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cAPHP, Laboratoire d'H�ematologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
dBiologie Int�egr�ee du Globule Rouge, INSERM U1134, Universit�e de Paris, Universit�e des Antilles, Paris, France
eLaboratoire d'Excellence GR-Ex, Paris, France
fD�epartement de biostatistiques, Direction de la Recherche Clinique et de l'Innovation, CHU Amiens-Picardie, Amiens, France
gU1163, Laboratoire des m�ecanismes cellulaires et mol�eculaires des troubles h�ematologiques et de leurs implications th�era-
peutiques, INSERM, Universit�e de Paris, Paris, France
eBioMedicine 2022;83:
104209
Published online xxx
https://doi.org/10.1016/j.
ebiom.2022.104209
Summary
Background Schistocyte counts are a cornerstone of the diagnosis of thrombotic microangiopathy syndrome (TMA).
Their manual quantification is complex and alternative automated methods suffer from pitfalls that limit their use.
We report a method combining imaging flow cytometry (IFC) and artificial intelligence for the direct label-free and
operator-independent quantification of schistocytes in whole blood.

Methods We used 135,045 IFC images from blood acquisition among 14 patients to extract 188 features with
IDEAS� software and 128 features from a convolutional neural network (CNN) with Keras framework in order to
train a support vector machine (SVM) blood elements’ classifier used for schistocytes quantification.

Finding Keras features showed better accuracy (94.03%, CI: 93.75-94.31%) than ideas features (91.54%, CI: 91.21-
91.87%) in recognising whole-blood elements, and together they showed the best accuracy (95.64%, CI: 95.39-
95.88%). We obtained an excellent correlation (0.93, CI: 0.90-0.96) between three haematologists and our method
on a cohort of 102 patient samples. All patients with schistocytosis (>1% schistocytes) were detected with excellent
specificity (91.3%, CI: 82.0-96.7%) and sensitivity (100%, CI: 89.4-100.0%). We confirmed these results with a sim-
ilar specificity (91.1%, CI: 78.8-97.5%) and sensitivity (100%, CI: 88.1-100.0%) on a validation cohort (n=74) ana-
lysed in an independent healthcare centre. Simultaneous analysis of 16 samples in both study centres showed a very
good correlation between the 2 imaging flow cytometers (Y=1.001x).

Interpretation We demonstrate that IFC can represent a reliable tool for operator-independent schistocyte quantifi-
cation with no pre-analytical processing which is of most importance in emergency situations such as TMA.
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Research in context

Evidence before the study

We searched PubMed using the search terms “imaging
flow cytometry”, “learning”, “red blood cell morphol-
ogy”, “schistocyte” and associated permutations to find
relevant articles until March 2018. Imaging flow cytome-
try combined with machine learning appears to be a
promising tool in haematology, allowing a high input
blood cell recognition and quantification. Red blood
cell diseases seem to be particularly suitable for this
type of approach, especially those that require urgent
diagnosis but suffer from a lack of standardisation such
as schistocyte identification and count. PubMed search
provided preliminary resources and even some meth-
ods for the automatic assessment of blood cells mor-
phologies but far from a potential application in
routine. As a matter of facts, they confirmed the conclu-
sions of the International Council for Standardisation in
Haematology for the need of new tools to allow reliable,
high-throughput, and automated quantification of red
blood cells.

Added value of this study

We constitute the largest expert-annotated pool of
images from blood collection acquired with state-of-
the-art imaging flow cytometry available in the litera-
ture with as much as 135,000 images. This has permit-
ted us to build an outmost quality classifier capable of
discriminating between 29 different categories. The
strategy presented in this manuscript allows the acquisi-
tion of a large number of blood cells and their identifi-
cation in few minutes without any pre-processing step.
As exemplified with schistocytes, our approach was
used to address a clinically relevant question while
avoiding expert-recognised pitfalls of current gold stan-
dard. It has been applied in two medical centres on
more than 100 patients’ blood and has led to the cate-
gorisation of patients with high amount of schistocytes
with remarkable performance.

Implications of all the available evidence

What we have described here should lead to refinement
of patient management such as thrombotic microangi-
opathy where schistocytes elevation is a key point of
the diagnosis in emergency context. Finally, our work
extends current boiling research in the field of imaging
flow cytometry and we clearly believe that it can accom-
pany the future of red blood cells morphologies investi-
gation in clinics.
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Introduction
Red blood cell (RBC) morphology is at the front line in
the diagnostic process for anaemia, guiding the pre-
scription of second-line tests. The importance of this
assessment is underlined by the International Council
of Standardisation in Haematology (ICSH)
recommendations for the semi-quantitative classifica-
tion of all RBC shapes using three different grades.1

Among RBC morphologies, schistocytes are of particu-
lar interest. Absent or rare in the blood of healthy
patients,2,3 their presence reflects the mechanical frag-
mentation of RBCs that can occur in various contexts,
mainly related to mechanical obstacles, such as fibrin
filaments, high shear stress, or thermal injury.4 Impor-
tantly, their detection is a key point in the diagnosis of
thrombotic microangiopathies (TMA), including throm-
botic thrombocytopenic purpura (TTP), haemolytic ure-
mic syndrome (HUS), and other situations, such as
metastatic cancer, haematopoietic stem-cell transplanta-
tion, haemolysis with elevated liver enzymes and low
platelet count (HELLP) syndrome, and eclampsia.5,6

