing for
the other classifiers (Fig. 3B). However, since k-fold and other nonphylogenetically
aware cross-validation methods have been criticized as being unrealistic, we also per-
formed cross-validation by identity (CVI) using the TAXXI benchmark which has
recently been proposed as a viable solution (50). Consistent with results so far, IDTAXA
demonstrated lower CVI overclassification rates (OCRs) at nearly every confidence
threshold for the V3-V4 region compared to the other classifiers (Fig. 3E). Once again,
all tests were performed on V4, V4-V5, V5-V6, and full-length query sets, with the full
panel benchmarks for both k-fold cross-validation and CVI provided for completeness
(Fig. S3 and Data Set S1F).

These findings together represent the first comparative report on how different
classifier algorithms affect annotation accuracy of bee-associated 16S rRNA gene
sequences and independently validate IDTAXA performance claims (33) on the basis of
lower error rates and higher total number of accurately classified query sequences.

Comparisons between BEExact and existing databases. Based on findings so far,
IDTAXA was used as the preferred classifier to determine BEExact performance in com-
parison with the latest versions of several universal databases (SILVA v138, GTDB r86,
and GreenGenes v13.8) as well as the two honey bee (Apis spp.)-specific databases,
HoloBee v2016.1 (58) and HBDB (23). The latter, HBDB, was modified to included spe-
cies-level annotations (based on NCBI taxonomy; see Materials and Methods section
for full details) for phylotype members that at the time of study were not fully taxo-
nomically characterized. All databases were also trimmed to the 16S rRNA gene region
of interest prior to use as training sets (e.g., formatted as SILVA-‘variable region’-TS).

Using the full-length simulated query sets from previous steps (simQS-FL-i to -iii), all
existing universal database-derived training sets performed well at enabling assign-
ment of taxonomy at higher ranks with total classification rates ranging from ;95 to
100% for phylum, class, order, and family (Table 2). Consequently, due to the limited
reference set sizes of HBDB-FL-TS and HoloBee-FL-TS, total classification rates were ;20
to 30% lower at the family rank and higher (Table 2). At the genus and species level for
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existing databases, HoloBee-FL-TS and HBDB-FL-TS classified most honey bee-specific
taxa present in the query set (as their original purpose intended), whereas SILVA-FL-TS
and GTDB-FL-TS displayed the highest overall classification rates at both ranks. Notably,
none of the training sets tested besides BEEx-FL-TS could accurately achieve beyond
;30% species-level classification at any confidence threshold (Fig. 4A and B).

In contrast to the observed trends for total classification rates, the accompanying
error rates for GG-FL-TS, SILVA-FL-TS, and GTDB-FL-TS were considerably variable across
higher taxonomic ranks (family and above), which is counterintuitive to the relatively
lower error rates displayed at the genus level for these training sets (Table 2).
Specifically, further inspection revealed that the MCR associated with GTDB-FL-TS was
strikingly higher than all other training sets tested, with the effect rapidly lessening as
IDTAXA confidence thresholds were incrementally raised (Fig. 4).

These findings, alongside the fact that IDTAXA automatically corrects for most taxonomic
branching order disagreements, suggests that these higher rank errors are likely due to either
database-specific artifacts from custom branching order of taxonomic lineages (16) or the sys-
tematic propagation of outdated lineage names from the latest Bergey’s taxonomy manual
(59), which was last updated in 2012. Visual inspection of the data confirmed this, in part,
demonstrating that despite identical genus- or species-level classifications of a given
sequence between databases, there were several discrepancies in identity at the phy-
lum (e.g., Actinobacteria ! Actinobacteriota and Bacteroidetes ! Bacteroidota), class
(e.g., Betaproteobacteria ! Gammaproteobacteria), order (e.g., Pseudonocardiales !
Corynebacteriales, Rhodospirillales ! Acetobacterales, Orbales ! Enterobacterales,
Neisseriales ! Betaproteobacteriales, and Bifidobacteriales ! Actinomycetales), and
family (e.g., Orbaceae ! Enterobacteriaceae, Flavobacteriaceae ! Weeksellaceae,
Leuconostocaceae ! Lactobacillaceae, Yersiniaceae ! Enterobacteriaceae,
Morganellaceae ! Enterobacteriaceae, and Paenibacillaceae ! Brevibacillaceae) lev-
els for many database references. In the case of GTDB, many of these discrepancies
are likely the result of recent standardized taxonomic revisions based on whole-ge-
nome phylogenomics (60). Many advantages exist for restructuring taxonomic line-
age by way of marker gene conversion based on whole-genome data, but

TABLE 2 Demonstrative full lineage results using V3V4 training sets on simQS-V3V4-i to -iii query sets

Database

% total classified, %misclassified, or % accurately classified (mean± SE)a

Phylum Class Order Family Genus Species
% total classified
BEExact 100.06 0.0 100.06 0.0 100.06 0.0 100.06 0.0 100.06 0.0 1006 0.0
SILVA v138 100.06 0.0 100.06 0.0 100.06 0.0 99.46 0.1 95.36 0.1 40.36 0.4
GTDB r95 99.36 0.1 99.36 0.07 98.76 0.2 97.56 0.2 89.06 0.4 68.46 0.6
HoloBee v2016 89.26 0.4 88.86 0.4 83.56 0.4 80.76 0.7 75.46 0.9 38.06 1.8
GG v13.8 100.06 0.0 100.06 0.0 99.86 0.1 95.06 0.7 79.06 0.6 17.56 0.6
HBDB v2012 87.46 0.2 85.36 0.2 70.36 0.3 61.36 0.8 53.736 0.8 29.96 0.6

% misclassified
BEExact 0.06 0.0 0.06 0.0 0.06 0.0 0.06 0.0 0.06 0.0 0.16 0.1
SILVA v138 5.66 0.5 1.16 0.1 3.56 0.2 4.36 0.2 10.26 0.2 10.56 0.1
GTDB r95 5.96 0.7 24.46 0.2 186 0.7 19.76 0.8 10.76 0.4 50.56 1.0
HoloBee v2016 24.96 0.4 10.56 0.4 18.46 0.4 13.96 0.9 22.96 1.0 29.06 1.9
GG v13.8 26.16 0.4 12.96 0.4 48.46 0.7 13.16 0.4 12.076 0.4 8.96 0.5
HBDB v2012 23.36 0.4 7.56 0.4 11.46 0.4 13.16 0.2 20.16 0.8 23.56 0.7

% accurately classified
BEExact 100.06 0.0 100.06 0.0 100.06 0.0 100.06 0.0 100.06 0.0 99.96 0.1
SILVA v138 94.46 0.5 98.96 0.1 96.56 0.2 95.16 0.3 85.16 0.2 29.86 0.3
GTDB r95 64.16 0.2 77.96 0.5 58.96 0.1 48.26 0.6 33.66 0.4 6.36 0.7
HoloBee v2016 64.36 0.2 78.36 0.8 65.16 0.7 66.86 0.2 52.56 0.3 9.06 0.5
GG v13.8 93.56 0.7 74.96 0.2 80.76 0.6 77.86 0.9 78.36 0.8 17.96 0.5
HBDB v2012 73.96 0.4 87.16 0.4 51.46 0.8 81.96 0.9 66.96 0.6 8.76 0.2

aAll values were obtained using IDTAXA (bootstrap cutoff = 20).
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unidentified contamination remains a concern (61). Indeed, official GTDB documentation
(https://data.ace.uq.edu.au/public/gtdb/data/releases; see “FILE_DESCRIPTIONS”) states that
contaminating sequence fragments in the database can cause incongruent taxonomic
assignment in certain cases. Together, this may readily explain the relatively high rate of spe-
cies-level classification using GTDB-FL-TS (Table 2 and Fig. 4A and B) alongside the pro-
nounced error rate of ;50% (confidence threshold=20% with IDTAXA), especially com-
pared to the significantly lower error rates observed using other universal database-derived
GG-FL-TS (;9%) or SILVA-FL-TS (;11%) training sets (Table 2 and Fig. 4C). Despite the latter
similarities, SILVA-FL-TS offered the most balanced profile among the existing classifiers and
accurately classified over threefold-more sequence than GG-FL-TS (Table 2). In accordance
with these findings, SILVA-derived training sets were used for all subsequent comparative
validation experiments as a measurable reference point on which to gauge BEExact perform-
ance against the best leading database in existence.

