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Abstract
Background: The order Tetraodontiformes consists of approximately 429 species of fishes in
nine families. Members of the order exhibit striking morphological diversity and radiated into
various habitats such as freshwater, brackish and coastal waters, open seas, and deep waters along
continental shelves and slopes. Despite extensive studies based on both morphology and
molecules, there has been no clear resolution except for monophyly of each family and sister-group
relationships of Diodontidae + Tetraodontidae and Balistidae + Monacanthidae. To address
phylogenetic questions of tetraodontiform fishes, we used whole mitochondrial genome
(mitogenome) sequences from 27 selected species (data for 11 species were newly determined
during this study) that fully represent all families and subfamilies of Tetraodontiformes (except for
Hollardinae of the Triacanthodidae). Partitioned maximum likelihood (ML) and Bayesian analyses
were performed on two data sets comprising concatenated nucleotide sequences from 13 protein-
coding genes (all positions included; third codon positions converted into purine [R] and pyrimidine
[Y]), 22 transfer RNA and two ribosomal RNA genes (total positions = 15,084).

Results: The resultant tree topologies from the two data sets were congruent, with many internal
branches showing high support values. The mitogenomic data strongly supported monophyly of all
families and subfamilies (except the Tetraodontinae) and sister-group relationships of Balistidae +
Monacanthidae and Tetraodontidae + Diodontidae, confirming the results of previous studies.
However, we also found two unexpected basal splits into Tetraodontoidei (Triacanthidae +
Balistidae + Monacanthidae + Tetraodontidae + Diodontidae + Molidae) and Triacanthodoidei
(Ostraciidae + Triodontidae + Triacanthodidae).

Conclusion: This basal split into the two clades has never been reported and challenges previously
proposed hypotheses based on both morphology and nuclear gene sequences. It is likely that the
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basal split had involved ecological diversification, because most members of Tetraodontoidei
exclusively occur in shallow waters (freshwater, brackish and coastal waters, and open seas), while
those of Triacanthodoidei occur mainly in relatively deep waters along continental shelves and
slopes except for more derived ostraciids. This suggests that the basal split between the two clades
led to subsequent radiation into the two different habitats.

Background
The order Tetraodontiformes comprises 429 species clas-
sified into 8–10 families [1-9]. As expected from the rela-
tively large number of families for the indicated species
diversity (8–10 vs. 429), members of the order are very
morphologically diverse. For example, boxfishes have car-
apaces; tetraodontoids (except for Triodon macropterus)
lack pelvic elements; and ocean sunfishes (Molidae) lack
entire elements of the caudal fin. Tetraodontiforms also
vary greatly in size: ocean sunfishes may grow up to 4 m
in total length, while adult filefishes (Rudarius minutus)
are less than 1 cm in standard length [10]. In addition,
pufferfishes have compact genomes of approximately 400
Mb [11]. Much attention has been paid to two species of
pufferfish, Takifugu rubripes [12] and Tetraodon nigroviridis
[13], and the whole genome sequences of both have been
published [14,15]. Many tetraodontiform fishes have
been radiated into various habitats in temperate to tropi-
cal regions such as rocky and coral reefs, brackish and
freshwaters, deep waters along continental shelves and
slopes, and open oceans.

There are several hypotheses regarding the phylogeny of
tetraodontiform families. Some of the families exhibit
great reduction of skeletal elements, and many early stud-
ies generally divided the order into two groups, the Scle-
rodermi and Gymnodontes [4,16,17]. Scleroderms were
considered to be primitive tetraodontiforms, usually hav-
ing a set of primitive characters such as pelvic fin ele-
ments, separate teeth, and spinous dorsal fins.
Gymnodonts were considered to be derived tetraodon-
tiforms, usually having reductive characters such as no
pelvic fin elements, teeth modified into a parrot-like beak,
and no spinous dorsal fins. Traditionally, the Sclerodermi
was further divided into two superfamilies (Triacanthoi-
dea and Balistoidea), while the Gymnodontes was equal
to the superfamily Tetraodontoidea. In most of phyloge-
netic studies, a series of the reduction was regarded to par-
simoniously occur in derived lineages, and their
phylogenetic relationships generally have been proposed
to be (Triacanthoidea (Balistoidea, Tetraodontoidea))
(see Fig. 1).

Several authors have investigated the interrelationships of
tetraodontiform fishes via cladistic analyses based on
comparative osteology [6,7,18], ontogeny [19], myology
[1], and karyology [20] and their results are similar to

each other (Figs. 1A–F). Holcroft [21] and Alfaro et al.
[22] determined the nuclear RAG1 gene and mitochon-
drial 12S and 16S rRNA gene sequences of representative
tetraodontiform lineages and estimated their relation-
ships (Figs. 1G and 1H). Both studies did not obtain clear
resolution for basal relationships but only two sister-
group relationships (Balistidae + Monacanthidae and
Tetraodontidae + Diodontidae) with confidence. There-
fore, many phylogenetic questions in the Tetraodon-
tiformes, especially their basal relationships, remain
unclear.

