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Cnidarian Hydra polyps escape senescence, most likely due to the robust activity of their three stem cell populations.
These stem cells continuously self-renew in the body column and differentiate at the extremities following a tightly coor-
dinated spatial pattern. Paul Brien showed in 1953 that in one particular species, Hydra oligactis, cold-dependent sexual
differentiation leads to rapid aging and death. Here, we review the features of this inducible aging phenotype. These
cellular alterations, detected several weeks after aging was induced, are characterized by a decreasing density of somatic
interstitial cell derivatives, a disorganization of the apical nervous system, and a disorganization of myofibers of the
epithelial cells. Consequently, tissue replacement required to maintain homeostasis, feeding behavior, and contractility of
the animal are dramatically affected. Interestingly, this aging phenotype is not observed in all H. oligactis strains, thus
providing a powerful experimental model for investigations of the genetic control of aging. Given the presence in the
cnidarian genome of a large number of human orthologs that have been lost in ecdysozoans, such approaches might help
uncover novel regulators of aging in vertebrates.
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Introduction: a need for additional model systems for
aging studies

Aging is the process whereby changes in physiological
processes that accumulate over the lifespan of the organ-
ism lead to a decrease in fitness, an increased sensitivity
to environmental challenges, and an increase in patholog-
ical processes. As a result, an exponential increase in
death rate fitting a Gompertzian representation is
observed (Finch 1990). Since antiquity people noted that
closely related animals may have very different maximal
lifespans. According to Aristotle “The reasons for some
animals being long-lived and others short-lived, and, in a
word, causes of the length and brevity of life call for
investigation.” However, it was only when two short-
lived invertebrate organisms, the fruit fly Drosophila
melanogaster and the nematode Caenorhabditis elegans,
became available as genetically tractable model systems
that aging studies began, uncovering the complexity of
the aging process (reviewed in Gems & Partridge 2013;
López-Otín et al. 2013). Since the discovery of age-1,
the first gene that increases the lifespan of nematode
when mutated (Friedman & Johnson 1988), much pro-
gress has been achieved in our understanding of factors
and processes that contribute to aging.

Although the impact of the nematode and the fruit
fly models in aging research is indisputable, both organ-
isms have critical shortcomings (Austad 2009). Firstly,

except for the Drosophila gut, the somatic adult tissues
of these two organisms have no regenerative capabilities
with scarce to no cell proliferation. Therefore, they
mimic poorly the mammalian processes that depend on
stem cell renewal and tissue repair to maintain tissue
homeostasis. Secondly, in response to stress, C. elegans
larvae and D. melanogaster adults can enter a non-aging
stage, suggesting that modulation of lifespan observed in
corresponding adult organisms may be mediated by
stress response mechanisms that have no equivalent in
humans (Larsen et al. 1995; Tatar et al. 2001). Thirdly,
D. melanogaster and C. elegans belong to Ecdysozoa, a
superphylum where a large fraction of human orthologs
are missing, although present in Cnidaria (Kortschak
et al. 2003; Wenger & Galliot 2013a). Altogether these
observations suggest that cnidarian model organisms
might be more likely to lead to the identification of new
candidate regulators of human aging.

The Hydra model system

Hydra is a small freshwater cnidarian polyp (Figure 1(A))
that exhibits a low senescence and an astonishing regen-
erative and budding capabilities throughout its life, as
first described by Trembley in 1744, and reviewed by
Galliot (2012). In fact, Hydra not only regenerates
any lost part of its body after bisection, but also it
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regenerates from re-aggregates after tissue dissociation. A
recent orthologome analysis showed that Hydra shares at
least 6071 genes with humans, in contrast to Drosophila
and C. elegans, which share only 5696 and 4571 genes,
respectively, with humans (Wenger & Galliot 2013a).
Therefore, Hydra fulfills the conditions for providing a
new potent model system for aging studies.

The anatomy of the Hydra polyp is simple, com-
prised basically of a digestive tube terminated at the oral
pole by the mouth/anus opening surrounded by a ring
of tentacles, and at the aboral pole a basal disc
(Figure 1(A)). Hydra possesses two innervated body
layers, ectoderm and endoderm, separated by an extracel-
lular matrix named mesoglea. A single animal is com-
posed of 50,000 to 100,000 cells, with three distinct
stem cell populations, interstitial, ectodermal epithelial,
and endodermal epithelial, that altogether give rise to a

dozen cell types (Hobmayer et al. 2012). Regardless of
age, these stem cells constantly self-renew in the body
column, giving rise to terminally differentiated cells
located predominantly at the extremities of the animal,
where they are sloughed off (Steele 2002). Interestingly,
interstitial stem cells are multipotent, providing progeni-
tors for somatic (gland cells, neurons, stinging cells
named nematocytes) as well as germ cells (Figure 2(A)).