Validating BEExact performance on published data sets. As a demonstration of
its ultimate purpose, we assessed the performance of BEExact on classifying high-
throughput 16S rRNA gene sequencing data derived from 32 independent literature
sources in which bee host-associated microbial communities were sampled (Table 3).

Following retrieval from the SRA database, all data sets were processed similarly
through the DADA2 pipeline resulting in a nonredundant set of 6,847 total V3-V4

FIG 4 BEExact outperforms against existing databases. (A) Classification rates of V3-V4 simulated reads (i.e., simQS-V3V4-i to -iii query sets) using IDTAXA
with BEExact (BEEx-V3V4-TS), Genome Taxonomy Database r95 (GTDB-V3V4-TS), Honey Bee Database v20112 (HBDB-V3V4-TS), SILVA v138 (SILVA-V3V4-TS),
GreenGenes v13.8 (GG-V3V4-TS), or HoloBee v2016.1 (HoloBee-V3V4-TS) training sets. (B) Visual summary of species-level classification rates and (C) error rate
comparisons between training sets with IDTAXA (bootstrap cutoff = 20). Error rate data are depicted as means 6 standard deviations (one-way ANOVA with
Tukey’s multiple comparisons) for n=3 separate classification runs with the simQS-V3V4-i to -iii query sets.
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region ASVs (nrQS-V3V4), 12,614 total V4 region ASVs (nrQS-V4), 729 total V4-V5 region
ASVs (nrQS-V4V5), and 3,554 total V5-V6 region ASVs (nrQS-V5V6) before removal of
contaminants including ASVs originating from mitochondria, chloroplast, and host bee
genomes which were not considered in classification rate calculations (Data Set S1G
and H). To provide guidance in future studies, we first evaluated a single-region subset
of ASVs from the largest data set (nrQS-V4) to determine how sequence depth impacts
the overall quality and comprehensiveness of surveying bee-associated microbial com-
munities. We determined that the total number of detectable ASVs per study was
strongly and positively correlated (R2= 0.9337) with per sample read counts (i.e., read
depth; Fig. S4A and B).

To confirm that this was a product of sequencing instrument limitations, rather
than real variation in microbial diversity of the bee samples between different studies,
we utilized an established next-generation sequence simulator (ART [62]) to emulate
several MiSeq runs at various read depths using a subset of in silico-extracted V4
sequences from BEEx-FL-refs (total of 718 unique sequences used as inputs). Based on
mimicked error rates calculated from sequencing data evaluated in this study (Fig. S5),
less than half of the 718 unique input sequences were detectable by the denoising
algorithm implemented in DADA2 at a per sequence read depth of 32,000. As read
depth doubled to 64,000, approximately 70% of ASVs were detectable, and at a read
depth of 256,000, .80% of ASVs were detectable (Fig. S4C). These trends in the simu-
lated data sets strongly recapitulated empirical observations (Data Set S1G to J;
Fig. 5B) and suggest that a majority (approximately 50% or more) of rare or low-abun-
dance bee host-associated sequence variants are likely missed in studies sampling at a
read depth of ,50,000 reads per sample. Corroborating the reported importance of
sequencing depth on characterization of microbial communities (63), the number of
ASVs shared between any two or more data sets (i.e., overlapping redundancy of ASVs)
was directly related to the total number of ASVs detected in any one data set being
compared (Fig. S4A).

Next, using the IDTAXA classifier, we assessed how reference sequence differences
(i.e., BEExact versus SILVA training sets trimmed at each relevant 16S rRNA gene region)
impacted overall taxonomic assignment of ASVs found in nrQS-V3V4, nrQS-V4, nrQS-
V4V5, and nrQS-V5V6. Similar performances were exhibited on a per study basis by all
BEExact and SILVA training sets when considering mean 6 SE classification rates at the
phylum (97.8%6 0.5% versus 99.01%6 0.1%; P = 0.9666), class (97.02%6 0.6% versus
99.8%6 0.1%; P = 0.8105), order (94.13%6 1.2% versus 99.0%6 0.2%; P = 0.0728),
family (92.5%6 1.5% versus 97.4%6 0.4%; P = 0.0740), and genus (89.2%6 1.8% ver-
sus 87.5%6 1.0%; P = 0.9949) levels (Fig. 5A). However, at the species level, BEExact
enabled strikingly higher classification rates compared to SILVA (81.0%6 1.8% versus
28.4%6 1.6%; P, 0.0001).

Since the true taxonomy of ASVs is unknown, classifier confidence thresholds were
used as a proxy to gauge the certainty at which taxonomic predictions were made.
BEExact produced significantly higher overall mean 6 SE confidence scores for spe-
cies-level classifications compared to SILVA (40.59%6 0.32% versus 25.5%6 0.18%;
P, 0.0001; Fig. 5B, Data Set S1I and J).

Breakdown of classification rates after accounting for background differences in
bee host and sample type also demonstrated that BEExact outperformed SILVA in all
instances (Fig. 5C and D). Notably, SILVA demonstrated a general trend toward higher
classification on samples from eusocial corbiculate bee hosts rather than those from
solitary bee origin—an effect potentially due to a higher sequence representation
associated with the former as a result of the extensive characterization of social bee
gut microbial communities (52). Nonetheless, two of the lowest classification rates
based on bee host using either training set came from A. mellifera bee bread and Apis
cerana adult gut samples (derived from BioProject accession no. PRJEB25500 [64] and
PRJNA348791 [65]), respectively). Thus, this means either that there are still certain
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FIG 5 BEExact classifies more ASVs and at higher confidence compared to the widely implemented SILVA database. (A) Overall classification rates at each
taxonomic level for all data sets evaluated. Data depict means 6 standard deviations at each level for n= 32 data sets with statistics shown for two-way
ANOVA with Tukey’s multiple comparisons. (B) IDTAXA bootstrap confidence scores on the total set of 4,957 unique ASVs from all data sets combined. The
dotted line showing the cutoff (20%) used for all other comparisons shown. (C and D) Classification rates broken down by bee species (grouped by
eusocial or solitary type membership) (C) and by sample type irrespective of background bee type (D). Data depict means 6 standard deviations per
sample classified in each of the categories shown (two-way ANOVA with Tukey’s multiple comparisons). (E and F) Scatterplots demonstrate that BEExact
outcompetes SILVA more often in assigning taxonomy to ASVs found at either high prevalence or abundance across all data sets evaluated. Nested
visualization plots above show how classification rates change based on differences in ASV prevalence. (G) Heat trees display the weighted classification

(Continued on next page)
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novel corbiculate bee-associated taxa awaiting to be discovered or that these studies
experienced heavy contamination from environmental sequences.