Whole mitogenome sequences from many teleost lineages
have been determined and used for phylogenetic analyses
with purposeful taxonomic sampling, which have success-
fully resolved many controversial issues in systematic ich-
thyology [23-29]. To address the questions regarding the
phylogenetic relationships of the families and subfamilies
of Tetraodontiformes, we purposefully chose 11 species in
addition to the 14-tetraodontiform species used by
Yamanoue et al. [30-32]. Together, these represent all
families and subfamilies of the Tetraodontiformes, except
for the Hollardinae. We determined whole mitogenome
sequences for these 11 species, aligned them with the pub-
lished sequences of the other 16 species, including two
outgroups (total of 27 species), and conducted parti-
tioned maximum likelihood (ML) and Bayesian phyloge-
netic analyses.

Results
The complete L-strand nucleotide sequences from the
mitogenomes of the 11 species (except for a portion of the
putative control region for Anoplocapros lenticularis) were
deposited in DDBJ/EMBL/GenBank (See Table 1). The
genome content of the 11 species included two rRNA, 22
tRNA, and 13 protein-coding genes, plus the putative con-
trol region, as found in other vertebrates. Their gene
arrangements were identical to the typical gene order of
vertebrates.

Both the pairwise transitional (TS) and transversional
(TV) differences for each partition increased with increas-
ing evolutionary distance, with the exception of the TS dif-
ferences at the third codon position of protein-coding
genes (Fig. 2), in which marked saturation has been
observed in early stages of evolution (< 0.04 evolutionary
distance) with no increases thereafter. It was apparent that
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some degree of saturation also occurred at other positions
(particularly those in TSs), although pairwise differences
seemed to accumulate steadily along the time axis.

Although we were unable to determine a priori which data
set recovered a more likely phylogeny, we considered that
the 12n3rRTn data set (RY-coding) represented the best
estimate of phylogenies, which effectively removes the

Alternative phylogenetic hypotheses of the interfamilial relationships among TetraodontiformesFigure 1
Alternative phylogenetic hypotheses of the interfamilial relationships among Tetraodontiformes. All family 
names follow Nelson [8]. Holcroft [21] and Leis [19] did not include the Triodontidae in their analyses. Numbers near 
branches indicate bootstrap values (above) and Bayesian posterior probabilities (below).
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likely noise from quickly saturated transitional changes in
the third codon positions [27,33] and avoids a lack of sig-
nal by retaining all available positions in the data set [33].
Accordingly, the resultant tree from the 12n3rRTn data set
derived from the partitioned ML and Bayesian analyses is
shown in Figs. 3 and 4, with statistical support (bootstrap
probabilities [BPs] from the partitioned ML analysis and
posterior probabilities [PPs] from the partitioned Baye-
sian analysis) for 12n3rRTn and 123nRTn data sets indi-
cated on each internal branch. No topological
incongruities between the two data sets were found.

As in previous molecular analyses [21,22,32], our results
indicated monophyly of the Tetraodontiformes (BPs =
95–99%; PPs = 100%), and supported monophyly of all
tetraodontiform families and subfamilies with high statis-
tical values (BPs and PPs = 100%) except for the para-
phyletic subfamily Tetraodontinae (Fig. 3). Monophyly of
the latter subfamily was rejected by statistical tests using
the SH test (p = 0.012) and Bayes factor (Bayes Factor =

149.8). The mitogenomic data unambiguously supported
sister-group relationships of Balistidae + Monacanthidae
(Clade D: BPs and PPs = 100%) and Diodontidae +
Tetraodontidae (Clade E: BPs = 95–96%; PPs = 100%),
which have been reported in most previous morphologi-
cal and molecular analyses (e.g., [1,6,7,19,21] shown in
Figs. 1B–H) with a few exceptions [see Breder and Clark
[34] (Fig. 1A), Shen and Wu [35]]. It should be noted that
the two data sets consistently reproduced two unexpected
clades herein designated as Tetraodontoidei and Triacan-
thodoidei with strong statistical support (BPs = 79–92%;
PPs = 100%). However, this result may be affected by
long-branch attraction because most of tetraodontoids
and triacanthodoids comprise lineages with rapid and
slow evolutionary rates of mitogenomes, respectively (Fig.
4).

Table 1: List of species analyzed, with DDBJ/EMBL/GenBank Accession numbers. Classification follow Nelson [8].

Classification Species Accession No.

