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Understanding the mechanisms behind chemical susceptibility differences is key to
protecting sensitive populations. However, elucidating gene-environment interactions
(GxE) presents a daunting challenge. While mammalian models have proven useful,
problems with scalability to an enormous chemical exposome and clinical translation
faced by all models remain; therefore, alternatives are needed. Zebrafish (Danio rerio) have
emerged as an excellent model for investigating GxE. This study used a combined
bioinformatic and experimental approach to probe the mechanisms underlying
chemical susceptibility differences in a genetically diverse zebrafish population. Starting
from high-throughput screening (HTS) data, a genome-wide association study (GWAS)
using embryonic fish exposed to 0.6 μM Abamectin revealed significantly different effects
between individuals. A hypervariable region with two distinct alleles–one with G at the SNP
locus (GG) and one with a T and the 16 bp deletion (TT)–associated with differential
susceptibility was found. Sensitive fish had significantly lower sox7 expression. Due to their
location and the observed expression differences, we hypothesized that these sequences
differentially regulate sox7. A luciferase reporter gene assay was used to test if these
sequences, alone, could lead to expression differences. The TT allele showed significantly
lower expression than the GG allele in MCF-7 cells. To better understand the mechanism
behind these expression differences, predicted transcription factor binding differences
between individuals were compared in silico, and several putative binding differences were
identified. EMSA was used to test for binding differences in whole embryo protein lysate to
investigate these TF binding predictions. We confirmed that the GG sequence is bound to
protein in zebrafish. Through a competition EMSA using an untagged oligo titration, we
confirmed that the GG oligo had a higher binding affinity than the TT oligo, explaining the
observed expression differences. This study identified differential susceptibility to chemical
exposure in a genetically diverse population, then identified a plausible mechanism behind
those differences from a genetic to molecular level. Thus, an HTS-compatible zebrafish
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model is valuable and adaptable in identifying GxE mechanisms behind susceptibility
differences to chemical exposure.

Keywords: high-throughput (HT) approaches, zebrafish, computational toxicology, mechanism, genomic,
abamectin, pathways

1 INTRODUCTION

Population-wide differences in susceptibility to chemical
exposures exert significant impacts in medicine and risk
assessment (Suter et al., 2004; Roden et al., 2011;
Gamazon and Perera, 2012; Motsinger-Reif et al., 2013).
Identifying compounds that have vast differences in
individual susceptibility across a genetically diverse
population has important implications for how we
prescribe drugs to treat disease, deal with environmental
exposures, and regulate chemical producers (Suter et al.,
2004; Qin et al., 2016). As of 2013 there were over 80,000
chemicals registered with the EPA that people could be
exposed to (United States, 1986; Bergeson, 2000; Kinch
et al., 2014). Yet, the mechanisms that lead to population-
level variation in susceptibility remain poorly understood
(Zhou et al., 2017; Jerry et al., 2018).

The National Research Council (NRC) stated in their document
on the future of risk assessment, “Science and Decisions”, that
susceptibility differences across different chemicals required more
attention (National Research Council, 2009). In 2016, the Frank R.
Lautenberg act amended The Toxic Substances Control Act (TSCA)
to include the consideration of susceptible populations in risk
assessment (United States, 1986; Mortensen and Euling, 2013;
Mortensen et al., 2018). This cemented the importance of
understanding the variables that can lead to differences in
susceptibility in a population to diseases caused by chemical
exposure.

Unfortunately, the study of how genetic differences and gene-
environment interactions (GxE) can affect (sub)population
response to an exposure is challenging for several reasons:
Sample sizes of sufficient power are hard to achieve;
Mechanisms are hard to parse out, Environmental variables
are hard to control and separate; and Relating an exposure to
a specific phenotype is challenging (Le Marchand and Wilkens,
2008; Freedman et al., 2011; McAllister et al., 2017; Zhou et al.,
2017). Current knowledge says that regulatory variation in genes
may be the primary cause of phenotypic differences in humans
(Mortensen and Euling, 2013). These regions are harder to
disentangle to gain an understanding of their effect on
susceptibility. In addition to this, while new approach
methodologies (NAMs) can identify chemicals with the
potential to elicit clinically observable adverse effects,
comprehensive risk assessment is hampered by differential
susceptibility across exposed individuals. In past studies,
animal models have been used to identify and implicate
specific genes that lead to susceptibility to different diseases in
humans (Mortensen and Euling, 2013; Mortensen et al., 2018).
Current risk assessment methods use uncertainty factors when
calculating acceptable exposure levels to approximate differences

between susceptible and resistant populations (Mortensen and
Euling, 2013; Mortensen et al., 2018).