Abundance and prevalence cutoffs are frequently implemented during data analy-
sis of microbiota studies to eliminate noise and improve data set comprehension,
though thresholds are generally chosen arbitrarily. As a reference point for future
microbiota studies on bee hosts, we evaluated a series of relative abundance and prev-
alence cutoffs (calculated for each data set separately) to determine whether there
may be an approximate optimal range determinable based on classification likelihood.
For BEExact, classification rates sequentially improved with ascending abundance
thresholds of 0.001% to 0.1%, which support its niche habitat (bee host) specificity
(Fig. S6). Whereas for SILVA, improvement in classification rates occurred after only the
highest cutoff (0.1%), which can be expected simply based on the sheer reduction in
classifiable sequences (Fig. S6B). Prevalence thresholds demonstrated a similar trend
(Fig. S6C and D), and importantly appear to be better suited for data set noise reduc-
tion based on visualization of these relationships shown in the prevalence-abundance
scatterplots in Fig. 5E and F.

Specifically, when considering only ASVs found at a prevalence of .1.0% in any
given data set, there is never an instance when applying additional abundance cutoffs
would yield better classification rates without concurrently eliminating a large majority
of ASVs found with a relative abundance between 0.0001 and 0.01% (Fig. 5F). In con-
trast, applying an abundance cutoff of 0.00001% favorably avoids the large undercut
of ASVs (mostly classified by BEExact) found at low abundance and high prevalence,
while reducing low-abundance ASVs which BEExact was unable to classify, and thus
likely represent environmental contaminants or transient taxa. From these observa-
tions and assuming an adequate sample size, a combined prevalence cutoff of #0.05%
(frequency# 5� 1024) and abundance cutoff of#0.00001% (frequency# 1027) appear
justified for general purposes. Taxonomic heat trees for BEExact and SILVA in Fig. 5G
display the phylogenetic relatedness of ASVs remaining unclassified after applying the
aforementioned cutoffs. Visual inspection demonstrated that despite classifying far
more ASVs at the species level, BEExact left twice as many taxon groups (12 versus 6)
completely unclassified at the family level or higher (i.e., no lower common rank mem-
bers in any of the lineage were classified) compared to SILVA (Fig. 5G).

Probing unclassified ASVs to determine applicability as additional database
references. If the identified groups of unclassified ASVs were indeed derived from bee
host-associated microbial communities, then it could be expected that inclusion of
sequence representatives in BEExact would further improve classification rates on addi-
tional, independent, 16S rRNA gene sequencing data sets derived from bees. To test
this theory and demonstrate proof of principle, we randomly broke up the nrQS-V4
data set (largest single-region sample size and most ASVs of those evaluated) into two
groups irrespective of background bee host, sample type, or any other discriminating
data set feature (Fig. 6A). ASVs from the first group which were left unclassified by
BEExact but matched unambiguously at 100% identity to type material were then
added (with annotated taxonomy) to the region-specific BEExact training set to create
BEEx-V4-TS1uG1.

As expected, when reclassifying ASVs from the first group, using the training set
containing the additional annotated reference sequences derived from the same
group (BEEx-V4-TS1uG1) significantly improved mean 6 standard deviation (SD) classi-
fication rates (88.5%6 4.7% versus 84.9%6 5.6%, respectively) compared to the origi-
nal training set BEEx-V4-TS (Fig. 6B). Next, the same training sets were used to classify
the independent set of ASVs from the second group, which showed that BEEx-V4-TS-
uG1 once again exhibited significantly higher classification rates (87.7%6 1.6% versus

FIG 5 Legend (Continued)
rates across the entire taxonomic lineage for the top ASVs after collapsing to species-level identity. A cutoff of 1% prevalence or 0.01% abundance was
applied to show only the most relevant bee-related taxa while minimizing transient environmental taxa. Abundance was adjusted by normalizing for 16S
rRNA copy number differences between taxon groups. AG, adult gut; AH, adult head; S, surface; L, larvae; BB, bee bread.
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84.0%6 3.6%, respectively) compared to the original training set BEEx-V4-TS (Fig. 6C).
For completeness, we also evaluated analogous comparisons using the complemen-
tary set of unclassified ASVs in the second group, which when added to the original
BEEx-V4-TS demonstrated nearly identical patterns of ASV classification improvement
for both groups (Fig. 6B and C). On the basis of these findings, we performed a thor-
ough search for all data sets that were evaluated in this study and then supplemented
sequence representatives of ASVs with matching criteria (i.e., $0.00001% abundance
and $1.0% prevalence in any data set with unambiguous 100% match to type mate-
rial) to the final database for maximized performance.

BEExact is publicly available at https://github.com/bdaisley/BEExact and preformat-
ted for seamless integration with IDTAXA (33) as well as the classifiers implemented in
DADA2 (27) and QIIME2 (28) pipelines, but can be adapted for use with any classifier
permitting customized databases.

DISCUSSION

This study demonstrated the utilization of a novel method for generating a host-tai-
lored metataxonomic reference database, which when applied to bees, permitted sig-
nificantly improved species-level classification of 16S rRNA gene sequencing ASVs
derived from bee-associated microbial communities. The most notable advancement
in this regard is massively improved data set resolution and ability to draw meaningful
conclusions based on accurate profiling of taxonomic structure and composition.
Furthermore, several sets of primers and classifier algorithms were compared as were
the effects of ASV prevalence and abundance cutoffs, which together may provide a
useful point of reference for future studies investigating host-microbe interactions in a
broad range of bee species.

Evaluation of primer sets commonly used for 16S rRNA gene sequencing demon-
strated that V3-V4, V4, V4-V5, and V5-V6 targeting primers offered the highest raw cap-
ture rates for bee-associated sequences found in BEEx-FL-refs (;90% for each; Fig. 2B).
However, discrimination against taxonomic groups (i.e., identity of noncaptured
sequences) varied substantially. When allowing no mismatches in primer binding

FIG 6 Probing unclassified ASVs to determine applicability as additional database references. Shown is a subset of the V4-16S rRNA gene sequencing data
sets evaluated in this study, which were randomly divided into two groups for demonstrative purposes. (A) The bar plot on the left depicts species-level
classification rates for each data set using BEEx-V4-TS with IDTAXA classifier (bootstrap cutoff = 20%). The flowchart on the right shows the steps taken in
supplementing BEEx-V4-TS with unmatched ASVs (i.e., unclassified ASVs from either group 1 or 2) to create BEEx-V4-TS1uG1 and BEEx-V4-TS1uG2,
respectively. (B and C) Before-after plots show that added sequences in BEEx-V4-TS1uG1 can increase the classification rates on parent data sets from
which they were derived (group 1) as well as independent data sets from which they were not derived (group 2). Similar trends are displayed for BEEx-V4-
TS1uG2. Individual data points represent total classification rates per study (n= 8 for group 1; n= 9 for group 2) with statistics shown for two-way ANOVA
with Tukey’s multiple comparisons. IDTAXA (bootstrap cutoff = 20%) was used for all comparisons. Green symbols indicate that group 1 data sets are being
classified, while blue symbols indicate that group 2 data sets are being classified. The line color indicates which group the unmatched sequences in the
training set being compared came from (BEEx-V4-TS1uG1=green, BEEx-V4-TS1uG2=blue).
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(m=0), V3-V4 and V4 in silico PCR amplicon sets showed the least divergence from
originating sequence population based on species-level alpha diversity metrics
(Fig. 2D and E). In comparison to other primer sets tested, this suggests V3-V4 and V4
primer sets offer a balanced primer bias and a more representative assessment of true
taxonomic composition for bee-associated taxa. However, while V4 primers may be
adequate for certain bee hosts with simple microbiota profiles, the information-rich
ASVs produced by V3-V4 primers offer considerably higher resolving power in distin-
guishing between closely related taxa (see Fig. S1 in the supplemental material). Thus,
V3-V4 primers which are the gold standard for characterizing plant microbial commun-
ities (66) should also be considered the first choice in bee microbiota investigations to
facilitate field-wide standardization, thereby enabling both cross-study and cross-host
comparisons.