Order Perciformes
Family Caesionidae Pterocaesio tile2 [DDBJ: AP004447]

Order Zeiformes
Suborder Caproidei

Family Caproidae Antigonia capros1 [DDBJ: AP002943]
Order Tetraodontiformes

Family Triacanthodidae Triacanthodes anomalus5 [DDBJ: AP009172]
Macrorhamphosodes uradoi5 [DDBJ: AP009171]

Family Triacanthidae Triacanthus biaculeatus5 [DDBJ: AP009174]
Trixiphichthys weberi5 [DDBJ: AP009173]

Family Balistidae Sufflamen fraenatum2 [DDBJ: AP004456]
Xenobalistes tumidipectoris* [DDBJ: AP009182]

Family Monacanthidae Aluterus scriptus* [DDBJ: AP009183]
Cantherhines pardalis* [DDBJ: AP009184]
Stephanolepis cirrhifer1 [DDBJ: AP002952]
Thamnaconus modestus* [DDBJ: AP009185]

Family Ostraciidae
Subfamily Aracaninae Anoplocapros lenticularis* [DDBJ: AP009186]

Kentrocapros aculeatus5 [DDBJ: AP009175]
Subfamily Ostraciinae Lactoria diaphana* [DDBJ: AP009187]

Ostracion immaculatus5 [DDBJ: AP009176]
Family Triodontidae Triodon macropterus5 [DDBJ: AP009170]
Family Tetraodontidae

Subfamily Tetraodontinae Arothron firmamentum* [DDBJ: AP006742]
Takifugu rubripes4 [DDBJ: AP006045]
Tetraodon nigroviridis4 [DDBJ: AP006046]
Sphoeroides pachygaster* [DDBJ: AP006745]

Subfamily Canthigasterinae Canthigaster coronata* [DDBJ: AP006743]
Canthigaster rivulata* [DDBJ: AP006744]

Family Diodontidae Chilomycterus reticulatus* [DDBJ: AP009188]
Diodon holocanthus5 [DDBJ: AP009177]

Family Molidae Mola mola3 [DDBJ: AP006238]
Ranzania laevis1 [DDBJ: AP006047]

*Newly determined in this study; 1Miya et al. [24]; 2Miya et al. [29]; 3Yamanoue et al. [32]; 4Yamanoue et al. [37]; 5Yamanoue et al. [40].
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Patterns of sequence variation in the mitochondrial genomes of 25 tetraodontiforms and two outgroupsFigure 2
Patterns of sequence variation in the mitochondrial genomes of 25 tetraodontiforms and two outgroups. Pair-
wise transitional (TS) and transversional (TV) substitutions per site were plotted against evolutionary distance as a substitute 
for absolute geological time. Gamma-corrected maximum likelihood distances using the mtREV + F model [75] and derived 
from deduced amino acid sequences for the 13 protein-coding genes were used for evolutionary distances.
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Discussion
Phylogeny of tetraodontiform families
Ostraciidae have long been problematic because ostraci-
ids exhibit mosaic morphologies (lacking pelvic fin ele-
ments and spinous dorsal fins, like tetraodontoids, but
having separate teeth, like balistoids and triacanthoids).
Some early studies classified the family into the Sclero-

dermi together with the Balistidae, Monacanthidae, and
Triacanthoidea [16,17,36-39], although others placed the
family in the monotypic Ostracodermi or Ostracoidea
[5,34,40-43]. The sister-group relationship of Ostraciidae
with Balistidae + Monacanthidae was also suggested by
many previous authors [1,6,7,44,45], although Leis [19]
and Rosen [18] placed the Ostraciidae within the tetrao-

Bayesian tree using the 12n3rRTn data setFigure 3
Bayesian tree using the 12n3rRTn data set. Bayesian analysis for the 123nRTn data set produced an identical topology. The 
numbers near internal branches indicate Bayesian posterior probabilities for the 12n3rRTn (left) and 123nRTn (right) data sets 
(values less than 50% not shown). Single numbers indicate that the 12n3rRTn and 123nRTn data sets resulted in identical values. 
Solid, open, and double circles, and triangles indicated that main habitats of a family are deep waters, coastal waters, open sea, 
and brackish and freshwater, respectively. Superfamilial classification follow Winterbottom [1] and Tyler and Sorbini [6].
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dontoids based on characters derived from early ontogeny
and osteological characters, respectively (Figs. 1C and
1D). Subsequently, Britz and Johnson [46] reported
unique characters shared solely by the Ostraciidae and
Molidae (occipito-vertebral fusion), and argued that
ostraciids should be included in the tetraodontoids. Our
mitogenomic analyses placed the Ostraciidae within Tria-
canthodoidei, indicating close relationships with the Tria-
canthodidae and Triodontidae. Our statistical
comparisons rejected all previous hypotheses of close
relationships with Balistidae + Monacanthidae (p = 0.007,
Bayes factor = 92.5), Molidae (p = 0.019, Bayes factor =
82.22), Diodontidae and Molidae (p < 0.001, Bayes factor

= 145.58), and Triodontidae + Tetraodontidae + Dio-
dontidae + Molidae (= Winterbottom's [1] Tetraodontoi-
dea) (p = 0.014, Bayes factor = 110.34). Our results also
rejected that of Leis [19] (p < 0.001; Bayes factor = 203.32)
and Rosen [18] (p = 0.009; Bayes factor = 128.04).