Zebrafish (Danio rerio) have emerged as an excellent model
of human disease that are well suited for high-throughput in
vivo assays: They produce a large number of offspring; They
have phenotypes that can easily be compared to human
diseases; Their embryos are transparent and develop ex vivo;
Phenotypes can be assessed as early as 24 h after fertilization;
And they can be separated into wells to be exposed individually
to allow for a highly controlled environment (Truong et al.,
2011; Truong et al., 2014; Garcia et al., 2016; Truong et al., 2016;
Balik-Meisner et al., 2018a). Chemical testing using zebrafish
provides phenotypic responses that can reveal the etiology of
many adverse outcomes (Truong et al., 2011; Truong et al.,
2014; Garcia et al., 2016; Reif et al., 2016; Truong et al., 2016;
Zhang et al., 2017; Balik-Meisner et al., 2018a; Garcia et al.,
2018). Zebrafish are also the only vertebrate model that can be
assayed in a high throughput manner at the phylotypic stage of
development that is most similar to vertebrate early
development (Garcia et al., 2016). Unlike an in vitro system
or another in vivo vertebrate system, zebrafish can reveal the
mechanisms of complex phenotypic responses to chemicals in a
high-throughput and cost-effective manner (Truong et al.,
2011; Truong et al., 2014; Garcia et al., 2016; Truong et al.,
2016; Balik-Meisner et al., 2018a). The T5D zebrafish line used
here is an outbred zebrafish line that mimics human genetic
diversity and acts as an excellent proxy for assessing differential
susceptibility to many different chemicals (Balik-Meisner et al.,
2018a; Balik-Meisner et al., 2018b). A study on the genetic
diversity of T5D zebrafish found 10.3–20.1 M SNPs and
2.8–5.6 M indels across the population (Balik-Meisner et al.,
2018a; Balik-Meisner et al., 2018b). As a comparison, the 1,000
genome project found that humans had 84.7 M SNP, 3.6 M
short indels (The 1000 Genomes Project Consortium et al.,
2015).

This study acts as a proof of concept that HTS for
developmental effects of exposure to a large array of chemicals
can identify those associated with GxE that elicit differences in
individual susceptibility across the genetically diverse T5D
zebrafish line (Truong et al., 2011; Truong et al., 2014; Truong
et al., 2016; Balik-Meisner et al., 2018a). The data in this study
uses information gained from a screening of 1078 EPA ToxCast
phase 1 and 2 chemicals (Truong et al., 2011; Truong et al., 2014;
Truong et al., 2016; Balik-Meisner et al., 2018a). Several
chemicals, including abamectin, showed substantial differences
in developmental effects across zebrafish, suggesting that
underlying genetic variation may play a role in exposure-
response. Abamectin, an agricultural insecticide that has been
associated with neurotoxicity, developmental effects, and
endocrine disruption according to a risk assessment by the
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European Food Safety Authority (Anastassiadou et al., 2020), was
selected for further investigation due to robust population
susceptibility differences across multiple rounds of rangefinder
experiments. In a genome-wide association study (GWAS) of
developmental exposure to Abamectin, multiple single-
nucleotide polymorphisms (SNPs) were discovered that were
associated with differential effects (Balik-Meisner et al., 2018a).
Some of these SNPs were located upstream of the SRY-Box
Transcription Factor 7 (sox7) gene. Human SOX7 plays
several important roles in development including cell
differentiation, regulation between cell proliferation and
differentiation, lineage determination, regulation of
angiogenesis and vasculogenesis, and also acts as a tumor
suppressor (Stovall et al., 2014). Zebrafish Sox7 is orthologous
to human SOX7 and is predicted to play a similar role in
producing a DNA-binding transcription factor that helps to
guide development (Zfin Gene, 2021).

When interrogated using real-time polymerase chain reaction
(real-time PCR) sox7 exhibited significant expression differences
between fish that were sensitive to abamectin expression
(“affected”) and fish that were not (“unaffected”) (Balik-Meisner
et al., 2018a). This led to the hypothesis that susceptibility to
abamectin was affected by regulation of sox7. Here, we describe a
discovery path (Figure 1) of bioinformatically-guided
experimentation to test our hypothesis that genetic variation
influences population responses to environmental exposure
(GxE). As part of the broader approach, this study aimed to
validate a plausible mechanism behind HTS-scale patterns of
differential response down to a detailedmolecular and genetic level.

2 MATERIALS AND METHODS

2.1 Experimental Overview
A high-throughput screening (HTS), genome-wide association
study (GWAS) was performed to identify loci that were
associated with individual differences in susceptibility across

an outbred zebrafish population as described in Balik-Meisner
et al. (2018a). Briefly, the study leveraged data from thousands of
chemicals, as well as a method that quantified morphological
effects of developmental exposure in an outbred zebrafish
population to identify chemicals that showed high variability
in effect across the population (Zhang et al., 2017; Balik-Meisner
et al., 2018a). Abamectin was chosen from these high-variance
chemicals. After identifying a critical concentration, larval
zebrafish were exposed (Balik-Meisner et al., 2018a). Affected
and unaffected zebrafish larvae were collected and their DNAwas
individually sequenced to identify loci associated with
susceptibility (Balik-Meisner et al., 2018a). This study
identified significant expression differences in sox7 between
affected and unaffected zebrafish using PCR (Balik-Meisner
et al., 2018a). A combined bioinformatic and biochemical
approach was used to validate the results from the previous
study and identify the mechanism that leads to susceptibility
differences. Transcription factor binding site (TFBS) prediction
was used to identify putative transcription factor binding
differences between individual fish. Following the TFBS
prediction analysis, an electrophoretic mobility shift assay
(EMSA) was used to assess binding between these sequences
and proteins in zebrafish nuclear protein extract. A luciferase
assay was then used to measure expression differences between
the two presumed regulatory regions.