The state of the art in terms of schistocyte quantification
is currently based on morphological evaluation of RBCs
by the analysis of blood smears after May Gr€umwald
Giemsa coloration.4,7,8 The International Council for
Standardisation in Haematology (ICSH) guidelines
defines specific positive morphological criteria and typi-
cal RBC shapes (keratocytes, helmet cells, crescents,
and triangles) and recommends counting schistocytes
among at least 1,000 RBCs7,8 to significantly improve
the standardisation of their quantification. Nonetheless,
the schistocyte count is probably among the most
important parameters to be automated. Indeed, (i) it is
the only RBC morphology that must be quantitatively
estimated, given the robust positive predictive value of
the 1% cut-off in TMA, which may require immediate
clinical management, such as plasma exchange in
TTP,5�9 (ii) such quantification is complex, time-con-
suming, and requires a well-trained operator, and (iii)
reliability of the result depends on the number of cells
counted and the quality of the blood smears and is sen-
sitive to inter-observer variability.10 Progress in the
standardisation of this technique has been made by
automating the review of blood smears using a digital
camera coupled to an artificial neural network. This
technology, particularly efficient for white blood cell
(WBC) identification and quantification,11 classifies
RBCs according to their size, shape, colour, and inclu-
sion features and provides a semi-quantitative assess-
ment for each.11,12 Although attractive, it still requires
manual post-classification by a trained operator to be
sufficiently reliable for diagnosis, especially for the
schistocyte count.13,14 In addition, the accuracy of this
approach is highly affected by the quality of the blood
smear and its staining.4,11,15

Imaging flow cytometry (IFC) is an innovative tool
that has the advantage of combining high-throughput
technology with morphological analysis in the absence
of pre-analytical procedures, which may modify cell
shape. Indeed, IFC has proven its ability to identify vari-
ous RBC anomalies, including sickle cells,16 intra-eryth-
rocyte malaria,17 RBC storage lesions,18,19 and
spherocytes.20 However, the above-mentioned studies
www.thelancet.com Vol 83 Month , 2022
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were based on classical IFC procedures, including ad
hoc masking and image feature extraction using
IDEAS� software.21 New perspectives have recently
been opened by pioneering studies that have introduced
artificial intelligence (AI) to the field of IFC,22 particu-
larly for leucocyte classification23,24 and the identifica-
tion of acute lymphoblastic leukaemia.25 More recently,
it was shown that AI combined with IFC can be used to
monitor morphological alterations of stored RBC con-
centrates26 in addition to efforts undertaken to produce
highly reproducible results between laboratories.27

Here, we aimed to apply these technologies to schisto-
cyte recognition and developed a label-free machine
learning-based identification method for RBCs to estab-
lish IFC as a reliable method for the direct operator-
independent quantification of schistocytes in whole
blood, with no pre-analytical processing.
Methods

Samples
All peripheral venous blood samples were collected as
part of the regular follow-up of patients in EDTA-K2-
anticoaguled tubes (Vacutainer, Becton Dickinson, Sun-
nyvale, CA, USA). Only the remaining blood in the
tubes, after all requested analyses were performed, was
used for this study. Blood smears performed prior to
IFC acquisition, either manually or using an Advia
Autoslide (Siemens Healthcare Diagnostics, Tarrytown,
NY) or SP-50 (Sysmex Corporation, Kobe, Japan). Blood
smears were stained using May-Gr€unwald Giemsa.

Ethics
This study followed the French regulations governing
non-interventional studies and was approved by the
Figure 1. Study flow diagram. Left panel, SVM classifier conceptio
and external validation cohorts. Middle panel, internal validation co
Positive samples as defined by schistocyte count above 1% with OM
cytometry.
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Clinical Research and Innovation Department of hospi-
tal CHU Amiens-Picardie and Assistance Publique des
Hôpitaux de Paris (APHP) (PI2021_843_0087). As per
French legislation, no specific patient consent was
required. The analysis of biological samples obtained in
the medical care context was considered as non-inter-
ventional research (article L1221-1.1 of the French Public
Health Code), requiring only the non-opposition of the
patient during sampling (article L1211-2 of the French
Public Health Code).

Sample size
The sample size cohort was established in order to
include approximately 1/3 positive samples and 2/3 neg-
ative samples with more than 70 samples per cohort to
balance with feasibility, sample availability and accurate
assessment of our tool. The samples were selected not
consecutively but randomly according to the availability
of the samples, the investigators and imaging flow
cytometer. Inclusion criteria was schistocyte count
requested by physicians and exclusion criteria was sam-
ple collected more than 24 hours before acquisition.