Our placements of Triodontidae and Triacanthidae also
differ from most of the previous hypotheses (Fig. 1). Trio-
don macropterus, a monotypic triodontid with a mosaic of
primitive and derived morphological characters (ref, [4];
e.g., parrot-like beak and lacking pelvic fins, like tetrao-
dontoids; spinous dorsal fins, a pelvis, and procurrent
rays, like balistoids and triacanthoids). In addition, trio-

Maximum likelihood (ML) tree with estimated branch lengths using the 12n3rRTn data setFigure 4
Maximum likelihood (ML) tree with estimated branch lengths using the 12n3rRTn data set. ML tree for the 
12n3rRTn and 123nRTn data sets produced an identical topology with those of Bayesian tree. The numbers near internal 
branches indicate bootstrap probabilities for the 12n3rRTn (left) and 123nRTn (right) data sets (values less than 50% not shown). 
Single numbers indicate that the 12n3rRTn and 123nRTn data sets resulted in identical values. The scale indicates expected 
nucleotide substitution per site.
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dontids possess ribs, which all other tetraodontiform
fishes possess except one species of filefishes (Pseudaltarius
nasicornis). Although the Triodontidae have been consid-
ered the basalmost members of the Tetraodontoidea in
most studies [1,4,6,7], this family has also occasionally
been classified as a member of the Sclerodermi [17,39]. In
our study, a close affinity of Triodontidae with Tetrao-
dontidae + Diodontidae + Molidae was not marginally
rejected by the SH test (p = 0.057) but was strongly
rejected by the Bayes factor (110.34). The ML and Baye-
sian analyses of the mitogenomic data sets, however,
strongly suggested that the Triodontidae belonged in Tri-
acanthodoidei together with the Triacanthodidae and
Ostraciidae (BPs and PPs = 100%).

Members of the Triacanthidae have primitive morpholog-
ical characters including paired pelvic fin spines, spinous
dorsal fins, and separate teeth, and are often treated as
basal members together with the Triacanthodidae
[1,4,6,18,19,34,47,48]. However, the cladistic analysis of
myological characters by Winterbottom [1] implied a
close relationship between triacanthids and not only tria-
canthodids but also higher tetraodontiforms (= Tetrao-
dontoidei; Fig. 1B). The cladistic analysis of 219
morphological characters by Santini and Tyler [7] also
suggested that triacanthids were the sister-group of Balisti-
dae + Monacanthidae + Ostraciidae (Fig. 1F). Our results
placed the Triacanthidae within Tetraodontoidei together
with the Balistidae, Monacanthidae, Tetraodontidae, Dio-
dontidae, and Molidae, but we did not obtain clear rela-
tionships within Tetraodontoidei. Its sister-group
relationships with the following groups were not rejected
by the SH test but were rejected by the Bayes factor: Tria-
canthodidae (p = 0.539, Bayes factor = 55.42) and Winter-
bottom's [1] Tetraodontoidei (p = 0.110, Bayes factor =
94.26).

Comparison to previous molecular studies
Holcroft [21] reported the first molecular phylogenetic
analysis of the tetraodontiform families (Fig. 1G). The
study was based on the RAG1 gene and the mitochondrial
12S and 16S rRNA gene sequences, and Bayesian and
maximum parsimony analyses using the RAG1 gene
yielded a tree topology similar to previous morphological
hypotheses in that the group once called Sclerodermi (i.e.,
Triacanthodidae, Triacanthidae, Balistidae, and Monacan-
thidae) was confirmed. In contrast, the tree topologies
derived from the 12S and 16S rRNA genes (Figs. 6 and 7
in Holcroft [21]) were unorthodox, and she concluded
that problematic alignment of the mitochondrial data
could account for those results. Alfaro et al. [22] also
employed partitioned ML and Bayesian analyses using
concatenated sequences of the RAG1 and mitochondrial
12S and 16S genes from representatives of all families
(Fig. 1H). Holcroft [21] and Alfaro et al. [22] similarly

recovered the sister-group relationships of Tetraodontidae
+ Diodontidae and Balistidae + Monacanthidae, and the
paraphyly of Tetraodontinae as in our resultant tree (Fig.
1I).