2.2 Zebrafish Model
Tropical 5D (T5D) wild type zebrafish were housed at Sinnhuber
Aquatic Research Laboratory at Oregon State University, in a
density of approximately 1,000 fish per 100-gallon tank. Tank
water consisting of reverse osmosis water supplemented with
Instant Ocean™ salts were kept at standard laboratory conditions
of 28°C on a 14-h light/10-h dark photoperiod. The water was at a
salinity of 600 μS and maintained at a pH of 7.4 (Mandrell et al.,
2012; Barton et al., 2016). Mass spawning funnels were placed
into the tanks the night prior, and the following morning
embryos were collected, staged and cleaned (Kimmel et al.,

FIGURE 1 | This figure illustrates the experimental flow of this study which could be tailored or branched, based on the progression of biochemical and wet-
lab experiments, to apply it to similar studies. Bioinformatic approaches were used to generate hypotheses which were then tested via biochemical
experimentation. A high-throughput GWAS experiment followed by a more in-depth analysis of a single genetic region was followed-up with RT-PCR to test if
sox7 expression differed in the affected an unaffected fish. This was then followed up by in silico analysis of the region to identify possible TF binding
differences. The results of that comparison were confirmed with EMSA to test for differences in binding affinities across the variants and their ability to cause
differential expression was probed with a luciferase assay.
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1995). T5D zebrafish originated from 25 small group crosses
containing three males and three females imported from a
breeding facility. Following generations have been bred with
equal proportions of offspring from a minimum of 25 small
group crosses, each group containing three males and up to three
females (Balik-Meisner et al., 2018b). For more details on the
genetic diversity of the T5D line please see Balik-Meisner et al.
(2018b). Zebrafish embryos were obtained via group spawning
and were dechorionated after collection and placed in 96 well
plates as detailed in multiple papers by Truong et al. (2011) and
Truong et al. (2014). The T5D zebrafish line was used for all
zebrafish experiments in this study.

2.3 Deep Reanalysis
The preliminary study identified a putative hyper-variable region
upstream of sox7 that was associated with susceptibility on
chromosome 20. In order to identify loci that were associated
with susceptibility within this region a secondary analysis of
chromosome 20 was done. Paired end reads from the previous
HT sequencing were trimmed with trimmomatic version 0.39
using the following parameters: ILLUMINACLIP:TruSeq3-PE.fa:
2:30:10, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15,
and MINLEN:36 (Bolger et al., 2014). Quality control was
done on the sequences using fastqc to ensure the quality of
the sequences for further analysis (Ewels et al., 2016).
Sequences were aligned using the software package Burrows-
Wheeler Aligner (BWA-MEM) with standard parameters (bwa.1,
2021).

Sam files were converted to bam files using the software
package samtools (samtools). The bam files were sorted,
indexed, and duplicates were marked using the software
package picard prior to analysis (Picard Tools - By Broad
Institute, 2021). Joint genotyping was done using
GenomeAnalysisToolkit (GATK) HaplotypeCaller and gvcf
files were merged using GATK CombineGVCFs (McKenna
et al., 2010; DePristo et al., 2011). After variants were called,
GATK VariantFiltration was used to filter out SNPs with the
parameters: QualByDepth (QD) < 2, FisherStrand (FS) > 60,
RMSMappingQuality (MQ) < 40, MQRankSum < −12.5, and
ReadPosRankSum < −8; as well as indels with QD < 2, FS > 200.0,
and ReadPosRankSum < −20 (DePristo et al., 2011). Finally,
association testing was done in PLINK version 1.9 using Fisher’s
exact test with a Bonferroni correction to correct for multiple
testing (Purcell et al., 2007).

2.4 Transcription Factor Binding Site
Prediction
2.4.1 Software
MatInspector, an online program, was used to analyze the
sequences upstream of sox7 for each individual fish.
MatInspector uses information on core sequences and
nucleotide data on a number of transcription factors to
generate a list of putative transcription factor binding sites,
scored for goodness of fit using a scoring algorithm. For a
more in-depth explanation of MatInspector see Cartharius
et al. (2005) or the Genomatix website (Cartharius et al.,

2005). A core similarity score of 0.75 was used to filter out
unlikely matches.

2.4.2 Binding Site Curation
Differences between sequences with G or T at the primary SNP
loci were compared using a chi-squared test to identify significant
differences using the observed number of each predicted binding
site across both genotypes. The test was done using the chisq.test
command from the R package stats version 3.6.3 (R Core Team,
2020). This list of putative TFBSs were then curated manually by
selecting transcription factors with homologues in zebrafish and
sites that were within the 44 bp area between the beginning of the
Indel and the SNP.

