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Mast cells (MCs) are considered as key effector cells in the elicitation of allergic

symptoms, and they are essential players in innate and adaptive immune responses. In

mice, two main types of MCs have been described: connective tissue MCs (CTMCs)

and mucosal MCs (MMCs). However, little is known about the biological functions

of MMCs, which is due to the lack of suitable models to investigate MMCs in vivo.

Here, we aimed to generate a mouse model selectively deficient in MMCs. It has been

previously described that Cre expressed under the control of the baboon α-chymase

promotor is predominantly localized in MMCs. Therefore, we mated α-chymase-Cre

transgenic mice with mice bearing a floxed allele of the myeloid cell leukemia sequence 1

(Mcl-1). Mcl-1 encodes for an intracellular antiapoptotic factor in MCs; hence, a selective

reduction in MMCs was expected. Our results show that this new mouse model contains

markedly reduced numbers of MMCs in mucosal tissues, whereas numbers of CTMCs

are normal. Thus, Chm-Cre; Mcl-1fl/fl mice are a useful tool for the investigation of the

pathophysiological functions of MMCs in vivo.
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INTRODUCTION

Mast cells (MCs) are potent inflammatory cells that are constitutively present in most tissues. MCs
are key effector cells in the elicitation of allergic symptoms (1–3) and essential players in protective
innate and adaptive immune responses to pathogens and other environmental threats (4–6).

MCs exhibit a diverse hematopoietic origin. As the bone marrow was previously believed the
only site from which MCs can arise (7–9), it has been recently shown that MCs also originate
from the yolk sac and from definite progenitors (10). Unlike other myeloid-derived cells, which
differentiate and mature in the BM before being released to the blood, MCs egress the BM and
circulate as immature progenitor cells (11–14) (generically termed MCps), which give rise to
mature MCs when they migrate to their target tissues (15).

In mice, MCps differentiate into two major types of mature MCs, connective tissue MCs
(CTMCs) andmucosal MCs (MMCs), classified according to their anatomical distribution: CTMCs
are found in skin, peritoneum, and submucosa of the gastrointestinal tract, where they are
predominantly located in close proximity to vessels and sensory nerve endings. In contrast,
MMCs are present in mucosal tissues such as the gastrointestinal and respiratory mucosa as
well as in the uterus where they coexist with CTMCs and an intermediate phenotype (15, 16).
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CTMCs and MMCs also differ in their morphology, protease
expression profiles, and biochemical and functional properties
(15). CTMCs represent a robust and long-lived tissue population
(17, 18), whereas MMCs are low in numbers under physiological
conditions but show rapid and marked expansion under
pathological conditions, such as parasitic infections (19–21) or
food allergy (22). In addition, it has been reported that MMCs
can expand during T cell-dependent immune responses (19,
23, 24), whereas CTMCs exhibit little or no T cell-dependent
behavior and appear in athymic nude mice or rats in normal
numbers. CTMCs are relatively well-characterized and studied
as compared to MMCs. This is, in part, because animal models
for the investigation of CTMC functions became available some
decades ago. In contrast, very little is known about MMCs, and
we are lacking suitable models to study their biological functions.

The role of MMCs in health and disease is largely unknown.
In contrast to CTMCs, very little is known about the pathways
of MMC activation, their physiological functions, mechanisms
of proliferation and survival, as well as modulators of MMCs
biology. We, therefore, aimed to generate a new mouse model
that exhibits a specific reduction in MMCs, thus allowing for
the investigation of MMC biology in vivo. To this end, we made
use of the Cre/loxP recombination system for generating tissue-
specific gene inactivation in mice (25, 26). It has been previously
reported that Cre expression driven by the baboon α-chymase
promotor correlates to MC-specific lineages present in colon
and lungs, thereby suggesting an MMC-specific expression (27).
Hence, in the present study, we mated chymase-Cre transgenic
mice with mice bearing a floxed allele of the myeloid cell
leukemia sequence 1 (Mcl-1), which encodes for an intracellular
antiapoptotic factor in MCs (28). We hypothesized that the
genetic inactivation of Mcl-1 under the control of the α-chymase
promotor in this Chm-Cre; Mcl-1fl/fl mouse induces apoptosis
in the target cell population and results in a specific reduction
of MMCs.