Our mitogenomic tree topology, however, is also incon-
gruent with those derived from molecular analyses of the
nuclear RAG1 genes by Holcroft [21] (Fig. 1G) as well as
the RAG1/mitochondrial 12S and 16S rRNA genes by
Alfaro et al. [22] (Fig. 1H). Holcroft [21] considered the
tree derived from the RAG1 gene to be more reliable than
those from the 12S and 16S rRNA genes, because there
were ambiguities in alignment, apparent saturation in
nucleotide substitutions along the time axis, and noticea-
ble codon biases in the latter (see Holcroft [21]). Alfaro et
al. [22] also presented tetraodontiform phylogeny using
concatenated sequences of RAG1/12S and 16S rRNA
genes with sequences of Triodon macropterus and another
representative of the Triacanthidae added to the data set of
Holcroft [21]. However, both studies failed to obtain clear
resolution for the basal relationships of Tetraodon-
tiformes (Figs. 1G and 1H), with a basal polytomy in Hol-
croft [21] and crown node with weak support values (BPs
≤ 70%, PPs ≤ 90%) in Alfaro et al. [22].

We conducted ML and Bayesian analyses using the data
sets of Holcroft [21] (RAG1 only) and Alfaro et al. [22]
with topological constraints on our phylogeny derived
from the 12n3rRTn data set (Figs. 3 and 4). Statistical com-
parisons using the likelihood-based SH test and Bayes fac-
tor were conducted between the unconstrained and
constrained trees based on the data sets of Holcroft [21]
and Alfaro et al. [22]. The SH test based on the data set of
Holcroft [21] did not reject our hypothesis (p = 0.067),
but the Bayes factor very strongly rejected our hypothesis
(Bayes factor = 37.6). Both the SH test and Bayes factor
based on the data set of Alfaro et al. [22] rejected our
hypothesis (p = 0.037 Bayes factor = 74.92), but the differ-
ence using the SH test was only marginally significant.
Based on our mitogenome data set, however, the SH test
and Bayes factor confidently rejected the topologies of
both Holcroft [21] (p < 0.001; Bayes factor = 112.64) and
Alfaro et al. [22] (p = 0.004; Bayes factor = 97.45).

Considering that the conservative SH test based on the
data sets of Holcroft [21] and Alfaro et al. [22] showed no
or only marginally significant differences among trees of
RAG1 (p < 0.001) or RAG1/12S and 16S rRNA genes (p =
0.037) and mitogenomes, it seems likely that their data
sets did not comprise suitable gene sequences with ade-
quate taxonomic sampling for recovering a precise phyl-
ogeny of the Tetraodontiformes. Our taxonomic sampling
represented all families by at least two species (except for
monotypic Triodontidae) to avoid long-branch attraction.
In contrast, the taxonomic sampling of Holcroft [21] did
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not include any triodontids and only one species each of
Triacanthidae and Triacanthodidae, which would lead to
long-branch attraction in the resulting tree [49-51]. Alfaro
et al. [22] improved the data set by adding Triodon macrop-
terus (Triodontidae) and Pseudotriacanthus strigilifer (Tria-
canthidae), but a single species was used for the
Triacanthodidae. It may be argued that more noise-free
(unsaturated) nuclear genes are superior for precisely esti-
mating phylogenies [21,52,53]. However, Saitoh et al.
[33] demonstrated that non-saturated partitions of the
mitochondrial genes (second codon positions) along the
time axis do not necessarily result in correct phylogenies
among basal groups, due to a lack of phylogenetic signal
in the data set; slowly evolving nuclear genes may lack
phylogenetic signal.

Our mitogenomic data sets (15,084 bp) were much
longer, and therefore should have far more phylogenetic
signals and noise, than those based on the RAG1 gene (ca.
1400 bp) in Holcroft [21] and RAG1/12S and 16S rRNA
genes (ca. 2500 bp) in Alfaro et al. [22]. While it is likely
that randomly accumulated noise could be masked by
phylogenetic signal, noise accumulated systematically
may eventually lead to erroneous estimations of phyloge-
nies. Thus, increasing the length of sequences with no or
little systematic noise should be advantageous for estimat-
ing correct phylogenies, while increasing the length of
sequences with significant systematic noise would lead to
less accurate phylogenies. Mitochondrial genes encode
basic functions, such as aerobic respiration, in mitochon-
dria [54] and thus are likely to accumulate less systematic
noise than functionally specialized nuclear genes. Moreo-
ver, our data sets were analyzed under appropriate substi-
tution models, partitions, and various treatments of the
third codon position (123nRTn and 12n3rRTn) to reduce as
much phylogenetic noise as possible. Furthermore, the
use of shorter sequences or a single gene generates phylo-
genetic hypotheses that are incongruent or lacking sup-
port [55-58], and increasing sequence length may be a
better way to improve support, resolution, and accuracy of
a difficult phylogeny (> 5000 bp in Hillis [59]; > 10,000
bp in Wortley et al. [60]). On the other hand, the possibil-
ity cannot ruled out that our result was erroneously esti-
mated due to long branch attraction because the two
unexpected clades have considerable differences in evolu-
tionary rates of mitogenomes (Fig. 4). Accordingly, we
cannot conclude that our mitogenomic analyses correctly
estimated tetraodontiform phylogeny, and further taxo-
nomic sampling and additional gene sequences would be
needed to clarify these relationships.