2.5 Luciferase Assay
2.5.1 Assay
Double stranded oligos corresponding to the region −900 to
+29 bp of Sox7-201 variant TSS were synthesized and cloned
in to pUCIDT vectors by IDT. Additional recognition sequence
for restriction enzymes NheI and XhoI were added to ends for
cloning into the minimal promoter pGL4.23 [luc2/minP] vector
(Promega, E8411) for the luciferase assay. Sequences from
positive clones were verified by Sanger sequencing at the
Oregon State University Center for Genome Research and
Biocomputing Core. Plasmids were purified with ZymoPURE
Plasmid Miniprep Kit (Zymo Research).

MCF7 cells were seeded in a 24-well plate in 10% serum
Dulbecco’s Modified Eagle Medium (DMEM). The cells were
transfected the following morning with the TT sequence, GG
sequence, or vector control reporters as well as a β-galactose (β-
gal) plasmid using 300 ng reporter, 200 ng β-gal, and 2 μL
lipofectamine per well. The sequences inserted into the vector
are given below, annotated as: restriction enzyme sites
underlined; transcription start site (TSS) in bold.

GG sequence: GCTAGCACATAAATCCAATTCATTTAG
CGAAAATATTTATTTTTACGATATTTATGAATTGCGAAT
TGTGTGTTGTATTTATGAGTTGTGTTTTGCATTTACAAT
TTGGATTTTGTAAATTTTGAGTTGTGCATTAATTTTATT
TTGTAAATGTATTATTTTTGAGACTGATCTGGCTCCATA
AAAATCCTGGTTTTTATTTGTAGTATTCCTAGAAAGCTT
ATTGTATATTTCTAGTCAAGCTTGAAAATAAATGTTAAA
ATATGGGTGAAATACGGAACAAAATATAGATCATGCTAA
ATATATATATATATATGTATATATTTGTGCTTTAAATGA
TTGCACATTTACAATCTTAGAAAGACAGTAAAAGGTATA
AATAATAAAATTACAATGAATTAGTATTTTGGATTTTTT
TTTTTTTTTTGCAAAAAATGCTTCTCCTTTCTGGTCACT
ACAGATACATTTGCTTTCACATAAAATAAAACACATAGT
CATATCCCTTATCAAATGTGCATTACTGAAACTGAAAAA
CACGTCTTTTATTTGTTTGATATTGTGGCAAAACTTGAG
GTCTCAATGCAAATCATAGATCCCAATAACACCAACATT
CACCTGTAAACTTTTAGCATTACATTATATTGCTGTTTA
ATTCACACAGCGCTCACAAAACCACTCGCACGCCTGCAT
TTCCCCTATGCTAATCAGACGAAATAGGAAGAAGTGCCT
CCGAATGCAGAACCACAAAGATGTTTATCTCGCTTTCGG
CACTTCACACCCAAAAATAATGTGCAGGTAGGACCAGGA
GAGCAGGAAGTGGACTGTCATTTTTTGTCGGAATGTTTT
TTTGCAATCTGGGGCATCAAGCTCCTCTTCCTGTTCCTG
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GAGGAATAAAGCCCACATTTTAATGATGCTCATCCTCTG
CTTGTTCACTGCTCGAG.

TT sequence: GCTAGCACATAAATCCAATTCATTTAGC
GAAAATATTTATTTTTACGATATTTATGAATTGCGAATT
GTGTGTTGTATTTATGAGTTGTGTTTTGCATTTACAATT
TGGATTTTGTAAATTTTGAGTTGTGCATTAATTTTATTT
TGTAAATGTATTATTTTTGAGACTGATCTGGCTCCATAA
AAATCCTGGTTTTTATTTGTAGTATTCCTAGAAAGCTTA
TTGTATATTTCTAGTCAAGCTTGAAAATAAATGTTAAAA
TATGGGTGAAATACGGAACAAAATATAGATCATGCTAAA|
TATATATTTGTGCTTTAAATTATTGCACATTTACAATCT
TAGAAAGACAGTAAAAGGTATAAATAATAAAATTACAAT
GAATTAGTATTTTGGATTTTTTTTTTTTTTTTGCAAAAA
ATGCTTCTCCTTTCTGGTCACTACAGATACATTTGCTTT
CACATAAAATAAAACACATAGTCATATCCCTTATCAAAT
GTGCATTACTGAAACTGAAAAACACGTCTTTTATTTGTT
TGATATTGTGGCAAAACTTGAGGTCTCAATGCAAATCAT
AGATCCCAATAACACCAACATTCACCTGTAAACTTTTAG
CATTACATTATATTGCTGTTTAATTCACACAGCGCTCAC
AAAACCACTCGCACGCCTGCATTTCCCCTATGCTAATCA
GACGAAATAGGAAGAAGTGCCTCCGAATGCAGAACCACA
AAGATGTTTATCTCGCTTTCGGCACTTCACACCCAAAAA
TAATGTGCAGGTAGGACCAGGAGAGCAGGAAGTGGACTG
TCATTTTTTGTCGGAATGTTTTTTTGCAATCTGGGGCAT
CAAGCTCCTCTTCCTGTTCCTGGAGGAATAAAGCCCACA
TTTTAATGATGCTCATCCTCTGCTTGTTCACTGCTCGAG.