Well-fed Hydra reproduce asexually by budding.
Excess dividing cells escape the parental body column
forming a bud, which, in few days, develops into a new
fully formed Hydra, which eventually detaches from the
parental polyp. Hydra polyps can also be chemically or
genetically depleted of their interstitial stem cells,
becoming a so-called epithelial Hydra. If such epithelial
animals are force fed, they can be maintained for several
months, with efficient physiological and developmental

Figure 1. Discovery of inducible aging in H. oligactis by Brien 1953, reproduced with modifications. (A) Phylogenetic relationship
between three Hydra species (drawings by Brien 1953), nematode, Drosophila, and human. (B) H. oligactis born on 26 February
1949 and maintained at 18 °C continuously produced buds with no sign of aging over four years, shown here over a three months
period up to 27 May when bud 84 detached. (C) H. oligactis born on 17 January 1949 and transferred to 10 °C on 22 February 1949
(red arrowhead) exhibited a slowing down of budding until it completely ceases on 10 March after the detachment of bud 19 (red
arrow). In parallel, the polyp started developing ovaries and produced 16 eggs over the next two weeks until egg production declined.
Then, H. oligactis became “exhausted” from oogenesis, producing a last egg on 20 May 1949. In (B) and (C), the ordinate axis corre-
sponds to the number of buds or eggs produced by the same animal on a given day.

12 S. Tomczyk et al.



functions, including regeneration (Marcum & Campbell
1978).

Over the past years “omics” strategies applied to
Hydra yielded the Hydra magnipapillata genome
(Chapman et al. 2010), extensive transcriptomes (Boehm
et al. 2012; Wenger & Galliot 2013b), and a detailed
repertoire of small RNAs (Krishna et al. 2013). In addi-
tion, tools to study quantitatively and qualitatively cell
proliferation (Plickert & Kroiher 1988), apoptosis (Lasi
et al. 2010; Reiter et al. 2012), autophagy (Chera et al.
2009), or stem cell biology (Hobmayer et al. 2012) are

available. Genetic functional approaches also emerged,
reinforcing the strength of Hydra as a model system.
Genes of interest can be transiently introduced either by
gene gun or by electroporation (Bottger et al. 2002;
Miljkovic et al. 2002), or silenced through RNA interfer-
ence upon feeding the animals with bacteria expressing
dsRNA (Chera et al. 2006). Moreover, the establishment
in 2006 of stable AEP Hydra vulgaris transgenic lines
by microinjection of fertilized eggs (Wittlieb et al. 2006)
opened a new era for dissecting cellular processes and
molecular regulations in Hydra.

Figure 2. (A) Scheme depicting the different cell types in Hydra. Endodermal and ectodermal epithelial stem cells permanently self-
renew along the body column and once displaced at the extremities differentiate into foot- and head-specific epithelial cells reprint
from (Galliot 2013). Interstitial stem cells cycle faster and give rise to all other cell types including germ cells. (B) Timeline of aging
in H. oligactis maintained at 10 °C as described by (Yoshida et al. 2006). (C) Progressive disorganization of the apical nervous system
in H. oligactis as evidenced by RFamide immunodetection of the mature neurons. Arrows: nerve net; arrowheads: mouth opening,
Te: tentacle. Scale bar: 100 μm.

Invertebrate Reproduction & Development 13



Low senescence in asexual Hydra and inducible aging
in Hydra oligactis

In the mid-twentieth century, Paul Brien, while investi-
gating the impact of sexual and asexual reproductions on
Hydra lifespan, reported the lack of senescence in
asexually reproducing H. vulgaris, Hydra viridissima,
and H. oligactis polyps that had been observed individu-
ally for several years (Brien 1953) (Figure 1(B), upper).
Moreover, he noticed that H. vulgaris and H. viridissima
polyps could go through several rounds of sexual differ-
entiation without any loss of fitness. This is in contrast
to what he observed in H. oligactis polyps. In this
species, induction of gametogenesis by transferring the
animals from 18 to 10 °C caused budding to cease,
accompanied by exhaustion and subsequent degeneration
(Figure 1(B), lower).

Decades later, Brien’s observations were confirmed.
The polyps of the Japanese species Pelmatohydra
robusta (P. robusta), closely related to H. oligactis, when
maintained asexual over three years, did not show any
sign of aging, but died within 90 days after induction of
gametogenesis (Noda 1982). Also cohorts of asexual
H. vulgaris polyps followed for four years in North
America survived without any obvious signs of aging
(Martı́nez 1998).

These findings indicate that asexual polyps from
most Hydra species have extraordinarily long lifespans,
whereas in a unique species, H. oligactis/P. robusta,
induction of gametogenesis correlates with aging. The
fact that asexual Hydra display negligible senescence or
even escape senescence is usually interpreted as a conse-
quence of the constant self-renewal of stem cells (Jones
et al. 2014). By contrast in H. oligactis, gametogenesis
is associated with loss of interstitial stem cells and their
somatic derivatives (Littlefield et al. 1985; Yoshida et al.
2006), mimicking the loss of somatic stem cells reported
in aged humans (Sousounis et al. 2014).