Validation cohort
In Amiens hospital, 102 samples (different from the
ones used for the training) from 86 patients for whom a
schistocyte count was requested by physicians were
selected between June 2018 and September 2020.
Among them, 33 had > 1% schistocytes as assessed by
morphological examination of blood smears, 10 sam-
ples had between 0.5 and 1% schistocytes and 59 sam-
ples had < 0.5% schistocytes. Schistocytosis aetiology,
complete blood count (CBC), haemolysis work-up and
history of RBC/platelet/plasma transfusion are indi-
cated in Suppl. Table S1. Schistocytes were enumerated
blindly, and without knowledge of the IFC schistocyte
n using 14 samples different from the ones used for the internal
hort (Amiens). Right panel, external validation cohort (Necker).
and 1,92% with IFC. OM: optical microscopy, IFC: imaging flow
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count, among 1,000 RBCs by three independent well-
trained haematologists using an optical microscope
(OM) at 1000X magnification according to the Schisto-
cyte Working Group of the ICSH recommendations.7,8

As a control group, 39 samples from healthy patients
with a normal complete blood count and no schistocyto-
sis, as assessed by cytology, were collected.

For the external validation cohort, 74 samples (42
patients) from Necker hospital (APHP, Paris) for whom
a schistocyte count was requested were acquired
between October 2021 and February 2022. Among
them, 29 had more than 1% schistocytes as assessed by
morphological examination of blood smears. Schistocy-
tosis aetiology, CBC and haemolysis work-up for each
patient are indicated in Suppl. Table S2. Schistocytes
were enumerated by laboratory medical staff from
Necker hospital. Samples with less than 1% of schisto-
cytes were reported as <1%. A demographic table to
compare both cohorts and a study flow diagram to show
the disposition of patients in the study is available in
Suppl. Table S3 and Figure 1.
IFC acquisition
Samples were diluted 1:50 in 1X calcium and magne-
sium-free phosphate-buffered saline and 100 µL
injected into an ImageStream (IS) X Mark II (Amnis,
Luminex, Seattle, WAS, USA). Training and validation
sets (Amiens hospital only) were constructed using
image files acquired with the brightfield intensity set to
780, 800, and 820 and up to 100,000 events were
recorded for each brightfield setting. For the validation
cohort comprising samples from Amiens hospital and
Necker Hospital, brightfield was acquired on channel 4
with the intensity set to 800, in total, 10,000 objects
were captured.
Instrument characteristics
In Amiens CHU, ImageStream (IS) X Mark II was
equipped with one camera (Hamamatsu) and 375, 488,
642, and 785 nm excitation lasers. Samples were
acquired with INSPIRE software (v200.1.388.0 to
v200.1.620.0) and lasers powered at 50, 200, 150, and
0.3 mW, respectively. Channels 1, 4, and 6 were col-
lected at high sensitivity and 60x magnification. In
Necker Hospital, ISX was equipped with two cameras
(Sarnoff) and 375, 405, 488, 561, 642, and 785 nm exci-
tation lasers. And, samples were acquired at 60x magni-
fication on all channels of the first camera (01 to 06)
with INSPIRE software (201.1.0.693) with only 785 nm
laser powered at 0.3 mW.
Design of the database corresponding to the training
and validation sets
The training and validation sets were constructed from
14 selected samples containing various morphologies of
interest observed on blood smears, including
schistocytes (n=2), acanthocytes (n=1), sickle cells (n=3),
teardrop cells (n=2), elliptocytes (n=1), Pappenheimer
bodies (n=1), RBC agglutination (n=1), and anemia/poi-
kilocytosis (n=3). All images from the brightfield chan-
nel were extracted and classified to retain the events of
interest. All corresponding objects were merged into a
single file that was then used for feature extraction. Of
note, none of the samples included in the database were
used for the validation cohort. The process for the data-
base design and sample analysis is summarised in
Suppl. Figure 1.