After 8 h of, cells were treated with either vehicle (0.1%
DMSO), 500 nM abamectin (Sigma #31732), or 5 μM
abamectin in triplicate for each condition. After 48 h, the cells
were harvested for reporter gene activity. A luciferase assay and β-
gal assay were run on the harvested cells. The raw luciferase
values were normalized to the β-gal values.

2.5.2 Statistical Methods
Data from the luciferase assay was analyzed in R (R Core Team,
2020). The lm command from the stats package was used to build
a linear model to estimate differences between inserts and identify
any interactions between dose and insert. One-way ANOVA was
done in R to compare across dose (0, 0.5, 5 μM abamectin) and
insert (control, TT or, GG) and to test for interaction between all
dose and insert combinations. Tukey’s honest significant
difference test was used to compare different insert, dose pairs
using tukeyHSD from r stats.

2.6 Electrophoretic Mobility Shift Assay
2.6.1 Embryo Preparation
At 48 hpf embryonic chorions were mechanically removed with
forceps for any unhatched embryos and three pools of 120
embryos each were collected. Embryos were anesthetized with
0.0072% tricaine methanesulfonate prior to protein extraction.

2.6.2 Nuclear Protein Extraction
Manufactures protocol for tissue nuclear protein extraction was
followed using ThermoFisher NE-PER nuclear and Cytoplasmic
Extraction Kit (78833) and Halt Protease Inhibitor Cocktail,
EDTA-free (×100) (78425) without modifications. Final
nuclear extract volume was 200 μl per sample.

Nuclear protein fraction concentrations were calculated using
Pierce BCA Protein Assay kit (ThermoFisher, #23225) and a
Beckman DU800 spectrophotometer. Extracts ranged from 1.8 to
2.2 μg/μl.

2.6.3 Oligo Design
Oligo sequences were chosen using predicted binding site
sequence for the upstream region of sox7 from the Genomatix
analysis. Both sequences were design to be 26 bps long so that
binding differences couldn’t be attributed to differences in length.
The TT oligo contains the sequence on either side of the indel
with the deletion. The TT oligo is extended by 16 bps in the 3′
direction, following the sequence in the region of interest to reach
the required 26 bps.

2.6.4 Oligo Preparation
Single strand oligos were synthesized by IDT, (San Diego, CA,
United States) as either unlabeled or 5′ end labeled with LI-COR
IRDye® 700. The oligo sequences are as follows:

Labeled Sense GG version: 5′IRD700/
CATGCTAAATATATATATATATATGT.

Labeled Antisense GG version: 5′IRD700/
ACATATATATATATATATTTAGCATG.

Unlabeled competition GG version sense: 5′CATGCTAAA
TATATATATATATATGT.

Unlabeled competition GG version antisense: 5′ACATAT
ATATATATATATTTAGCATG.

Unlabeled competition TT version sense: 5′CATGCTAAA|
TATATATTTGTGCTTTA.

Unlabeled competition TT version antisense: 5′TAAAGC
ACAAATATATATTTAGCATG.

Oligos were reconstituted in TE buffer (10 mM Tris, 1 mM
EDTA, pH 8.0) and diluted to 20 μM. Sense and
complimentary antisense oligos were annealed by mixing
20 μl of each paired strand, heating at 100° for 5 min
followed by slowly cooling tube in heat block to room
temperature overnight. Annealed IR700 oligo was then
further diluted 1:200 and small aliquots were stored at
−20°C. Competitor oligos stocks were kept at 20 μM
equaling ×200 the labeled oligo concentration.

2.6.5 Binding and Competition Assays
Odyssey EMSA Kit reagents were purchased from LI-COR
Biosciences, Inc., Lincoln, NE, United States, Optimization for
DNA/protein binding conditions were performed according to
manufactures suggested protocol. Optimal binding buffer
components were found to be as follows: 2 μl 10× Binding
Buffer, 2ul 25 mM DTT/2.5% Tween20, 1 μl 1 M KCL, 1 μl
100 nM end-labeled oligo (100 fmol), 5.6 μg nuclear protein
extract, water to final 20 μl volume. Optimization trials with
varying concentrations of poly (dI·dC) indicated it interfered with
DNA binding and was left out of subsequent runs. Reagents were
mixed in microtube and incubated for 30 min at room temperature.
2 μl of ×10 Orange load dye was added immediately before loading
entire sample in to wells of a BioRad Mini-Protean 5% TBE precast
gel. Electrophoresis was run in ×0.5 TBE buffer at 70 V for
60–70min.
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For competition assays, unlabeled oligos were tested in a range
from ×200 down to ×12.5 (20–1.25 pmol) of IR700 oligo
concentration. Competitors were added to reaction mix first
and incubated for 10 min to allow binding to protein before
addition of labeled oligo. Reaction then incubated 20 min longer.
Images were acquired on the Azure 600 Imaging System, (Azure
Biosystems, Inc., Dublin, CA, United States) and image was
inverted for better definition.