Ecological diversification
Tetraodontiform fishes are found primarily in coastal
shallow waters and estuaries of tropical and temperate
regions such as coral and rocky reefs, sandy and muddy

bottoms, and sea weed beds [4,8,9,47,61]. Moreover,
some pufferfishes are radiated into brackish and freshwa-
ter in Southeast Asia, Central Africa, and South American
basins [62], and ocean sunfishes (Molidae), a few of
tetraodontids (e.g., some species of Lagocephalus and
Sphoeroides), and balistids (e.g., Canthidermis maculata) are
widely distributed in open seas [8,9]. On the other hand,
a few groups inhabit relatively deep waters of tropical and
temperate regions. Triacanthodids are distributed in con-
tinental shelves and slopes in Indo-Pacific and Caribbean
Sea [8,9,47]. Triodontids are also distributed in deep
waters such as margins of continental shelves and slopes
in tropical Indo-West Pacific [8,9]. Ostraciin ostraciids are
generally found in shallow waters such as coral reef and
near shores, but most aracanin ostraciids occur in conti-
nental shelves of temperate Indo-West Pacific [8,9]. A few
tetraodontids (e.g., some species of Lagocephalus and
Sphoeroides) and monacanthids (e.g., some species of
Thamnaconus) are also found in deep waters such as conti-
nental shelves [9]. Our most striking finding was the two
unexpected clades of Tetraodontiformes (Tetraodontoidei
and Triacanthodoidei), which were strongly supported.
The basal split of the Tetraodontiformes was implied by
the mitogenomic analyses of Yamanoue et al. [32]. We
found that the basal split is more congruent with the eco-
logical diversification within the order than that expected
from the traditional taxonomy based on morphology.
Most members of Tetraodontoidei exclusively radiated
into shallow waters (freshwater, brackish and coastal
waters, and open seas), while those of Triacanthodoidei
except for more derived ostraciids inhabit relatively deep
waters along continental shelves and slopes [8,9]. This
suggests that the basal split between the two clades led to
subsequent radiation into the two different habitats. As
mentioned above, a few species of Tetraodontoidei
(tetraodontids and monacanthids) are found in relatively
deep waters. However, it is probable that the center of dis-
persal for each group of Tetraodontoidei is apparently not
deep waters but shallow waters because most members of
tetraodontids and monacanthids, even those of the same
genera with deep-sea inhabitants, are found in shallow
waters. On the other hand, most members of Triacantho-
doidei inhabit deep sea such as continental shelves and
slopes. However, ostraciin ostraciids inhabit reefs and
near shore [9]. Considering that most aracanin ostraciids,
the plesiomorph sister-group of ostraciin ostraciids [1,4],
occurred in relatively deep waters [8,9], it seems likely that
ostraciin ostraciids were secondarily radiated into shallow
waters. Alfaro et al. [22] proposed that reef inhabitants
exhibit higher species diversity than non-reef species, and
this hypothesis may help explain the difference in diver-
sity between Tetraodontoidei (368 species) and Triacan-
thodoidei (61 species) observed in our study (Fig. 3).
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Some molecular studies have reported a basal split accord-
ing to habitat for some vertebrate groups in their early
stage of evolution. Placental mammals were divided into
the Afrotheria and the remaining groups, the former of
which were initially restricted to Africa [63-65]. In addi-
tion, cichlids in the Great Lakes of East Africa are catego-
rized according to which lake they inhabit (Victoria,
Tanganyika, or Malawi [66-68]). Due to morphological
convergence, the differences in these groups were previ-
ously undetectable until the emergence of molecular phy-
logenies. Accordingly, as is the case with our results, clear
divergences in habitat at early stages of evolution were
often overlooked.

Conclusion
The phylogenetic analyses of whole mitogenomic data
sets confirmed monophyly of all families and subfamilies
(except the Tetraodontinae) and sister-group relation-
ships of Balistidae + Monacanthidae and Tetraodontidae
+ Diodontidae as in the previous studies. We also found
an unexpected basal splits into Tetraodontoidei (Triacan-
thidae + Balistidae + Monacanthidae + Tetraodontidae +
Diodontidae + Molidae) and Triacanthodoidei (Ostracii-
dae + Triodontidae + Triacanthodidae), which has never
been reported and challenges previously proposed
hypotheses based on both morphology and nuclear
sequences. The mitogenomic hypothesis seems more con-
gruent with the basal ecological diversification within the
order, because most members of Tetraodontoidei exclu-
sively occur in shallow waters (freshwater, brackish and
coastal waters, and open seas), while those of Triacantho-
doidei occur in relatively deep waters along continental
shelves and slopes except for more derived ostraciids. This
suggests that the basal split between the two clades led to
subsequent radiation into the two different habitats.