RESULT

Chm-Cre; Mcl-1fl/fl Mice Have Markedly
Reduced Numbers of Gastric and
Duodenal MMCs
Chm-Cre; Mcl-1fl/fl mice showed markedly reduced numbers of
MMCs in the glandular stomach as compared to control Chm-
Cre; Mcl-1+/+ mice (Figure 1, 1.6 ± 0.5 MCs/HPF vs. 4.12 ±

0.3/HPF). MMC numbers were also markedly reduced in the
lamina propria of the duodenum of Chm-Cre; Mcl1fl/fl mice
(Chm-Cre;Mcl-1fl/fl: 0.6 ± 0.1 MC/HPF vs. Chm-Cre;Mcl-1+/+:
1.3 ± 0.1 MC/HPF, −54%, P < 0.01). MCs in ileum and colon
generally appear in very low numbers; hence, the reduction of
MMCs in the lamina propria of the ileum and colon of Chm-Cre;
Mcl-1fl/fl mice was detectable but not significant.

Chm-Cre; Mcl-1fl/fl Mice Exhibit Markedly
Reduced Numbers of Uterus MCs and
Decreased Placental Thickness
In consideration of the variation of uterine MC numbers (uMCs)
during the fertile period in the uterus, which contains MMCs
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FIGURE 1 | Chm-Cre; Mcl-1fl/fl mice have markedly reduced numbers of

representative mucosal mast cell (MMC) populations. (A) Alcian blue staining

for stomach MCs of 5-µm-thick paraffin sections showed markedly reduced

MCs numbers (blue) in Chm-Cre; Mcl-1fl/fl mice compared to control

Chm-Cre; Mcl-1+/+ mice. (B) Chloroacetate esterase staining for intestinal

MCs showed decreased number of MCs (red) in duodenum of Chm-Cre;

Mcl-1fl/fl mice compared to control Chm-Cre; Mcl-1+/+ mice. (C) Numbers of

MCs in different gastrointestinal tissues were assessed by quantitative

histomorphometry analysis. (A,B) left: 100× magnification, (A) right: 400×

magnification, (B) right: 200× magnification. Data were pooled from three

independent experiments (n = 5 mice per group) and expressed as mean ±

SEM (*P < 0.05, **P < 0.01, n.s., not significant).
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A

B

FIGURE 2 | Chm-Cre; Mcl-1fl/fl mice exhibit reduced numbers of uterus MCs.

(A) Toluidine blue staining of 5-µm-thick paraffin uteri sections showed

markedly reduced number of uterus MCs (uMCs) at the estrus cycle (arrows) in

Chm-Cre; Mcl-1fl/fl mice compared to control Chm-Cre; Mcl-1+/+ mice.

(Continued)

FIGURE 2 | (B) Representative images of alcian blue (MMCs) and safranin

(CTMCs) staining of uterus from Chm-Cre; Mcl-1+/+ and Chm-Cre; Mcl-1fl/fl at

estrus. Results are presented as individual values and median. Statistical

differences were obtained by using Mann–Whitney (*P < 0.05), 200×

magnification.

and CTMCs, we quantified the number of uMCs/mm2 in the
uterus of virgin Chm-Cre; Mcl-1fl/fl and Chm-Cre; Mcl-1+/+

female mice at the estrus. During the estrus cycle, Chm-Cre;
Mcl-1fl/fl mice presented significantly reduced uMC numbers
as compared to Chm-Cre; Mcl-1+/+ mice (Figure 2A, 3.72
± 1.72/mm2, n = 5 vs. 12.72 ± 2.44/mm2, n = 5, P =

0.017). Histomorphological analyses of uterine sections stained
with alcian blue and safranin, to quantify MMCs and CTMCs,
respectively, identified both CTMCs and MMCs during estrus
in Chm-Cre; Mcl-1+/+ control mice. Interestingly, we observed
some alcian blue/safranin double-positive cells in the uterus of
Chm-Cre;Mcl-1+/+ mice, suggesting for an indistinct potentially
intermediate phenotype. In contrast, Chm-Cre; Mcl-1fl/fl mice
had CTMCs only, but no MMCs (Figure 2B).