Consistently, V4-V5 and V5-V6 failed to capture any sequence representatives from
the genera Bifidobacterium and Bombiscardovia (V4-V5) or Apibacter (V5-V6), all three
of which are important core microbiota members in corbiculate bees (52). Notably,
primer sets unanimously performed poorly in capturing sequences from Spiroplasma,
Micrococcus, and Cutibacterium genera (Fig. 2A to F). Based on simulated modeling of
primer binding site promiscuity (m=1 to 3 mismatches; Fig. 2F) as well as empirical
findings from the published data sets (Data Set S1G to J) though, most of these taxa
were detectable by the primer sets to various degrees. Nonetheless, given that
Spiroplasma apis and Spiroplasma melliferum are well-known intracellular parasites of
bee hosts (67) and the latter two genera are opportunistic entomopathogens (68, 69),
future disease-related investigations may consider additional methods for evaluating
these bacteria. Likewise, retrospective analysis may be considered for other pathogens
of interest on a primer set-dependent basis to potentially detect hidden or sublethal
infections that went unnoticed or were underrepresented due to sequence capture
biases (see Data Set S1E in the supplemental material for exact bias predictions of each
primer set).

The findings also bring to light the intriguing fact that certain primer sets can
detect microsporidia relevant to bee health (Data Set S1G and H and Fig. S7). This
includes Nosema ceranae, Nosema apis, and Nosema bombi which are considered ami-
tochondriate (70) and possess 5S, 16S, and 18S rRNA genes (71) unlike that of most
other fungal species that have 5.8S, 18S, and 25S rRNA genes. Despite the fact that
phylogenetic studies and epidemiological investigations have used the 16S rRNA gene
of microsporidia in diagnostic tests over a broad host range (72, 73), it appears largely
underutilized in bee microbiota studies and even in those studies focusing on nosemo-
sis (74, 75). In one of these associated data sets evaluated (BioProject accession no.
PRJEB27718 [74]; data not made available for the other [75]), we detected three ASVs
consistently present across samples that were unambiguously classifiable as N. ceranae
(#00025-00027 in nrQS-V4V5; Data Set S1G and H). Nearly all data sets constituting
nrQS-V4 also contained ASVs from Nosema spp. (Fig. S7). A reasonable assumption is
that these sequences may have gone unnoticed until now due to similarities with plant
mitochondrial contaminants, though maximum likelihood phylogenetic analysis
strongly supports distinct branching order (Fig. S8) as do recent reports of microspori-
dia being the earliest diverging clade of sequenced fungi (76). A more plausible sce-
nario is that their truncated sequences (e.g., ;190 bp for V4 region versus ;252 bp for
most bacteria) are removed during length-based filtering steps implemented in most
current pipelines (27, 28). Altogether, these findings suggest that reform to certain pro-
cedural steps during microbiota data analysis might yield additional information valua-
ble to bee researchers, but should be further validated given the high level of intrage-
nomic variability of rRNA genes in microsporidia (77).

In testing classifiers, our findings support previous comparisons (78) by showing
that most commonly implemented algorithms demonstrated similar performances and
produced optimal error rates of ;5% or less during in silico testing on simulated error-
prone query sequences and ;18% during cross-validation tests on forced-novel query
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sequences (Fig. 3A and B). A notable exception, however, was IDTAXA, which exhibited
rapid error rate reduction at low-confidence thresholds, rarely made overclassification
errors, and displayed approximately fourfold-lower optimal error rates (;1%) relative
to QIIME2-NB and DADA2-NBC classifiers (Fig. S2 and S3). Using IDTAXA with the lead-
ing best existing taxonomy reference database (SILVA v138)-derived training sets pro-
duced error rates of ;10% when classifying the same set of simulated bee-derived
sequences (Fig. 4A to C), which is slightly lower, but comparable with the ;17% anno-
tation error estimates of SILVA v128 (16). Importantly, the maximum attainable accu-
rate classification using any of the existing databases did not exceed ;30%, together
suggesting both a poor representation of bee-associated reference sequence as well
as incorrect or outdated taxonomy. Providing a demonstratable example, sequences
labeled Parasaccharibacter apium in the HoloBee v2016 database are invalid according
to recent reports (41) and should be labeled Bombella apis. On a similar note, we draw
attention to the fact that the genus Lactobacillus was recently overhauled (79), thereby
affecting the nomenclature of many bee-associated taxa (e.g., Lactobacillus bombi has
been revised to Bombilactobacillus bombi).

We also demonstrated that in silico findings could be tightly recapitulated when
evaluating previously published 16S rRNA gene sequencing data from 50 different
bee hosts across 32 independent studies. Specifically, we report that despite SILVA-
based training sets offering nearly identical performance compared to that of
BEExact down to the genus level (;90% or higher), classification rates dropped
sharply to ;28% at the species level (Fig. 5A), which is nearly identical to the in sil-
ico estimates of ;30% using the same confidence thresholds (Fig. 4B). In contrast,
BEExact enabled persistently higher classification of ;80% at the species level
across most data sets (Fig. 5), which is expectedly lower than in silico estimates, but
nonetheless demonstrates the habitat-specify and comprehensiveness of the con-
taining database reference sequences from bee host-associated microbial commun-
ities. Moreover, we identified several additional advantages, including increased
classifier confidence scores when using BEExact (indicator of accuracy), marked
improvement in classification of ASVs derived from bee sample origins besides that
of gut tissue (e.g., surface, food, larvae), and the classification of 845 ASVs repre-
senting novel species which were identifiable by the phylogenetically consistent
placeholder names developed in this study (Table 1 and Fig. 5).

Further demonstrating the benefits of a comprehensive habitat-specific database,
BEExact enabled classification of several obligate intracellular bacterial pathogens known
to infect honey bee hosts (80) including Arsenophonus triatominarum, Arsenophonus naso-
niae, Spiroplasma melliferum, and Spiroplasma apis (Data Set S1G and H). At least one or
more of these species were successfully identified in the large majority of studies eval-
uated and especially in the honey bee host-derived data sets in nrQS-V4, while SILVA failed
to identify any of these important pathobionts. Highlighting the relevance of these find-
ings, Arsenophonus spp. (vectored by Varroa destructor mites [81]) are more abundant in
honey bee colonies exhibiting clinical signs of colony collapse disorder (81), and
Spiroplasma spp. can lead to weakened immunity and fatal septic infections in a species-
specific manner as well as cross-infect other pollinating insects (2, 82). The ability of
BEExact to accurately classify these intracellular pathogens and differentiate associated
ASVs at the species level should help to improve our understanding of their virulence,
transmission, and cooccurrence—each of which, despite extensive investigation, remains
unclear (83).

The small number of ASVs that remained unclassifiable at the species level were par-
tially classified to the genus or family level by BEExact and mostly included members of
the Enterobacteriaceae from the nrQS-V4 data set with ambiguous sequence regions that
matched at 100% identity with several different taxa—a finding consistent with past litera-
ture showing that certain members of the Enterobacteriaceae are difficult to distinguish by
standard 16S rRNA gene sequencing methods (84). Gilliamella spp. (major microbiota
members in eusocial corbiculate bees [52]) were also difficult to distinguish using the V4
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region alone, and based on whole-genome phylogenomics (60), they should be grouped
with the family Enterobacteriaceae (order Enterobacterales) rather than their current formal
designation within the family Orbaceae (order Orbales). Similarly, Snodgrassella alvi is sug-
gested to belong to the class Gammaproteobacteria rather than class Betaproteobacteria.
These naming conventions are problematic, since they conflict with the widely accepted
BFG (Betaproteobacteria-Firmicutes-Gammaproteobacteria) phylotypes, which were estab-
lished nearly a decade ago (85) and are still frequently referred to as familiar points of ref-
erence (86) despite formal designations now existing. In this regard, we highlight that
BEExact sequence taxonomy firmly adheres to the List of Prokaryotic Names with Standing
in Nomenclature (LPSN) (12) at the genus and species level. However, SILVA-based naming
conventions are adopted at higher ranks for several reasons: (i) to enable consistency for
comparison to recent literature (22 out of 32 studies assessed used this database; Table 2);
(ii) due to SILVA genus names demonstrating the highest degree of congruency with refer-
ence sequence in BEExact, thereby reliably connecting species annotations to higher ranks;
and (iii) because names are adapted from valid sources (12, 59) as well as curated for maxi-
mum phylogenetic accuracy.