3 RESULTS

3.1 Deep Reanalysis of Region Associated
With Responses to Exposure
Utilizing data frompreviousGWASwork published in Balik-Meisner
et al. (2018a) and previous HTS data from Truong et al. (2014) the
region identified as being associated with differences in individual
susceptibility to abamectin exposure was analyzed to identify further
genetic differences that may be contributing to susceptibility
differences across fish (Truong et al., 2014; Balik-Meisner et al.,
2018b). This analysis identified multiple SNPs and an Indel that

showed significant association with these differences in susceptibility.
The most significantly associated SNP as well as the indel can be seen
in Figure 2. These polymorphisms represent the most common
alleles in a highly variable region of the zebrafish genotype upstream
of sox7, an important gene in development (Stovall et al., 2014).

The G/T SNP was associated with the indel in that the T allele
was always paired with the deletion whereas the G allele was not.
The T genotype was associated with increased susceptibility to
abamectin exposure. These polymorphisms are displayed in
Table 1. These polymorphisms are both upstream of sox7 and
located within a non-coding region.

3.2 In Silico Analysis to Identify Possible
Mechanisms
3.2.1 Transcription Factor Binding Site Prediction
One possible mechanism wherein an upstream sequence causes
differential expression that leads to susceptibility differences is by
acting as enhancers or promoters that recruit different transcription
factors, leading to differential regulation of the downstream gene.
The pathway enrichment analysis tool in the Comparative

FIGURE 2 |Multiple sequence alignment that displays examples of the two primary genotypes (TT and GG) the larger deletion can be seen tied to the T genotype.
The indel is highlighted by a green bracket while a red rectangle highlights the SNPs. These features are also highlight on a drawing that represents the results of the
transcription factor binding site prediction. The colored ovals represent different proteins, with three different representative individuals showing how protein binding is
predicted differently by the software in different individuals.

TABLE 1 | The SNP and Indel with variants listed as the reference (0) and alternate (1) alleles. Prevalence of the homozygous genotypes for both variants in affected and
unaffected fish are shown in the table with the total number of fish with both genotypes at the bottom.

Ref: G (0) Alt: T (1) Pos: 19066027 Ref: ATATATATATATATATG (0) Alt: A (1) Pos:
19065990

0/0 1/1 0/0 1/1

Affected 58 20 33 (30 are G/G) 16 (All T/T)
Unaffected 78 9 51 (50 are G/G) 8 (All T/T)
Total 136 29 84 24
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Toxicogenomics Database (CTD) shows that abamectin is enriched
for effects on the signal transduction pathway which contains sox7
(Davis et al., 2019). To test this possibility, transcription factor
binding site prediction was employed using the Matbase package
that is a part of the Genomatix software (Cartharius et al., 2005).
Many differences in TFBSs were identified across all fish in the
region upstream of sox7. Several of these were in the region that
contains the indel and SNP. Some of these predicted sites are
illustrated in Figure 3 and all predicted binding sites are present
in Supplementary Table S1.

3.2.2 Analysis of Predicted Transcription Factor
Binding Site
To identify significant differences between TFBSs, a chi-
squared test was used to compare differences between
TFBSs between all of the identified polymorphisms. Two
different sequences stood out as having multiple highly
significant differences between predicted TFBSs. One which
contained the deletion that was previously identified as well as
the T allele of the G/T SNP (TT) and one which contained the
G allele (GG).

FIGURE 3 | Predicted transcription factor binding sites that are in the region of interest. This sequence contains the insert and the G polymorphism of the SNP with
the predicted binding sites bracketed and labelled.

FIGURE 4 |Heatmap showing all binding sites predicted to bind the GG sequence. The y axis shows the name of each predicted binding site. The x axis shows the
distance of each predicted site from the region beginning with the indel and ending with the SNP. The colors, ranging from dark pink to yellow represent the chi-squared
value when the predicted binding sites of the GG and TT genotypes are analyzed with a chi-squared test.
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Predicted TFBSs with significant chi-squared values that
were within the region of interest containing the SNP and indel
(Figure 4.) were identified. Differential protein binding of
these proteins in vivo could contribute to susceptibility
differences in individuals with differing sequences at
this locus.

3.3 Evaluating Protein Binding Between
Sequences
3.3.1 Electrophoretic Mobility Shift Assay Binding
Assay
EMSA was done to establish protein-DNA interaction of the GG
sequence in vitro. The first assay evaluated if the GG sequence was
able to bind protein in zebrafish protein lysate. As seen in

Figure 5 the sequence was shown to bind to a protein in the
lysate.

3.3.2 Electrophoretic Mobility Shift Assay Competition
Assay
To determine if the sequences had different binding affinities to
the same protein a competition binding assay was done with a
tagged GG oligo and an excess of untagged competitor TT or GG
oligos at varying concentrations. If the competitors bound the
same proteins with different affinities the untagged TT would pull
away protein from the tagged GG sequence but with less
efficiency than the untagged GG oligo. This would appear as a
fainter band in wells that contained the untagged GG oligo
compared to wells that contained the untagged TT oligo
indicating that the TT sequence bound with less affinity than

FIGURE 5 | EMSA showing a competition assay done with varying concentrations of untagged GG and TT oligos. The first lane has no competitors in it and
demonstrates the shift that happens when the tagged GG oligo and the protein lysate are added to the well. The band is highlighted by a red arrow. An example of the
difference in bands when the GG or TT competitors are added is highlighted with a red box. The GG competitor produces a much lighter band, indicating that the GG
sequence has more affinity for the protein that is being bound than the TT sequence.