Methods
Taxonomic sampling
Our purposeful taxonomic sampling strategy was based
on Hillis [49], who recommended selecting taxa within
the monophyletic group of interest that will represent the
overall diversity of the group and that are expected (based
on current taxonomy or previous phylogenetic studies) to
subdivide long branches in the initial tree (p5 in Hillis
[49]). We chose at least two species from each family or
subfamily, except for one species from the monotypic
family Triodontidae and four species each from the speci-
ose groups Tetraodontinae and Monacanthidae (See Table
1). No specimen of the subfamily Hollardinae of the Tri-
acanthodidae was available for use in the present study.
Final rooting was done using the borefish Antigonia capros
and the dark-banded fusilier Pterocaesio tile, based on the
results of Yamanoue et al. [32]. Table 1 lists all species
used in this study, with their DDBJ/EMBL/GenBank acces-
sion numbers.

DNA extraction, PCR, and sequencing
A portion of the epaxial musculature (ca. 0.25 g) was
excised from fresh specimens of each species and immedi-
ately preserved in 99.5% ethanol. Total genomic DNA was
extracted using a Qiagen DNeasy tissue kit (Qiagen) fol-
lowing the manufacturer's protocol. The mitogenomes
were amplified in their entirety using a long PCR tech-
nique [69]. Four fish-versatile long PCR primers were used
in various combinations to amplify the entire mitoge-
nome in two reactions. The long PCR products were
diluted with TE buffer (1:19) for subsequent uses as PCR
templates.

A total of 148 fish-versatile PCR primers were used in var-
ious combinations to amplify the contiguous, overlap-
ping segments of the entire mitogenome, and 11 species-
specific primers were designed when no appropriate prim-
ers were available. A list of the PCR primers used in this
study is available from Y.Y. upon request. Long PCR and
subsequent short PCR were performed as previously
described [26,70].

Double-stranded PCR products, purified using a ExoSAP-
IT (USB), were subsequently used for direct cycle sequenc-
ing with dye-labeled terminators (Applied Biosystems).
The primers used were the same as those for PCR. All
sequencing reactions were performed according to the
manufacturer's instructions. Labeled fragments were ana-
lyzed using Model 377 and 3100 DNA sequencers
(Applied Biosystems).

Alignment
The DNA sequences were edited and analyzed with
EDITVIEW (version 1.0.1), AUTOASSEMBLER (version
2.1) (Applied Biosystems), and DNASIS (version 3.2)
(Hitachi Software Engineering). A total of 13 protein-cod-
ing, 22 tRNA, and two rRNA gene sequences for 27 species
were aligned using PROALIGN (version 0.5) [71]. All
sequences from L-strand-encoded genes (ND6 and eight
tRNA genes) were converted to complementary strand
sequences. Amino acids were used for alignments of the
protein-coding genes. Regions with posterior probabili-
ties of = 70% were used in the phylogenetic analyses.
Unambiguously aligned sequences were 11,340, 1494,
and 2250 nucleotide positions from the 13 protein-cod-
ing genes, 22 tRNA genes, and two rRNA genes, respec-
tively (total of 15,084 positions).

We constructed two different data sets to see the effects of
quickly saturating the third codon positions in the pro-
tein-coding genes on the estimation of phylogeny: 1) all
aligned positions of gene-coding regions of mitogenomic
sequences (designated as 123nRTn, where n denotes nucle-
otides; total of 15,084 positions) and 2) the third codon
positions converted to purine (R) and pyrimidine (Y)
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(12n3rRTn, where r denotes RY-coding [72,73]). The
aligned sequence data in NEXUS format are available
from Y.Y. upon request.

Analysis of sequence variations
Pairwise comparisons and statistical information from the
mitogenomic sequences were obtained using PAUP (ver-
sion 4.0b10) [74]. To examine patterns of sequence varia-
tion in the first, second, and third codon positions, and
separately for the protein-coding genes, rRNA, and tRNA,
we plotted pairwise nucleotide differences (sorted into
transitional [TS] and transversional [TV] differences)
against evolutionary distance as a substitute for absolute
geological time. The gamma-corrected maximum-likeli-
hood (ML) distance with the mtREV + F model [75]
derived from concatenated amino acid sequences from
the 13 protein-coding genes was calculated with TREE-
PUZZLE (version 5.2) [76] and used as the evolutionary
distance. The resulting distances of this method have been
demonstrated to be linear with absolute geological time
for several vertebrate taxa [77].