Limitations. The BEExact database is not equipped to classify rarer environmentally
derived species which are not commonly found in bee host-associated microbial com-
munities. It also cannot unambiguously distinguish between short-read sequences
from species that share 100% sequence identity within the context of a specific hyper-
variable region (e.g., V4) but that differ in their full 16S rRNA gene. It is arguable, how-
ever, that the former limitation could also be considered an advantage in the sense
that outlier taxa and contaminants might more easily be detectable through not read-
ily being classified. In any case, the unclassifiable rare ASVs found across the 32 data
sets evaluated were commonly at nearly undetectable levels. Thus, these ASVs are
expected to have negligible influence on study findings and based on the prevalence
and abundance cutoffs which were established, would mostly be filtered from the data
set. With regard to the latter concern, ambiguity in sequence identity of ASVs is not as
much a taxonomy reference database constraint as it is an inherent property of short-
read sequencing technologies, such as Illumina MiSeq and Ion Torrent S5 which are
the predominant platforms currently used for profiling bee microbial communities.
This issue is partially accounted via the data-driven recommendation of a classifier
(IDTAXA) that is highly accurate and can largely mitigate these types of overclassifica-
tion errors. However, the full-length BEExact database should also prove useful in the
future for nonambiguous classification of full-length 16S rRNA gene amplicons as accu-
racy and affordability improves for long-read sequencing technologies, such as PacBio
and Oxford Nanopore.

Recommendations. Based on the findings in this study, the following recommen-
dations are made for future short-read 16S rRNA gene sequencing-based honey bee
microbiota studies.

i. For optimal species-level resolution and consistency across all bee lineages, the
first choice primer for short-read sequencing (e.g. Illumina MiSeq) should be the
V3-V4 targeting primers that were tested in this study (Data Set S1D).

ii. Utilize the latest 16S rRNA pipelines (e.g. DADA2, QIIME2) equipped with denoising
algorithms to generate high-resolution ASVs and avoid usage of outdated OTU
clustering methods.

iii. Classify ASVs using IDTAXA (recommended) or DADA2-RDP/q2-NB classifiers with
conservative bootstrap cutoffs to minimize error rates (see Fig. S2 for optimal cutoff
of each gene region tested).

iv. Use region-specific BEExact training sets when classifying short-read ASVs and
the full-length BEExact data set when classifying long-read ASVs.

v. Assume that ASVs poorly classified by BEExact are either contamination or derived
from rare environmental species, unless there is evidence to suggest the contrary.
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vi. Provide sequence data and annotated taxonomy of unique study ASVs when
publishing data to advance the cumulative availability of bee-associated 16S rRNA
genes.

Conclusions. Currently available taxonomy databases hinder classification of the
bee microbiota due to a lack of sequence representatives for many habitat-specific
ASVs, misrepresentation of references (i.e., labeled identities do not match true taxon-
omy), and overdiversification of poorly resolved reference sequences—all of which
reduce classification confidence and lower the rate of species-level taxonomic assign-
ment independent of the classifier algorithm used. BEExact addresses these shortcom-
ings via an all-inclusive compilation of every known bee-associated 16S rRNA gene
sequence publicly available by ensuring that each database reference sequence is
accurately annotated (with placeholder names given to uncultured microbial dark mat-
ter sequences) and by excluding unrelated sequences of high similarity that can inhibit
classifier accuracy due to conflicting taxonomy. Utilizing BEExact alongside the approaches
outlined above will facilitate standardized classification of bee-associated microbial com-
munities, improve cross-study reproducibility, and help to highlight novel candidate taxa
in need of characterization.

MATERIALS ANDMETHODS
BEExact database construction. To obtain a list of all known bee (order Hymenoptera, superfamily

Apoidea, clade Anthophila)-associated 16S rRNA gene sequences, a comprehensive search was per-
formed on the International Nucleotide Sequence Databases (INSD; http://insdc.org) including the NIH
genetic sequence database (GenBank; maintained by NCBI), the European Nucleotide Archive (ENA;
maintained by EMBL-EBI) and the DNA Data Bank of Japan (DDBJ). Using the NCBI search portal to
achieve this, the following criteria were used in the search command: “(((((((((((((bee) OR bees) OR
Andrenidae) OR Apidae) OR Colletidae) OR Halictidae) OR Megachilidae) OR Melittidae) OR Stenotritidae)
AND 16S rRNA) AND bacteria[Primary Organism]) OR archaea[Primary Organism]) AND 1000:2000
[Sequence Length]) NOT shotgun.” The clade “Anthophila” as is referred to for bees in this study was not
included due to overlapping ambiguity with the moth genus Anthophila. In addition, applicable bee
host-associated 16S rRNA gene sequences were also collected from recent literature (34–48). This step
resulted in the retrieval of 8,869 total 16S rRNA gene sequences.

After compiling these reference sequences in FASTA format, the redundant starting database was
first dereplicated to remove strictly identical sequences with priority given to full-length sequences
(7,378) using the derep_fulllength command of vsearch (v2.14.2). Subsequently, sequences that were
identical to the prefix of any longer sequence were considered replicates and removed (6,825) using the
derep_prefix command of vsearch (v.2.14.2). Remaining sequences of poor quality that were less than
1,300 bp (1,876) were extracted using Prinseq (v0.20.4) and then matched against full-size 16S rRNA
gene reference repositories, including SILVA v138 (SILVA_138.1_SSURef_tax_silva_trunc.fasta.gz;
https://ftp.arb-silva.de, GreenGenes v13.8 [GG] (GG_13_8_99.fasta.gz; ftp://greengenes.microbio.me/
greengenes_release, GTDB r95 (bac120_ssu_reps_r95.tar.gz; https://gtdb.ecogenomic.org/downloads,
and RDP v18 (RDP_v18_current_Bacteria_unaligned.fa; http://rdp.cme.msu.edu/misc/resources.jsp) to
obtain reference sequences of higher quality and length using the usearch_global command of vsearch
(2.14.2) with parameters “–id 0.99 –mid 99.”