Feature extraction and modelling
Computations were performed using a 2 x Xeon E5-
2620 (total 12 physical cores) analysis station, bought
with the IS but upgraded with a NVIDIA GTX1050Ti (4
GB) and extra RAM (total 48 GB), and windows 7 with
R and the abind, caret, e1071, keras, IFC, and tensorflow
R packages (software versions are provided in Suppl.
Table S4). IDEAS� analysis software was used to pro-
cess the acquired data to generate the so-called ideas fea-
tures from brightfield images. In total, 188 features
were used. Feature-value extraction was highly facili-
tated by our publicly available IFC package, allowing us
to batch extract feature values directly from daf files cre-
ated by the IDEAS� software. For the so-called keras
features, we used a simple convolutional neural network
(CNN) consisting of several stacks of convolutional and
drop layers. Just before the final softmax multi-class out-
put, we placed a dense layer of 128 units to extract 128
features resulting from the training. The input con-
sisted of 80 square-pixel brightfield images shaped
using the abind package to an array of [1, 80, 80, num-
ber of events] extracted using the IFC package with
clipped object removal and intensity-value ranges nor-
malised to [0, 1] for each single object. The weights of
the CNN were adjusted using the R packages keras and
tensorflow at the backend without setting tensorflow
seed and using the capability of the graphic processing
unit (GPU) for a total of 100 epochs, a batch size of 256,
and data augmentation (horizontal and vertical image
flipping, shearing up to 0.15, zooming range up to 0.15,
shifting up to 0.2, and rotating up to 45°) while reserv-
ing 20% of each class for the validation step. For CNN
training, we used more categories than for the SVM, as
certain classes were gathered or selected. After 3.772895
h, we obtained a final accuracy of 0.9055654 for the vali-
dation set. The CNN was fitted with callbacks for tensor-
board logging, early stopping, and best model
checkpoint saving used for keras features extraction. We
used the support vector machine (SVM) to build a 29
categories classifier owing to its high performance in
classification tasks.28 All features were centered and
scaled against the mean and the standard deviation of
the 135,045 brightfield images from 14 patients trans-
formed in features (namely keras and ideas) entering
the SVM and the polynomial basis function allowing for
www.thelancet.com Vol 83 Month , 2022
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non-linearity was used as kernel. The training dataset
consisting of 80% of the 135,045 brightfield images was
divided into five equal size subsets (5-folds cross valida-
tion) with each combination of four subsets used for
models training and the fifth subset for validation. Dur-
ing cross validation, the SVM model parameters from
the e1071 package, degrees (the degree of the polyno-
mial kernel) [2, 3], coef0 (constant of kernel formula)
[10, 20, 50], cost (penalty for misclassification) [0.1, 1, 5],
and g (function of the deviation of the kernel) [0.0001,
0.001, 0.01] were optimised with grid-searching con-
trolled by the caret package to minimise the negative of
multinomial log-likehood (smaller is better) based on
the class probabilities in unseen data. After finding the
best (degree, coef0, cost, and g) combination, the whole
training dataset was trained again to generate the final
classifier. Three SVM models were created, one with the
ideas features alone, another one with the keras features
alone, and a third with both the ideas and keras features
which required 1.187054, 3.65764, and 2.238624 days,
respectively under parallel computation. Intensity-based
ideas features were transformed with smoothLinLog
function from IFC. Missing data that may arise during
the process of brightfield image features extraction and
SVM classification have been handled so that they do
not fall under the decision threshold (DT) used and
does not allow for cell identification.
Data
Data from patients were collected and entered by J.D.
and C.R. into a computerised database encrypted and
ruled by the Clinical Research and Innovation Depart-
ment of hospital CHU Amiens-Picardie. This compu-
terised database was used for the statistical analysis.
Missing data were marked as not available in the
Suppl. Tables S1 and S2 and analysis was performed
without.
Statistics
Quantitative variables were expressed as mean § stan-
dard deviation or as median [Interquartile range] and
qualitative variables were expressed as frequency and
percentage. Spearman’s rank correlation coefficients
(rs) were used to evaluate the correlation between the
percentage of cell counts obtained with IFC and those
on blood smears. A random effect-based ANOVA intra-
class correlation coefficient was used to evaluate the
agreement between hematologists’ schistocyte counts.29

Degree of freedom was estimated according to Shrout et
al.30 Comparison of schistocyte counts between three
groups was performed with Kruskal-Wallis test with
Dunn’s multiple comparisons. Within-run precision
was calculated using the coefficient of variation (CV).
No allowance for multiplicity has been applied. Discrim-
inative performance of the SVM was assessed by mean
of AUC with a 95% CI. Sensitivity, specificity, PPV and
www.thelancet.com Vol 83 Month , 2022
NPV were also calculated with 95% CIs. Then, the clas-
sifier was further tested in two datasets (Amiens dataset
and Paris dataset) with calculation of diagnostic perfor-
mance indices. Statistical analysis was performed using
GraphPad Prism and R. Software version can be found
in Suppl. Table S4.
Role of funders
No specific funding.
Results

Expert-based design of RBC morphology identification
To differentiate schistocytes from other elements, we
created 29 categories that correspond to either (i) spe-
cific RBC types i.e. regular RBCs, reticulocytes, echino-
cytes, ovalocytes, acanthocytes, sickle cells, teardrop
cells, elliptocytes, punctae RBCs, micro-spherocytes and
schistocytes (including keratocytes, triangles, tricorns,
crescents and helmet cells, as recommended by the
ICSH), (ii) other cell types i.e. white blood cells and pla-
telets, (iii) incidental events and coincident cells i.e.
RBC aggregates, beads, lysis cells, cells and beads, cells
and platelets, cells and white blood cells, cut cells, ghost,
hemi-cells, non-singlet beads, non-single RBC, platelet
doublets, platelet aggregates and (iv) non front-orien-
tated RBC i.e. orientation shape 1, 2 and 3 (Figure 2 and
Suppl. Table S5). Micro-spherocytes were not included
in the schistocytes group as they were shown to be an
overspreading artefact and subsequently irrelevant
here.7,8,31 Various RBC shapes from the 14 samples
selected for the database design were acquired by IFC as
described in the Methods section. Images from the
brightfield channel were extracted, classified into one of
the 29 categories by two independent trained operators
or excluded if they did not correspond to any of them.
Thus, we created a database containing a set of 135,045
images. The dimensionality reduction-based technique
t-SNE showed nice clustering of all categories using
keras alone and the combination of ideas+keras features
(Figure 3, Suppl. Figure S2 and Suppl. File S1). We split
all identified images into two sets.32,33 A training set,
representing 80% of each category, was used to create
three prediction models using (i) ideas features, (ii)
keras features (iii), or ideas+keras features. A validation
set of the remaining 20% of the images was used to
evaluate the performance of the modelling. From this
test set, we computed confusion matrices to assess the
accuracy of each prediction. The overall accuracy (ratio
of the number of correctly classified events to the total
number of events) was 91.54% (CI: 91.21-91.87) using
ideas features, 94.03% (CI: 93.75-94.31%) using keras
features, and 95.64% (CI: 95.39-95.88) using ideas
+keras features. Individually, the accuracy of the 29 cat-
egories ranged from 64.7% to 99.7% using ideas fea-
tures, 47.1% to 99.7% using keras features, and 76.5%
5