To investigate whether the lack of MMCs in the uterus has
an impact on fetal/placental growth, we performed ultrasound
analyses of the gestation period at gd5 and gd10 assessing the
implantation area, placental thickness, and diameter, as well as
the placental diameter/thickness ratio of Balb/c-paired Chm-Cre;
Mcl-1fl/fl mice (n = 5, placentas n = 23) and Chm-Cre; Mcl-
1+/+ mice (n = 4, placentas n = 22) at gd10 (Figures 3A,B).
We observed significantly reduced placental thickness in Chm-
Cre; Mcl-1fl/fl mice (Figure 3B), whereas the implantation area,
placenta weight, as well as implantation and abortion rates
were comparable to the one observed for Chm-Cre; Mcl-1+/+

mice at gd5 and gd10 (Figure 3C and Figures S1A–C). Also, no
differences in spiral artery (SA) parameters were found at gd10
(Figure S1D).

Chm-Cre; Mcl-1fl/fl Mice Exhibit No
Difference in Cell Numbers or Morphology
of Representative CTMC Populations
Chm-Cre; Mcl-1fl/fl mice and Chm-Cre; Mcl-1+/+ mice were
similar in their numbers of CTMCs obtained from the
peritoneum (PMCs), and their PMCs were similar in their
morphology and surface expression of c-kit and FcεRI as
assessed by FACS analysis (Figures 4A,B). Numbers of CTMCs
in the dorsal skin of Chm-Cre; Mcl-1fl/fl and Chm-Cre; Mcl-
1+/+ control mice were similar as assessed by quantitative
histomorphometry (Figures 4C,D; Chm-Cre; Mcl-1fl/fl: 10.1 ±

0.9 MCs/HPF; Chm-Cre; Mcl-1+/+: 10,6 ± 0.8 MCs/HPF).
Both strains also exhibited similar numbers of ear skin CTMCs
(Figure 4D; Chm-Cre;Mcl-1fl/fl: 11.2± 0.7MCs/HPF; Chm-Cre;
Mcl-1+/+: 10.1± 0.9 MCs/HPF).

Bone Marrow-Derived Cultured MCs of
Chm-Cre; Mcl-1fl/fl Mice-Exhibit Normal
Proliferation and Differentiation
It has been previously reported that the α-chymase promotor
is not expressed in bone marrow-derived cultured MCs
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FIGURE 3 | Chm-Cre; Mcl-1fl/fl mice presented decreased placental thickness at gd10. (A) Representative ultrasound image of an implantation at gd10 showing the

embryo, the decidua basalis, and the placenta with placenta thickness (T) and diameter (Dia). (B) Placental area, placental thickness, placental diameter, and placental

diameter/thickness ratio from Balb/c-paired Chm-Cre; Mcl-1+/+ (mice n = 4, placentas n = 22) and Chm-Cre; Mcl-1fl/fl mice (mice n = 5, placentas n = 23) at gd10.

(C) Implantation areas in mm2 from Balb/c-paired Chm-Cre; Mcl-1+/+ (mice n = 4, implantations n = 15–32 per day) and Chm-Cre; Mcl-1fl/fl females (mice n = 5,

implantations n = 21–36 per day) at gd5 and gd10. Results are presented as individual values for each single placenta with mean. Statistical differences were

obtained using unpaired t-test (**P < 0.01). gd, gestation day; T, thickness; Dia, diameter.