A positive match in at least one of the databases was identified for 380 sequences. Nonmatches
were removed, and the higher-quality references were then merged with the original sequences
that were above the 1,300-bp threshold. The revised sequence set was dereplicated once again
using the derep_fulllength and derep_prefix commands of vsearch (v2.14.2) to remove redundancy.
Next, the sequences were aligned to the 50,000-character global SILVA alignment for rRNA genes
with SINA (v1.2.11), trimmed to positions 1044 to 41790 (aligning to the ungapped Escherichia coli
16S rRNA gene reference 28 to 1391 bp), dereplicated again, and then chimeric sequence detection
was performed using the SILVA v138 “gold” 16S reference database (https://mothur.org/wiki/silva
_reference_files/) with the uchime command of vsearch (v1.2.11). Trimming of sequences was neces-
sary to remove overhanging 59 and 39 ends that would have interfered in downstream accuracy dur-
ing percent identity calculations. Taxonomic identifiers (NCBI:txid numbers) were retrieved for each
sequence accession using the NCBI’s Batch Entrez service (https://www.ncbi.nlm.nih.gov/sites/
batchentrez). Associated lineages were then determined in python using default commands “make-
acc-taxid-mapping.py” and “make-lineage-csv.py” with the “nucl_gb.accession2taxid” and “tax-
dump” mapping files available from the NCBI taxonomy FTP site directory (ftp://ftp.ncbi.nlm.nih
.gov/pub/taxonomy). Quality steps were then taken via the removal of aberrant eukaryotic, mito-
chondrial, chloroplastic, and ambiguous nucleotide-containing sequences. Moreover, sequences
that were suspiciously short or long within their V4 region (relative to other sequences from the
same genus) were removed on the basis that the V4 region should be highly consistent in length
between closely related taxonomic group members (87). To do so, the V4-targeting primers in
Table 1 were used to trim sequences to the V4 region using the pcr.seqs function of mothur (v.1.39.5)
(88). The lengths of the trimmed V4 sequences in FASTA format were then measured using the Linux
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command “awk '/^./{if (l!=””) print l; print; l = 0; next}{l1=length($0)}END{print l}'”. Any sequence
that deviated more than 2 bp in length from the mean of its corresponding genus (or lowest com-
mon rank membership if genus identity was not available) was omitted from the data set. Following
these steps, the intermediate BEExact database contained 4,518 representative 16S rRNA gene
sequences.

BEExact database curation. Species-level annotation (based on NCBI:txid) was available for only
1,620 of the retrieved sequences. To improve this, the sequence set was queried against type strain ma-
terial available from large reference databases (SILVA v138, GG v13.8, GTDB r95, and RDP v18) using the
usearch_global command of vsearch (2.14.2) with parameters “–id 0.987 –maxaccepts 0 –maxrejects 0
–uc.” Herein, we refer to percent identity as the number of (matching columns)/(alignment length2 ter-
minal gaps), which is the default definition used in most bioinformatic software, including those used in
this study. Subsequently, query sequences were assigned taxonomy at the species level based on data-
base hits if identity matched at.98.7%. Lack of consensus between the databases (i.e., when taxonomic
names were not consistent between matches at .98.7%) manual refinement was performed by query-
ing of sequences against official representatives (based on NCBI:txid of the matches) retrieved from the
Bacterial Diversity Metadatabase (BacDive; https://bacdive.dsmz.de). Moreover, database hits labeled
with “Candidatus” were also cross-checked against the List of Prokaryotic names with Standing in
Nomenclature (LPSN; https://lpsn.dsmz.de) to ensure conformity with international guidelines and deter-
mine the most up-to-date naming. This enabled species-level annotation of 2,233 additional sequences.
The 1,620 sequences that already possessed species-level annotations were also included in these search
inquires for consistency, which allowed for correction of hundreds of inaccurate or outdated sequence
labels.

For the remaining 665 sequences which could not be validly identified at the species level, anno-
tations were instead applied in descending order from domain to genus based on lowest common
rank (LCR) (50). Previously established taxonomic identity boundaries (49) (e.g., phylum = 75%,
class = 78.5%, order = 82%, family = 86.5%, genus = 94.5%) were used to determine the LCR for each
remaining sequence based on percent identity with corresponding database hits from the last step.

Next, to develop placeholder names and allow for consistent reference to unculturable (or yet to
be cultured) organisms, we implemented a novel combination of several established distance-based
and phylogenetic approaches. Briefly, sequences lacking species-level annotations were grouped
based on sequence similarities using the cluster_smallmem command of usearch (v11.0.667) with pa-
rameters “–usersort and –id ###” where ### was set between 0.750 and 0.987 (based on the
described phylum to species thresholds [49]) on sequential command entries. Notably, all sequence
representatives were used as input (with type strain references coming first in the sequence list, fol-
lowed by sequences lacking species-level annotations in descending order based on sequence
length), and the “–usersort” command was specified to enable consistent group membership under
the likely scenario of additional uncultured sequences being added in the future. Next, de novo taxo-
nomic labels were generated using the following format wherein #### refers to a unique identifier
distinguishing group member at each taxonomic rank: p_bxid#### (phylum), c_bxid#### (class),
o_bxid#### (order), f_bxid#### (family), g_bxid#### (genus), and s_bxid#### (species). A recent
study successfully utilized a similar approach to develop software-based automatic placement
(AutoTax) of sequences to species-level placeholder names while also retaining original sequence
identity (i.e., not clustering) (89).

However, identity-based methods alone may result in sequence group memberships which are not
phylogenetically accurate due to unequal differences in mutation rate across the 16S rRNA gene (90). To
overcome the limitations of distance-based grouping, we applied a maximum likelihood method along-
side use of established phylogenetically aware evolutionary placement software (51). First, the interme-
diate BEExact database was used to search for close neighbor (CN) type strain sequences in the SILVA
SSU r138 database using the SINA (v1.2.11) ACT service with parameter [T] in the strain field. A total of
903 CN type strain sequences were retrieved and added to the building database, with type strain taxo-
nomic designations given preference to identical sequences already present after filtering. These CN
type strains were considered authoritative points of reference in the case of discrepancies between two
or more closely related sequences and were incorporated for the purposes of improving taxonomic reso-
lution in downstream curation steps. Due to potential errors in taxonomic annotation and the tendency
of standard databases to be dominated by human-associated taxa, we ensured that bee-associated type
strain sequences (as well as recently proposed strains) remained at top authority via dereplication using
the derep_prefix command of vsearch (v2.14.2) to remove shorter type strain sequences with overlapping
redundancy.

The CN type strains were aligned to the 50,000-character global SILVA alignment using SINA
(v1.2.11), trimmed from positions 1044 to 41790 for compatibility and accuracy in percent identity
calculations, and then merged with the intermediate BEExact database. Manual refinement of taxon-
omy, guided by the most up-to-date and relevant literature sources (16, 60, 91, 92), was then per-
formed to correct conflicts in classification at various taxonomic ranks: Actinobacteria (changed to
Actinobacteriota), Bacteroidetes (changed to Bacteroidota), Paenibacillales;Paenibacillaceae;Brevibacillus
(changed to Brevibacillales;Brevibacillaceae;Brevibacillus), Acetobacterales (changed to Rhodospirillales),
and Betaproteobacteria;Neisseriales;Neisseriaceae;Snodgrassella (changed to Gammaproteobacteria;
Burkholderiales;Neisseriaceae;Snodgrassella). Subsequently, taxonomically mislabeled sequences were
identified by using the established Semi-Automatic Taxonomy Improvement and Validation Algorithm
(SATIVA) (51) with the command “sativa.py -s input_seqs.phy -t input_tax.txt -x BAC -T 4 -N 1.”
Recommendations for adjustment of taxonomy were complemented by manual validation with
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maximum likelihood-based phylogenetic inference using the RAxML (93) command line “raxmlHPC-
HYBRID -T 48 -f a -s input.phy -n output.tre -N 100 -m GTRGAMMA -p 72915 -k -x 77730.” Taxonomic
adjustments suggested by SATIVA were made if unanimously supported by bootstrap values of 50
and were consistent with the RAxML output. After all processing steps, the resultant BEEx-FL-refs data set
(Data Set S1C) had a phylogenetically coherent set of 3,853 sequences with species labels from formal desig-
nations and 665 placeholder names based on maximum likelihood-corrected distance-based groupings. The
preprocessed nonredundant accession list containing the original 8,869 sequences (Data Set S1A) and the
mapping file (Data Set S1B) to representative identifiers in BEEx-FL-refs are provided for traceback purposes.