Figure 2. Representative images from the 29 categories of the SVM classifier. Other events (left panel): (a) beads, (b) platelets,
(c) white blood cells, (d) cells and beads, (e) platelet doublets, (f) cut cells, (g) lysis cells, (h) platelet aggregates, (i) hemi-cells, (j) non-
singlet beads, (k) cells and platelets, (l) cells and white blood cells. RBC morphology (right panel): (m) regular RBC, (n) ovalocytes, (o)
acanthocytes, (p) orientation shape 1, (q) punctae RBC, (r) elliptocytes, (s) echinocytes, (t) reticulocytes, (u) ghost-like RBC, (v) sickle
cells, (w) non-singlet RBC, (x) orientation shape 3, (y) microspherocytes, (z) teardrop cells, (aa) RBC aggregates, (ab) orientation shape
2. Schistocytes: (ac and ad) helmet cells, (ae and af) keratocytes, (ag) tricorns, (ah) triangles, (ai) crescents.
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and 99.7% using both. Focusing on schistocytes, the
sensitivity was 75.6%, 86.9%, and 89.1% using the
ideas, keras, and ideas+keras features, respectively
(Figure 4 and Suppl. Figure S3). Specificity, sensitivity
and F1 score are shown in Suppl. Table S6). Overall,
these data show better performance for the keras than
ideas features in terms of schistocyte recognition and a
slight improvement when both features were com-
bined.
Cytological quantification of schistocytes in the
validation cohort and optimisation of the correlation
between IFC and optical microscopy count
Manual quantification of schistocytes on blood smears
was performed by three well-trained haematologists for
the 102 samples of the validation cohort from Amiens
hospital described in the Methods section. The intra-
class correlation coefficient, which measures the degree
of agreement between operators, was 0.91 (95% CI:
0.88-0.93), showing excellent inter-observer reliabil-
ity.29 Consequently, we used the mean schistocyte
count of the three haematologists to evaluate the corre-
lation between the percentage of schistocytes using IFC
and OM. The percentage of schistocytes by IFC was
defined as the predicted percentage of schistocytes
divided by the predicted number of single RBCs
(Figure 2 m-o, q-v, x-z, and ab-ai). To optimise this cor-
relation, we computed the class probability of the pre-
diction and applied a threshold on this value, called the
decision threshold (DT), for the ease of reading hereun-
der. Indeed, each time the SVM classified an image, it
assigned a probability of its being correctly categorised.
We increased specificity by excluding images with an
insufficient degree of confidence thanks to the applica-
tion of a threshold from 0.5 to 0.99 on the maximal
probability. The prediction model using ideas features
showed a correlation between IFC and OM for the per-
centage of schistocytes from 0.76 to 0.91, depending on
the DT. The correlation ranged from 0.84 to 0.93 using
www.thelancet.com Vol 83 Month , 2022



Figure 3. t-SNE plot of the 29 events categorised using ideas+keras features. Each symbol and colour combination refers to a
tagged event. The representation was obtained from randomised events (n=5000). See in Suppl. File 1 for the three-dimensional
visualisation of the t-SNE plot with image embedding.
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keras features and 0.89 to 0.93 using ideas+keras fea-
tures with the same DT (Figure 5a, b, and c). We there-
fore selected the combined ideas+keras prediction
model and a DT of 0.90 for further analysis, as it led to
the highest correlation between the haematologists and
IFC (mean observer: 0.93; 95% CI: 0.90-0.96, individ-
ual observer in Suppl. Figure S4) (Figure 5). At this
threshold, the percentage of schistocytes by IFC was
evaluated with an average of 3,300 RBCs (95% CI: 3227-
3372) (Figure 5d). We used linear regression to deter-
mine the conversion rate of the percentage of schisto-
cytes between IFC (Y) and cytology (X) with the
equation Y = 1.92X (Figure 6).