The aging phenotype of H. oligactis

This aging-like phenomenon of H. oligactis was investi-
gated in more detail by Yoshida et al. (2006). These
authors reported that polyps from three H. oligactis
strains transferred to 10 °C differentiate gonads by day
21 and undergo severe morphological degeneration by
day 30. Mortality began after 60 days, increasing expo-
nentially after 100 days to affect all animals by day 150
(Figure 2(B)). The observed mortality pattern fits the
Gompertzian mortality function, the most commonly
used model to describe mortality rates and lifespan in
aging populations (Finch 1990).

Yoshida and colleagues reported, in addition, a
decline in physiological functions such as prey capture,
spontaneous contractions, and transfer of food to the
gastric cavity. Detailed cell counting confirmed the

disappearance of most interstitial stem cells and their
derivatives after day 30, the polyps being composed
almost exclusively of epithelial cells and persisting germ
cell derivatives. Finally, this study also reported on the
disorganization of the actin fibers in the myoepithelial
cells, which likely is the cause for the observed reduc-
tion in movement in these Hydra and reminiscent of sar-
copenia observed in the aging skeletal muscles of
bilaterians (Yoshida et al. 2006; Rai et al. 2014).

As a further test of the potential of Hydra as a model
for aging research, we induced sexual differentiation in
several H. oligactis strains with phylogenetic affiliation
verified by barcoding. Three different types of response
to cold exposure were identified among these strains.
The cold-sensitive strain (CS) used by Yoshida et al.
exhibited the highest response, with nearly 100% polyps
developing sexual traits and dying within 100–120 days.
In contrast, the cold-resistant strain (CR) exhibited lim-
ited sexual differentiation, evidenced in only 30% of the
polyps, which, after releasing gametes, reverted to asex-
ual state, and continued living in a healthy condition.
Finally, some cold insensitive strains (CI) did not
develop sexual traits at all upon 10 °C transfer (Tomczyk
& Galliot unpublished).

To assess the impact of aging on the apical nervous
system, we immunodetected nerve cells with an anti-
RFamide neuropeptide antibody (Grimmelikhuijzen
1985). In H. oligactis polyps triggered for aging by cold
treatment, a drastic decrease in the number of RFamide
neurons and a disorganization of the apical nervous sys-
tem occurred (Figure 2(C)). In myoepithelial cells, the
actin fibres, visualized by phalloidin labeling, are highly
disorganized, similar to that observed by Yoshida et al.
(data not shown). These observations confirm that aging
phenotypes can be easily induced in H. oligactis,
although with varying degrees depending on the strain.

Molecular aspects of aging vs. non-aging in Hydra

H. oligactis is a model that has numerous features that
complement the drawbacks of existing invertebrate
model systems used for aging research, namely hundreds
of human orthologs that were lost in nematode and fruit
fly ancestors. To identify the putative aging genes pres-
ent in Hydra but missing in C. elegans and D. melano-
gaster, we analysed the hydra-human orthologs
associated with aging. Among 259 human aging genes
retrieved from The Human Ageing Genomic Resources
(http://genomics.senescence.info), we found that 207
(80%) were conserved in Hydra (E-value of the best
BLAST hit of Hydra below 1E-10). Interestingly, some
of these genes are missing or poorly conserved in D.
melanogaster and C. elegans, such as the p53 regulator
MDM2 or the TGFβ inhibitor noggin. The aging-induced
regulation of these genes is currently under investigation.
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As an alternative approach to aging studies, several
studies aimed at dissecting the mechanisms that underlie
the lack of senescence in Hydra focused on FoxO, an
evolutionarily conserved transcription factor. In bilaterian
organisms, FoxO regulates the response to stress, the
proliferation of stem cells, and modulates lifespan
(reviewed in Salih & Brunet 2008). In nematodes and
fruit flies, the knockdown of FoxO significantly shortens
lifespan. In Hydra, FoxO is expressed in stem cells, and
appears to respond to stress (Bridge et al. 2010). Reduc-
tion in FoxO levels in the H. vulgaris AEP strain nega-
tively affected the proliferation of stem cells, the speed
of the budding process, the growth of Hydra population,
and the production of immune peptides (Boehm et al.
2012). However, no mortality was observed in FoxO
deficient polyps, suggesting that other factors contribute
to negligible senescence in H. vulgaris.

Conclusions

H. oligactis presents a potent model system for aging
research. As summarized in Table 1, comparing hall-
marks of aging in H. oligactis and humans, H. oligactis
offers a unique experimental setting, where aging can be
induced and observed over a time span of four months.
Moreover, we have recently characterized different H.
oligactis strains that make possible the comparison of
cellular and molecular processes in animals from the
same species, submitted to the same stress conditions,
but exhibiting different patterns of aging. Recently, a
comprehensive review stressed nine general hallmarks of
the aging process (López-Otín et al. 2013). Each of these
hallmarks is potentially testable in Hydra. Such studies
should help dissect the genetic circuitry underlying aging
in Hydra, and thus potentially identify some new regula-
tors of aging to be subsequently tested in mammalian
cells and organisms.
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