FIGURE 6 | Bar chart displaying the average luciferase activity across three different vector inserts (GG, TT, and control) at 0 μM (A) and 0.5 μM (A) and 5 μM
abamectin (C). The GG vector (left most) has higher expression in all three environments. The TT vector (middle) and control vector (right most) look similar and show
lower expression except in response to the highest level of abamectin expression.
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the GG sequence. Figure 5 indicates that this is the case. A fainter
band can be identified clearly in several GG competition lanes
when compared to the same concentrations of the TT
competition wells. These results indicate that these two
sequences bind differentially to the same protein.

3.4 Investigating the Regulatory Activity of
Different Sequences
3.4.1 Luciferase Assay
The substantial predicted binding site differences between the
GG and TT sequences, and the differential protein binding that
was identified indicate that this locus may play an important
role in sox7 expression. To test if these polymorphisms alone,
along with their different binding behavior could lead to
expression differences, TT and GG were inserted into
luciferase vectors which were transfected into MCF7 cells.
Figure 6 shows luciferase expression in the cells across the
three doses.

3.4.2 Statistical Analysis
Significant differences were found in luciferase expression across
inserts in an ANOVA (Df = 2, F = 41.4, p = 5.1e−8). When
compared using Tukey’s test, cells with the TT or GG insert
showed significant differences in luciferase expression (p
adjusted = 4.6e−4). Cells with the TT or GG insert that were
exposed to 0.5 μM of abamectin also showed significant
expression differences as well (p adjusted = 4.7e−4). There was
also a significant difference between the GG cells and the control
vector transfected cells when there was no exposure (p adjusted =
1.3e−04) and when they were exposed to 0.5 μM of abamectin (p
adjusted = 2.7e−03). The TT cells and control cells behaved
similarly with regards to luciferase expression with no significant
differences identified between them at either dose. There were no
observed changes in expression in the cells with the same vector at
different doses. While not visually apparent across the first two
doses, abamectin dose had a significant affect on sox7 expression
when comparing across all three doses in a linear regression (t =
−4.29, p = 0.003).

4 DISCUSSION

The results of this study reinforce the hypothesis that the sequences
upstream of sox7 containing the SNP and Indel that were profiled in
this study act as regulators of the sox7 gene, where regulatory
differences caused by the two genotypes lead to differences in
susceptibility to chemical exposure. The position of the variants
upstream of Sox7 in a non-coding region, combined with the fact
that two specific variants were highly associated with different
outcomes after exposure points to the possibility that these
sequences play a regulatory role in the expression of sox7 as
promoters, enhancers, and/or repressors. One mechanism that
could explain the substantial differences in the effects of exposure
and the expression of sox7 is that these variants, in their role as
regulators, bind different transcription factors. These binding
differences then instigate differential regulation of Sox7

expression which leads to discrepancies in susceptibility to
developmental defects brought on by chemical exposure.

In silico analysis was done to look at possible TFBS differences
between the two sequences which could bring about the observed
expression differences. This analysis predicted that many of the
TFBSs differed at the deletion and SNP loci. This led to the
conclusion that these two sequences likely bind some factor with
differing affinity, resulting in the observed expression differences
between individuals with different genotypes. These results were
used to guide further wet-lab experimentation.

Using EMSA, the ability of these sequences to bind protein was
investigated. The results of the initial EMSA looking at the ability
of the GG sequences to bind protein in vitro demonstrated that it
bound a protein that is present during zebrafish development. A
second EMSA, looking at competition between the two
sequences, illustrated that there were pronounced differences
in binding affinity between the two variants.

Binding differences between two sequences does not necessarily
explain the expression differences that were associated with different
developmental outcomes. A luciferase assay clearly displayed
significant expression differences that were precipitated by the two
different genotypes when inserted, with a minimal promoter, into
human cells. This demonstrates that even without the longer
promoter sequence; the SNP and indel were sufficient to change
sox7 expression.

The mechanism of differential susceptibility identified in this
study is as follows: The differences in the hypervariable region
upstream of sox7 lead to differences in the suite of transcription
factors that bind the DNA to affect sox7 expression. This, in turn,
causes differential expression of the important developmental
factor Sox7. These expression differences during an organism’s
development contribute to susceptibility differences between
organisms when exposed to abamectin. While the next steps
in the adverse outcome pathway are subject to additional studies,
we hypothesize that these expression differences might be
connected to a developmental pathway involving sox7 that is
disrupted by abamectin without being able to compensate by
expressing more protein.

Sox7 plays a crucial role in development in humans and fish alike
(Stovall et al., 2014). Sox7 plays an especially important role in the
development of hematopoietic pathways and vasculogenesis in many
vertebrates including zebrafish, humans, and rodents (Pendeville et al.,
2008; Francois et al., 2010; Carroll and North, 2014; Lomelí and
Castillo-Castellanos, 2020). Differential expression of sox7 could,
therefore, cause susceptibility differences to chemical exposure,
particularly during development. Sox7 downregulation has also been
linked to breast cancer in humans (Stovall et al., 2014). Changes in the
regulatory sequence upstream of SOX7 may be one factor responsible
for these changes in expression related to breast cancer.