IFC as a tool for schistocyte quantification: reference
value, within-run precision, dilution linearity, and
acquisition time
We also analysed the blood of 39 healthy patients with
no significant schistocytosis to determine the reference
www.thelancet.com Vol 83 Month , 2022
value for schistocyte quantification by IFC. The median
percentage of schistocytes was 0.19% [0.14-0.28 %] and
significantly lower than that in the samples (negative
samples median: 0.61% [0.35-1.13%], p <0.001; positive
samples median: 6.68% [4.15-7.56%], p <0.001; Krus-
kal-Wallis test with Dunn’s multiple comparisons) for
which a schistocyte count was requested by physicians
(Suppl. Figure S5). We evaluated the within-run preci-
sion by performing three successive acquisitions with
88 among the 102 samples used for the validation
cohort from Amiens hospital. We observed a good coef-
ficient of variation (CV) whether the samples contained
a low or high percentage of schistocytes, as determined
by IFC (median CV = 17.7% [10.1-32.1] for samples with
< 1% schistocytes and median CV = 6.0% [4.4-9.1] for
samples with > 1% schistocytes). These CV values were
significantly (p <0.0001, Wilcoxon test) better than
those obtained using OM (median CV = 66.4%
[23.5�128.6] for samples with < 1% schistocytes and
7



Figure 4. Confusion matrix of reference (manually identified classes) versus predicted (AI attributed classes) percentages
after modelling. The rows indicate the predicted classes and the columns the reference classes corresponding to the modelling
using the ideas plus keras features. Each blue square represents the percentage of well-classified events. The grey squares represent
the percentage of misclassified events.
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median CV = 22.1% [11.8�31.9] for samples > 1% schis-
tocytes). We validated the linearity of IFC schistocyte
quantification by selecting a sample with a high percent-
age of schistocytes (4.29% by OM and 7.05% by IFC)
and performing serial dilutions in a control sample with
no schistocytes. We observed excellent linearity (R2:
0.98, Suppl. Figure S6). Finally, the median acquisition
time was under 30 seconds (median: 20 sec [17-25]) and
the SVM categorisation under 3 minutes.
Clinical significance of schistocyte detection by
imaging flow cytometry
Given the high positive predictive value of the 1% cut-off
for the diagnosis of TMA, we focused on samples with
1% or more schistocytes as determined on blood smears
by morphological examination.7,8 We defined the corre-
sponding cut-off using IFC-based schistocyte quantifica-
tion by performing receiver operating characteristic
(ROC) curve analysis to assess the ability of IFC to iden-
tify such samples. The resulting area under the curve
(AUC) was 0.993 (CI: 0.983-1.000) (Figure 7a). At a
cut-off of 1.92, corresponding to 1% schistocyte count
by OM, we obtained a specificity of 91.3% (CI: 82.0-
96.7%), a sensitivity of 100.0% (CI: 89.4-100.0%), a
negative predictive value (NPV) of 100.0% (CI: 94.3-
100.0%), and a positive predictive value (PPV) of 84.6%
(CI: 69.5-94.1%), avoiding any risk of missing a TMA
diagnosis (effect of prevalence on the predictive values
showed in Suppl. Table S7). Of note, 6 samples were
detected above this cut-off by IFC whereas they were
< 1% on blood smears (0.99%, 0.88%, 0.56%, 0.39%,
www.thelancet.com Vol 83 Month , 2022



Figure 5. Effect of the decision threshold on the correlation between schistocyte count by IFC and OM and the RBCs
counted. (a) Spearman’s rank correlation coefficient between mean schistocyte counts and the percentage of IS schistocytes pre-
dicted using ideas features alone (n=102), (b) keras features alone (n=102), (c) ideas and keras features together (n=102). (d) Number
of remaining RBCs after the application of the decision threshold for the three prediction modes (n=102). DT: decision threshold.
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0.37, and 0.12%) but no patients with a high probability
of TMA by cytology were below the cut-off using IFC
(Figure 7b, Suppl. Table S8). We sequentially deter-
mined the percentage of schistocytes for five patients
for whom successive samples were available using both
techniques and observed close patterns over time
(Suppl. Figure S7), showing that IFC is accurate not
only in identifying schistocytes at diagnosis but also
during patient follow-up.
External validation cohort
We independently validated our method on patients
recruited in an external healthcare centre. Patients of
this cohort are younger (13 years [7-48] vs 43 years [30-
64]) than the previous cohort and HUS was the
www.thelancet.com Vol 83 Month , 2022
predominant aetiology (27/28 samples with schistocyto-
sis vs 10/33 samples with schistocytosis). Among a total
of 74 samples collected and acquired at Necker Hospi-
tal, we obtained a sensitivity of 100% (CI: 88.1-100.0%)
and a specificity of 91.1 (CI: 78.8-97.5%) (4 false posi-
tive) to detect samples with more than 1% schistocytes.
The AUC of the ROC curve was 0.995 (CI: 0.987-
1.000) (Figure 7c and d, Suppl. Table S8). The linear
regression between schistocyte count by IFC and cytol-
ogy was Y=1.029x with a correlation of 0.86 (CI: 0.71-
0.93) (Suppl. Figure S8). The discrepancy of linear
regression between the 2 centres (1.92 in Amiens,
Figure 6) can be explained by (i) a lack of standardisa-
tion of the schistocyte count by OM between the 2
centres (ii) a non-transposability of our modelling to
another instrument. To further investigate those
9