In silico PCR determination of primer biases. To develop a better understanding of how primer
choice may affect honey bee microbiota characterization, standard primer sets targeting various
regions of the 16S rRNA gene (Data Set S1D) were queried against the BEEx-FL-refs data set contain-
ing honey bee-associated reference sequences. Extraction efficiencies were evaluated by in silico
PCR using the pcr.seqs function of mothur (v.1.39.5) (88) with 0 mismatches allowed. Ambiguity of
sequence identity in the extracted shorter segments was determined by collapsing identical sequen-
ces using the unique.seqs function of mothur (v.1.39.5) with parameter “format=count.” Shannon’s
diversity index was then calculated for the resultant count list, which provided a balanced estimate
of how different primer biases affect taxonomic evenness and richness. Analysis of primer biases
was performed by examining the “scrap.pcr” output files from pcr.seqs for each of the primer sets
tested.

Descriptions of query sequence data sets. Benchmarks performed on error-free sequence queries
derived from an identical database as is being used to classify the queries is expected to result in unreal-
istically inflated performance rates (1). To enable more realistic testing conditions during experiments,
error rates of approximately ;1% were introduced to the sequence representatives derived from BEEx-
FL-refs using established Mosla Error Simulator (MESA) software (56). Briefly, the ErrASE synthesis method
was chosen with the default sequencing method set for paired-end Illumina MiSeq alongside a standard
30-cycle traditional PCR amplification step and a 12-month sample storage period. Three sets of error-
prone sequences were generated in this manner for the full-length query sets (simQS-FL-i to -iii) as well
as each of the V3-V4 (simQS-FL-i to -iii), V4 (simQS-FL-i to -iii), V4-V5 (simQS-FL-i to -iii), and V5-V6 (simQS-
FL-i to -iii) hypervariable regions.

To generate k = 10 train sets and test (i.e., query) sets for k-fold cross validation (57), the caret pack-
age (v6.0-86) was used in R (v3.6.0). Briefly, full-length or hypervariable region-trimmed sequences
were loaded into R using the “readDNAStringSet” function and then randomly sampled (with replace-
ment) using the “sample” function. Subsequently, the “createFolds” command was used with parame-
ters “k = 10, list=TRUE, returnTrain=FALSE” to create the k= 10 train and test sets at all regions of inter-
est (e.g., kQS-FL-##, kQS-V3V4-##, kQS-V4V5-##, kQS-V5V6-##; where ## is k = 1 to 10 for each set),
which were then appended to FASTA format using the “writeXStringSet” function prior to downstream
use with classifiers.

The cross-validation by identity (CVI) train and test sets were generated exactly as described previ-
ously (50) using TAXXI benchmark software (https://drive5.com/taxxi/doc/index.html) for each region of
interest (e.g., cviQS-FL-##, cviQS-V3V4-##, cviQS-V4-##, cviQS-V4V5-##, and cviQS-V5V6-##, where ## refers
to the pair reference for each test and train set).

Description of training data sets. In addition to BEEx-FL-refs, the other taxonomic reference data-
bases, including SILVA v138 (510,984 sequences), GG v13.8.99 (203,452 sequences), GTDB r95 (21,965
sequences), HBDB (23) (276 sequences; https://treebase.org/treebase-web/search/study/taxa.html?id=
13210), and HoloBee v2016 (58) (687 sequences; https://data.nal.usda.gov/dataset/holobee-database
-v20161) required various formatting changes prior to use as training sets with the taxonomic classi-
fiers tested in this study.

For use with the naïve Bayesian RDP classifier implemented in DADA2 (DADA2-NBC), training sets
were converted to the required FASTA format via the “makeTaxonomy” workflow as described for
custom formatted reference databases (https://benjjneb.github.io/dada2/index.html) prior to classify-
ing sequences using the assignTaxonomy function of DADA2 in R. For SINTAX compatibility, the
FASTA-formatted reference database files were adjusted to include unique accession identifiers at
the start of the header (identifiers for BEEx-FL-refs in this case) followed by a “tax=” separator and
then a colon delimited taxonomic lineage label based on the required specifications (https://drive5
.com/usearch/manual/tax_annot.html) prior to taxonomic classification using the “–sintax” command
of vsearch (v2.14.2). For the naïve Bayes scikit-learn classifier implemented in QIIME2 (QIIME2-NB), ref-
erence sequences and associated reference taxonomy were separately imported as QIIME2 artifacts
using the “tools import” command with types as “FeatureData[Sequence]” and “FeatureData
[Taxonomy],” respectively, prior to downstream classifier training with the q2-feature-classifier (78).
For KRAKEN2, custom databases were created as outlined on the tool’s official wiki page (https://
github.com/DerrickWood/kraken2/wiki). Briefly, sequences from each of the databases were first
imported as KRAKEN2 database images using the kraken2-build command with the “–add-to-library”
parameter, followed by the kraken2-build command with the “–build –db” parameters set to con-
struct the final training sets used to classify sequences. Finally, for IDTAXA, the FASTA-formatted ref-
erence sequences were first imported into R using the “readDNAStringSet” function of the DECIPHER
package (26). Subsequently, the FASTA headers were parsed and reassembled to include “Root” prior
to a semicolon-delimited phylum-to-species taxonomy string for generating a pretrained classifier
file with the DECIPHER “LearnTaxa” function, which was then used to classify reads with the “IDTAXA”
function.

In addition to format changes, the reference training sets used in this study were trimmed to
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match hypervariable regions during testing based on reports (1, 94) that trimming of database refer-
ences to that of the sequenced region of interest can improve the number of reads which are assigned
taxonomy (results confirmed independently in Fig. S1C). This was achieved by using the extract-reads
function of the q2-feature-classifier in QIIME2 with default settings with the primers used indicated in
Table 1. For simplicity, each taxonomic reference training set is referred to by their full-length (i.e.,
xxxxx-FL-TS) or V#-trimmed (i.e., xxxxx-V#-TS) characteristics without consideration given to differences
in classifier formatting semantics, wherein “xxxxx” refers to the specific reference database (e.g., SILVA-
V4-TS). Moreover, training data sets used for taxonomic classification consist of two sets of data: (i) a
set of reference sequences and (ii) a corresponding list file mapping each sequence to a hierarchical
taxonomy. Thus, both reference sequences and the specific taxonomy applied to them can influence
classification efficiency (94). To allow a fair comparison against the 276 honey bee-associated
sequence references contained within HBDB (23), the phylotype-level annotations (which were origi-
nally assigned at the family level prior to species-level annotations being available) were replaced by
the top BLASTn search hit based on the 16S rRNA gene database on NCBI with the “sequences from
type material” option indicated. No adjustments were made to the other custom database, HoloBee,
since species-level annotations were already provided.

Classifier settings and performance calculations. Classifiers were used with the training sets from
each reference database to taxonomically classify query sequences in each of the in silico-generated
data sets, including the simulated (e.g., simQS-V3V4i-iii), k-fold cross-validation (e.g., kQS-V3V4-##), and
CVI (e.g., cviQS-V3V4-##) data sets.

Taxonomic classification with the naïve Bayesian RDP classifier algorithm (k-mer size = 8) was
achieved using the assignTaxonomy function of the DADA2 package in R with 100 bootstrap iterations
for each classification run. The minBoot parameter (default = 50%), which sets the minimum required
bootstrapping support to return a given taxonomic classification, was tested in increments of 10 with
optimal values ranging from 30 to 70.

Both of the QIIME2 classifiers were applied using the q2-feature-classifier command (QIIME2 ver-
sion 2020.2). For the q2-aHybrid classifier, the classify-hybrid-vsearch-sklearn option was used with all
settings left as default with the exception of –p-maxhits which was set to “all” and the prefilter setting
which was toggled to –p-no-prefilter. For the q2-NB classifier, the “classify-sklearn” option was used
with all default settings and read orientation set to “same.” Confidence ranges (default = 70%), which
are synonymous to bootstrapping support was tested in increments of 10 with optimal values ranging
from 30 to 80 for both classifiers.