This study identified a hypervariable region upstream of the
zebrafish sox7 gene. Analysis of the region upstream of SOX7 in
the Ensembl human genome assembly (GRCh38.p13) shows a
known promoter and enhancer region on chromosome 8 from base
pairs 10730506 to 10736999 (Chromosome 8: 10,730,506–10,736,999,
8). The genome aggregation database (GnomAD) contains over 700
short variants (SNPs and Indels) that have been identified in this
region but have not been investigated for phenotypic effects nor ties to
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susceptibility differences after chemical exposure (8-10730506-
10736999 | gnomAD v2.1.1 | gnomAD). Non-coding regions are
understudied, and there is little information on the evolutionary
conservation of the region upstream of SOX7 between zebrafish
and humans. Studies on the protein itself, though, have shown
that there is 78% identity between the human and the zebrafish
protein (Francois et al., 2010). This points to similarities being
conserved across humans and zebrafish in this region that could
point to important implications regarding human susceptibility to
abamectin and other compounds that affect development through
interactions with SOX7. Further investigation could use human data
on exposure to abamectin and other related compounds (see
concluding paragraph below) to uncover possible GxE and
susceptibility differences that were implicated in this study and
flagged in the initial high-throughput screening. The broader
implications of this study are that a high-throughput screening
method in a diverse population can successfully identify
compounds that elicit GxE causing observable effects.

Zebrafish are the only vertebrate model that is currently
compatible with high-throughput methods and shares a large
degree of evolutionary conservation with humans (Garcia et al.,
2016). Moreover, the HTS experiments described here cover the
phylotypic stage, wherein vertebrate development across taxa are
most similar, making developmental comparisons across
vertebrates especially useful (Garcia et al., 2016). Zebrafish
have proven especially useful in the study of human fetal
development, vasculogenesis, hematopoiesis, brain
development, thyroid function, and the hypothalamic-
pituitary-thyroid axis (Pendeville et al., 2008, Liu et al., 2013;
Carroll and North, 2014; Duboc et al., 2015; Garcia et al., 2016;
Vancamp and Darras, 2018; Lomelí and Castillo-Castellanos,
2020). Thus, an HTS-compatible zebrafish model is adaptable
to identifying GxE mechanisms behind susceptibility differences
to chemical exposure that may be of direct human relevance. In
future studies of additional exposures, the discovery path
described here would necessarily be tailored or branched
according to empirical results. This flexible method lays a
foundation for the rapid discovery of chemicals that
participate in GxE and the unraveling of their mechanisms.

Despite the promise and functionality of this high-throughput
discovery method, the model that is being utilized does have
drawbacks. The speed at which the screening is done imposes
constraints on the breadth and depth of the analysis. As with any
model, zebrafish are not a sufficient substitute for human studies.
While they serve as important models that share a great deal of
similarity with humans, there are many mechanistic and genetic
differences between humans and zebrafish. Examples of studies
aiming to understand these differences have documented how
hematopoiesis occurs in a different organ, primitive blood cells
are only unipotent, and there are some differences in signaling
during development (Carroll and North, 2014; Duboc et al., 2015;
Lomelí and Castillo-Castellanos, 2020).

Considering these strengths and limitations, we propose
zebrafish HTS as an approach to begin addressing the
paucity of information on GxE causing individual
susceptibility differences to the tens of thousands of
chemicals in the growing exposome. Analysis at this scale

could rapidly screen for signals that require further
investigation. Future studies would then be able to find
mechanisms of GxE involving compounds of public health
interest by following the information gleaned from HTS.
Moreover, while identification of new and underinvestigated
compounds that may be tied to differential susceptibility
presents on ongoing challenge, the same critical question
must be asked of otherwise well-studied compounds. In this
manner, human health can be improved by new knowledge
regarding existing, new, and well-studied compounds.
Abamectin acts as a case study in the importance of gaining
a better understanding of well-studied chemicals like the mectin
family of compounds, where new exposures and usage patterns
can introduce population health concerns. As illustration,
consider data from the Centers for Disease Control showing
that prescriptions for ivermectin for humans increased more
than ten-fold, from 3,600 to 39,000, in 2020 amidst the COVID-
19 pandemic (Health Alert Network (HAN), 2021). This
method uses high-dimensional HTS data are interrogated for
signals of differential susceptibility, also addresses some of the
problems related to the assessment of differential individual
susceptibility to chemical exposure. Namely, problems with
sample sizes of sufficient power, mechanistic investigation,
environmental variables, and the relationship between
exposure and effect. Combining novel in silico and HT
methods with existing in vitro and in vivo methods, this
approach could lead to a new understanding of GxE and
differential susceptibility that changes the current paradigm
for parsing out GxE in diverse populations. Understanding
GxE and the factors that contribute to susceptibility can lead
to better risk assessment, a better grasp on the effects of a
chemical, more effective regulation to improve human health,
and an increasing knowledge of adverse outcome pathways.
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