Figure 6. Evaluation of the prediction model using ideas plus keras features with a DT of 0.9 on CBCs for which a schistocyte
count was requested. Correlation between mean optical microscopy schistocyte counts and IFC schistocyte counts (n=102). rs:
spearman’s rank correlation coefficient. Y: slope of the linear regression. IFC: imaging flow cytometry.
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hypotheses, (i) we compared schistocyte counts by opti-
cal microscopy between both centres on 7 identical
blood smears. The laboratory medical staff from Necker
hospital counted 2.05 (CI: 1.3-2.8) fold more schistocytes
than observer1 from Amiens Hospital suggesting a lack
of observer standardisation between centres (Suppl.
Table S9), (ii) we prepared 16 samples with various
schistocytes counts from 4 positive samples diluted
with healthy patient blood. We acquired simultaneously
the samples in the 2 centres and found a perfect correla-
tion between the 2 IFC counts (Y=1.001x) indicating
that our modelling can be transposed to the other IFCs
(Suppl. Figure S9).
Discussion
An optimal tool for schistocyte quantification must sat-
isfy several criteria: (i) it must identify schistocytes in a
heterogeneous RBC population, (ii) it should be a high-
throughput technology for high sensitivity, (iii) it should
avoid operator bias and any cause of high inter-observer
variability, (iv) it should ideally induce no shape modifi-
cation by pre-analytical processing, (v) it should be
rapid, (vi) it should be reproducible between diagnosis
centres and (vii) it should respond to ecological and eco-
nomic considerations, including label-free solutions,
the smallest number of reagents, and the lowest amount
of waste possible. Various automated tools have been
developed over the years but none of them fulfil all these
criteria. In the early 2000s, fragmented red cell (FRC)
flag was developed to detect schistocytes during blood
counting on automated analysers.34,35 FRC flag offers
many advantages, such as the absence of a pre-analytical
procedure and its high input and fully automated
nature. However, FRC flag showed insufficient perfor-
mance, which can be explained by the fact that this
parameter is based on indirect factors, such as size and
the refractory index, but not RBC morphology, and by
interference due to various haematological conditions,
such as hypochromia,36 macrocytosis,7 and thrombocy-
tosis.37 Automated blood-smear analysis using a digital
camera is now routinely used for WBC recognition in
the haematology laboratory, but still requires operator-
based reclassification of RBC shapes to provide accurate
schistocyte quantification.14 Moreover, its performance
depends on the quality of the smear to adequately
choose the correct reading area with the proper reparti-
tion of cells.7,8,15,38,39

By combining the advantages of flow cytometry and
microscopy, IFC is a highly suitable technology for RBC
evaluation. Indeed, it is a high throughput technology
capable of acquiring up to a thousand events per second.
Thus, time is not a limiting factor and the precise quan-
tification of rare events is possible.40 The 60x objective
provides a 0.33 µm per pixel resolution brightfield
image for each event, permitting its morphological
identification.41 Inherently, both biconcave and abnor-
mal RBC shapes present themselves in spatial positions
that differ from those obtained using blood smears,
requiring an initial and challenging learning phase,
because some RBC shapes can obviously be indiscern-
ible from others depending on their orientation with
respect to the camera. Thus, the constitution of the data-
base was a major challenge of our project because of the
time it required and the difficulty to tag a large number
of images, especially for rare RBC anomalies. However,
now that it has been created and validated, this repre-
sents the largest database described so far, including
more than 135,000 images. We believe that there are
opportunities to improve it, with the continuous incor-
poration of new elements, and to share it between labo-
ratories improving the standardisation of RBC
morphology quantification, as required by the ICSH.7,8

We used a machine learning strategy based on SVM,
with inputs coming from ideas and keras features. It is
worth noting that there are many other machine-
www.thelancet.com Vol 83 Month , 2022



Figure 7. Performance of IFC to detect CBCs with more than 1% schistocytes on blood smears. ROC curve (n=102, AUC: 0.993,
CI: 0.983 - 1) (a) and bee-swarm plot (b) between patients with > 1% schistocytes (triangle shape, n=33, median: 6.68% [4.15-
7.56%]) on blood smears and patients with < 1% schistocyte (circle shape, n=69, median: 0.61% [0.35-1.13%]) on blood smears
from Amiens hospital. ROC curve (n=74, AUC: 0.995, CI: 0.987 - 1) (c) and bee-swarm plot (d) between patients with > 1% schisto-
cytes (triangle shape, n=29, median: 7.93% [4.81-11.83%]) on blood smears and patients with < 1% schistocyte (circle shape, n=45,
median: 0.93% [0.68-1.32%]) on blood smears from Necker hospital. The dotted line indicates the cut-off for targeting patients with
> 1% schistocytes on blood smear from the others. AUC: area under the curve. ****p < 0.001 (Mann-Whitney test). IFC: imaging
flow cytometry.
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learning algorithms available. For example, Nassar et al.
evaluated AdaBoost, gradient boosting (GB), K�nearest
neighbors (KNN), random forest (RF), and a support
vector machine for the classification of WBCs using
IFC.24 Although we applied SVM optimisation, future
studies could be conducted to optimise the modelling
using these other algorithms and their corresponding
hyperparameters. Nonetheless, by combining ideas and
keras features, we obtained very high overall accuracy
(95.64%, CI: 95.39-95.88) with the validation set.
Indeed, we evaluated the use of ideas features, keras fea-
tures, and the combination of both. Interestingly, keras
features provided better results than ideas features
whereas the combination of both gave best results. As a
consequence, although the development of dedicated
masks and the extraction of ad hoc features have shown
to be of great interest, it looks highly appealing, as
pointed by others, to think that the high information
www.thelancet.com Vol 83 Month , 2022
content of IFC images can be adequately captured by
deep learning methods to expose disease states.42�44