The SINTAX classifier implemented in vsearch (v2.14.2) was used with all default settings. Confidence
cutoffs were tested at increasing increments of 0.1 (range= 0 to 1.0) with optimal ranges between 20
and 60, which are expected to provide comparable accuracy to bootstrap cutoffs of 20 to 60% using the
naïve Bayesian RDP classifier.

KRAKEN2 was installed on a Linux operating system and kraken2 command with parameters “–use-
names –confidence ##” for classification. Confidence cutoffs were tested at increasing increments of 0.1
(range= 0 to 1.0) with optimal rates ranging from 0 to 0.5.

The IDTAXA classifier was applied via the DECIPHER package in R using the function “IdTaxa”
with the type option set to “extended,” the strand option set to “top,” and the bootstraps option set
to “100.” The threshold option (denoting bootstrap support required to classify a sequence) was
tested in increments of 10 with optimal ranges between 10 and 50.

The exact script code used for each classifier algorithm is provided for reproducibility in Data
Set S2. Following taxonomy assignments, all “NA” and “unclassified” outputs (depending on classi-
fier formatting) were considered equivalent. The raw classification rate at each taxonomic rank was
calculated as the percentage of sequence queries assigned any taxonomic label derived from the
associated reference training data set. The misclassification rate (MCR) was calculated at each taxo-
nomic rank as the percentage of query sequences assigned a taxonomic label not matching the tax-
onomy of the parent reference sequence from which it was originally derived. Query sequence that
matched multiple references with different taxonomic labels in the parent database (as a result of
sequence ambiguity) were not counted toward misclassification rates unless otherwise specified, as
this was a classifier-independent feature of data sets. The underclassification rate (UCR) was calcu-
lated at each taxonomic rank as the percentage of query sequences that remained unassigned (i.e.,
did not receive a taxonomic label) following classification. The overclassification rate (OCR) was cal-
culated using previously described software (50) and represents the percentage of sequences clas-
sified at a lower rank than possible with the given training set being used in any given test.

Retrieval and processing of 16S rRNA gene sequencing data. A total of 32 past studies were
evaluated (Table 3). Raw FASTQ files were directly downloaded from the SRA of the ENA-EBI directory
using a custom bash script and the associated FTP site (ftp://ftp.sra.ebi.ac.uk/vol1/fastq). All data sets
were first trimmed of adapters and primer binding regions using the Cutadapt (95) command line
“cutadapt -e 0.1 -g F_[V3V4/V4/V4V5/V5V6] -G R_ [V3V4/V4/V4V5/V5V6] -o SRR_filename_out-R1.fastq.
gz -p SRR_filename_out-R2.fastq.gz SRR_filename-R1.fastq.gz SRR_filename-R2.fastq.Gz.” Sequence
reads were then processed, aligned, and categorized using the DADA2 (v1.8) pipeline to infer exact
amplicon sequence variants (ASVs) from amplicon data (7). Briefly, sequence reads were filtered
(reads truncated after a quality score of #2 and forward/reverse reads truncated after 170/160 bases,
respectively) using optimized parameter settings as recommended for the quality profiles (shown in
Fig. S5). Next, sequence reads were dereplicated, denoised, and merged using DADA2 default param-
eters with pooled sample inference implemented for each study data set. A total of 234,567,560 raw
reads were processed across the 32 data sets. Following quality assurance measures described in the
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DADA2 pipeline (27), ASVs were dereplicated using the derep_fulllength command of vsearch
(v2.14.2) and then grouped into four nonredundant hypervariable region-specific data sets, including
nrQS-V3V4, nrQS-V4, nrQS-V4V5, and nrQS-V5V6 containing 6,847, 12,614, 729, and 3,554 total unique
ASVs, respectively.

Following retrieval from the SRA database, all data sets were processed similarly through the DADA2
pipeline resulting in a nonredundant set of 6,847 total V3-V4 region ASVs (nrQS-V3V4), 12,614 total V4
region ASVs (nrQS-V4), 729 total V4-V5 region ASVs (nrQS-V4V5), and 3,554 total V5-V6 region ASVs
(nrQS-V5V6) before removal of contaminants, including ASVs originating from mitochondria, chloroplast,
and host bee genomes which were not considered in classification rate calculations (Data Set S1G). To
provide guidance in future studies, we first evaluated a single-region subset of ASVs from the largest
data set (nrQS-V4) to determine how sequence depth impacts the overall quality and comprehensive-
ness of surveying bee-associated microbial communities. We determined that the total number of de-
tectable ASVs per study was strongly and positively correlated (R2= 0.9337) with per sample read
counts (i.e., read depth; Fig. S4A and B). For outgroup human gut comparisons in Fig. 5C, preprocessed
ASV tables from the American Gut Project were downloaded from the ftp site (ftp://ftp.microbio.me/
AmericanGut).

FASTQ generation using MiSeq simulator. To determine how sequencing depth impacts the reso-
lution of downstream microbial community analysis, several simulated tests at different sampling depths
were performed in silico. To emulate MiSeq platform-specific sequencing error rates, ART software (62)
(Illumina Q version 2.5.8) was implemented in paired-end read simulator mode with customized error
profiles modeled based on the hybridized error rates from a subset of eight V4 16S rRNA gene sequenc-
ing data sets (Data Set S1G). Briefly, error profiles were first calculated using the ART command line
“art_profiler_illumina ,read-quality-profile-output. ,folder containing subset of FASTQ representa-
tives from each study. fastq.gz 4.” Subsequently, MiSeq (2 � 250 bp) sequencing runs were simulated
at 1- to 400-fold read coverage (proxy of sample read depth) using the ART command line “art_illumina
-1 read-quality-profile-output_R1.txt -2 read-quality-profile-output_R2.txt -amp -p -sam -na -i BEEx-V4-
refs.fa -l 250 -f ,1-400. -o FASTQ_output/read_depth, 1-400..Fastq.” The generated FASTQ files
were processed identically to that of the empirical sequencing data using the DADA2 pipeline (27) as
previously described.

Statistical analyses. All statistical analyses were performed using GraphPad Prism (v8.3.0). Data
sets were first tested for normality using either the Shapiro-Wilk test for unique values or the
D’Agostino-Pearson test for data with two or more identical values. Normally distributed data were
statistically compared with one-way or two-way analyses of variance (ANOVAs) with Tukey’s or Sidak’s
multiple comparisons where indicated. Nonparametric data sets were statistically compared using
Kruskal-Wallis tests with multiple comparisons corrected using the Benjamini-Hochberg false discov-
ery rate method when appropriate.

Data availability. NCBI accession numbers for all 16S rRNA gene sequences obtained from public
sources are available in Data Set S1. Raw 16S rRNA gene sequencing data sets evaluated in this study
are available from the NCBI Sequence Read Archive (BioProject accession nos. PRJNA554741,
PRJNA304949, PRJNA348791, PRJNA382070, PRJNA517228, PRJEB22577, PRJEB25500, PRJEB27239,
PRJEB27223, PRJNA610196, PRJNA371284, PRJNA491200, PRJNA432210, PRJNA589199, PRJEB23223,
PRJEB23224, PRJNA429464, PRJNA225925, PRJNA483763, PRJNA432211, PRJNA578869, PRJNA309422,
PRJNA596093, PRJNA530255, PRJNA529891, PRJEB27718, PRJNA485519, PRJNA436176, PRJNA464035,
and PRJNA454884), the Dryad international repository (dryad.33518g8), or the Chinese National
Genomics Data Center (BioProject accession no. CRA001462). Figures 4 and 5, Fig. S4 to 8, and Data
Set S1G to J are associated with this raw data. All other remaining relevant source data are provided in
the article, supplemental material, or available from the corresponding author upon request.
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