Phylogenetic analysis
Maximum likelihood (ML) analysis has traditionally not
been feasible with a large data set such as the one used in
this study. However, a recently developed program,
RAXML [78], has greatly improved ML analysis by imple-
menting a novel, rapid-hill-climbing algorithm. This pro-
gram performs heuristic phylogenetic searches under
general time -reversible (GTR) model sites following a dis-
crete gamma distribution (ref. [79]; GTR + Γ) and also
allows data partitioning. This program produces likeli-
hood values using GTRCAT, which is a GTR approxima-
tion with optimization of individual per-site substitution
rates and classification of those individual rates into a cer-
tain number of rate categories. GTRCAT allows the inte-
gration of rate heterogeneity into phylogenetic analyses at
significantly lower computational and memory costs;
however, the approximation is numerically instable. To
reconstruct the ML tree, we selected GTRMIX as a nucle-
otide -substitution model, which makes RAXML perform
a tree inference (search for a good topology) under the
GTRCAT model. In the GTRMIX model, when the analysis
is finished, RAXML switches to GTRGAMMA to evaluate
the final tree topology to yield stable likelihood values.

We set five (123nRTn and 12n3rRTn) partitions, assuming
that functional constraints on sequence evolution are
more similar within codon positions (or types of mole-
cules) across genes than across codon positions (or types
of molecules) within genes, at least for a set of mitochon-
drial genes. We performed 100 inferences in each analysis
and found the best ML tree by comparing final likelihoods
among them. To evaluate the robustness of the internal
branches of the ML tree, 100 bootstrap replications were

calculated for each data set without data partitioning
(data partitioning is not feasible for bootstrapping in the
current version of RAXML). The GTRCAT model was used
for bootstrap analyses because we were only interested in
the bootstrapped topologies.

Partitioned Bayesian phylogenetic analyses were con-
ducted with MRBAYES (version 3.1.2) [80], which allows
up to 150 partitions and the use of complex substitution
models with independent parameters for each partition.
The GTR model, with some sites assumed to be invariable
and with variable sites assumed to follow a discrete
gamma distribution (ref. [79]; GTR + I + Γ), was selected
as the best-fit model of the nucleotide substitution for
each partition on the basis of the Akaike Information Cri-
teria (ref. [81]; AIC). The best-fit model was selected using
MRMODELTEST (version 2.1) [82], which is a simplified
version of MODELTEST (version 3.06) [83]. We set the
GTR + I + Γ model of nucleotide substitutions in MrBayes
as follows: "lset nst = 6" (GTR) and "rates = invgamma" (I
+ Γ). We assumed that all model parameters were
unlinked and the rate multipliers were variable across par-
titions, which were set in MrBayes as follows: "unlink rev-
mat = (all) pinvar = (all) shape = (all) statefreq = (all)"
(unlinking substitution rates of the GTR model, propor-
tion of invariable sites, gamma shape parameters, and
base frequency across all partitions) and "prset ratepr =
variable" (rate multipliers variable across partitions). We
used the default settings for the priors on the proportion
of invariable site (0–1) and gamma shape parameters
(0.1–50.0). A Dirichlet distribution was assumed for the
rate matrix and base frequency, and every tree topology
was assumed to be equally probable.

The Markov chain Monte Carlo (MCMC) process was set
so that two independent analyses starting from different
random trees (nruns = 2) with four chains (three heated
and one cold) ran simultaneously. On the basis of two to
four preliminary runs with varying cycles (1.0–3.0 × 106),
we estimated average log likelihood scores at stationarity
(123nRTn ≈ -165,180; 12n3rRTn ≈ -106,860), and subse-
quently conducted two independent runs for each data
set. After reaching stationarity in the two runs, we contin-
ued both runs for 1.0 × 106 cycles with one in every 100
trees being sampled (10,000 trees) for all data sets. Thus,
we determined the posterior probabilities of the phyloge-
nies and its branches based on 20,000 trees pooled from
the two runs for the two data sets.

Testing alternative hypotheses
Alternative tree topologies were individually compared to
the resulting ML tree using the likelihood-based SH test
[84] implemented in PAUP [74]. We conducted ML anal-
yses using RAXML with constrained topology and esti-
mated ML trees with those constraints using a GTR + I + Γ
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model of sequence evolution, implemented in PAUP.
Then we estimated the variance in likelihood difference
between two topologies using the resampling estimated
log-likelihood (RELL) method from 1000 bootstrap repli-
cations, and the difference was statistically evaluated. A
value of p < 0.05 was considered significantly different.
The data set excluding Triodon macropterus was recon-
structed for statistical comparisons with Holcroft [21] and
Leis [19], who did not use triodontids in their analyses.

We also tested alternative tree topologies with a mono-
phyletic subgroup as the null hypothesis with Bayes fac-
tors, using the constraint option in MrBayes, and analyzed
each data set as previously described. We calculated the
harmonic means of likelihoods after the burn-in period
using the sump command in MrBayes, and likelihood val-
ues were compared to those values from the uncon-
strained analyses by calculating twice the differences (i.e.,
2 *Δln). Following Kass and Raftery [85], a 2*Δln Bayes
factor of > 10 was interpreted as strong evidence for reject-
ing the null hypothesis. It should be noted, however, that
Brandley et al. [86] found that a 2*Δln Bayes factor of 10
could be a less conservative threshold.
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