With this in mind, our database may provide opportuni-
ties for further investigation of this point. Notably, the
very simple CNN architecture, which allowed us to
quickly train 243,750 parameters to finally extract 128
features on brightfield images on a relatively affordable
GPU, may be enriched by more complex topology and
additional layers. On the other hand, although the
method of combining ideas and keras features was
original, it may also be tempting to directly assess
the CNN prediction without the feature extraction or
final SVM training step we used. Such strategies
have been used with success by others using much
larger CNNs, such as deepometry software from the
Broad Institute, based on ResNet50, or the VGG16
based CNN component of the new Amnis� AI SW
package.25,45
11
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The schistocyte percentage values obtained by OM
and IFC were not the same, with IFC detecting an
approximately two-fold higher percentage. This appar-
ent discrepancy is due to (i) the exclusion of RBCs in
the side-view category, which represents up to 30% of
all events, whereas this category does not exist in OM,
and (ii) the application of a decision threshold that
restricted the quantification to images with a probability
of being correctly classified. Of note, there was a strong
correlation between the IFC and OM values, which
remained strong during the follow-up of the five TMA
patients for whom this data was available. This differ-
ence was not found with the external validation cohort
despite a perfect correlation of schistocyte counts by
IFC between both centres. Our results showed that it
was related to the already described inter-observer vari-
ability of the schistocyte count by OM highlighting the
importance of schistocyte count standardisation.46,47

Finally, in addition to use as less as 10 µL of blood, IFC
was also time saving, with an acquisition time of < 30 s,
providing a quantification based on > 3,000 identified
RBCs in less than 3 minutes, and showed excellent
repeatability. Overall, these properties compare favour-
ably to the state-of-the-art of schistocyte quantification
by cytology. However, our study shows some limita-
tions: (i) the results were determined on a relatively
modest sample size in two centres, (ii) samples were
not collected consecutively in a prospective manner and
(iii) the prevalence of positive samples is biased by their
over-representation relative to the general population.
Further investigations in a prospective study should
allow providing more insights on advanced metrics like
sensitivity, specificity, NPV, and PPV in a representative
routine clinical population.

Our data strengthen the use of IFC as a promising
tool for cell recognition in haematology. Previous reports
included masking procedures and/or pre analytical modi-
fications and/or labelling with a regular IFC gating strat-
egy to identify a specific RBC shape. Indeed, sickle cells
have been identified after deoxygenation and fixation,16

whereas certain RBC membrane disorders required
EMA staining20 and intra-erythrocyte inclusions were
identified as the four malaria parasite blood stages after
fluorescent labelling.17 Here, we developed a label-free
image-based machine learning strategy on human whole
blood capable of identifying schistocytes, as well as 13
other categories, such as sickle cells or teardrop cells.
Thus, our approach of combining AI and IFC could rep-
resent a potentially powerful, rapid, and high input tool
for the evaluation of most clinically relevant RBC shapes,
although it would require a samples validation step for
each, as we performed here for schistocytes. AI-based
analysis of cell, tissue, and organ images has seen
unprecedented growth in recent years in the field of diag-
nosis and has been widely validated for the diagnosis of
dermatological, ophthalmological, and radiological
pathologies, with performance equal to that of
humans.48�50 In malignant haematology, there is grow-
ing evidence favouring the use of AI in diagnosis, risk
stratification, and treatment options, as described in a
recent review.33 Several studies have underlined the per-
formance of AI in analysing images from peripheral
smears for leukocyte recognition.51 Others focused on
RBCs shape identification, but were based only on
selected and tagged images (test set) or on a limited num-
ber of blood samples.52,53 Using IFC in association with
AI is pushing the limits of cell recognition in haemato-
logical cytology. Doan et al. observed that T and B lym-
phocytes can be morphologically recognised by IFC and
AI while they are indistinguishable to the human eye on
a blood smear.24 Zhou et al. classified platelet aggregates
generated in vitro according to the activating agonist
using the same strategy.54 Nishikawa et al. used AI and
IFC to investigate platelet aggregates levels in COVID-19
patients.55 These proofs of concept show that AI can
detect morphological features that are imperceptible by
humans. Focusing on RBCs, Doan et al. recently gener-
ated a database of 67,400 cells that could recognise six
morphologies corresponding to different steps in the in
vitro aging of stored RBCs.26 Our results have been set-
tled in one healthcare centre and confirmed in one
another, both equipped with different instruments, yet
providing similar results, emphasising that such recent
approaches to further put IFC and AI into clinics offer
highly valuable results in deep learning workflows.26,27
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