(BMCMCs). As expected, cytological analyses showed
cytoplasmic Giemsa-positive granules in both, BMCMCs
generated from Chm-Cre; Mcl-1fl/fl and Chm-Cre; Mcl-
1+/+ mice, after 4 weeks of culture. Furthermore, BMCMCs
derived from Chm-Cre; Mcl-1fl/fl and Chm-Cre; Mcl-1+/+

mice were similar in size, granule distribution, and nucleus

formation (Figure 5A). Chm-Cre; Mcl-1fl/fl and Chm-Cre;
Mcl-1+/+ BMCMCs also showed no differences in their rates of
proliferation after 7, 14, 21, or 28 days of culture (Figure 5B). The
differentiation of BMCMCs derived from Chm-Cre; Mcl-1fl/fl

and Chm-Cre; Mcl-1+/+ was also similar as assessed by flow

cytometric analysis of the expression of the MC surface markers
CD117 (c-kit) and FcεRIα at day 7, 14, 21, or 28 of culture.
BMCMCs from both strains, after 28 days of culture, exhibited
more than 95% double-positive cells (Figure 5C).

DISCUSSION

In this study, we developed a new mouse strain Chm-
Cre; Mcl-1fll/fl that was used for the investigation and
characterization of different populations of MCs (CTMCs and
MMCs). Our data support the conclusion that Chm-Cre;
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FIGURE 4 | Chm-Cre; Mcl-1fl/fl mice exhibit no variation of cell number in representative sites of connective tissue mast cell (CTMC) populations as compared to

Chm-Cre; Mcl-1+/+ mice. (A) Cytospins of peritoneal lavage fluid from Chm-Cre; Mcl-1+/+ mice and Chm-Cre; Mcl-1fl/fl mice were stained with Giemsa solution and

MC numbers were assessed by Neubauer Hemocytometry. Mice exhibit comparable numbers of PMCs (right) with similar morphological features. (B) Percentage of

mast cell surface markers expression (left) and representative flow cytometry plots (right) showed comparable expression of c-kit and FcεRI on PMCs isolated from

Chm-Cre; Mcl-1+/+ mice and Chm-Cre; Mcl-1fl/fl mice. (C) Giemsa staining of 5-µm-thick paraffin sections of dorsal skin obtained from Chm-Cre; Mcl-1+/+ and

Chm-Cre; Mcl-1fl/fl mice show comparable numbers of MCs (purple). (D) MCs in dorsal and ear skin tissues show similar amounts of dermal MCs. (A) 400×

magnification, (C) left: 100× magnification, (C) right: 200× magnification. Data were pooled from two (A,B; n = 3 mice per group ± SEM) or five independent

experiment (C,D; n = 5 mice per group ± SEM).

Mcl-1fl/fl mice have markedly reduced numbers of MMCs
in mucosal tissues of the glandular stomach and intestine,
which contain only MMCs, as well as in the uterus, which

contains both subtypes of MCs. In contrast, the numbers of
CTMCs, in the dorsal skin, ear skin, and peritoneal cavity,
are normal.
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C

FIGURE 5 | Comparable proliferation and differentiation rates in bone marrow-derived cultured mast cells (BMCMCs). (A) Representative light micrograph shows

comparable morphology of BMCMCs after 4 weeks of culture in IL-3-supplemented medium from Chm-Cre; Mcl-1+/+ control mice and Chm-Cre; Mcl-1fl/fl mice.

BMCMCs were identified morphologically on cytospin cell preparations stained with Giemsa solution. (B) Representative flow cytometry plots and percentage of c-kit

and FcεRI expression show comparable differentiation rate on BMCMCs isolated from Chm-Cre; Mcl-1+/+ mice and Chm-Cre;Mcl-1fl/fl mice after 7, 14, 21, and 28

days of culture. (C) The proliferation rate of BMCMCs was evaluated by calculating the fold change of cell number over time. Data show similar proliferation rates of

BMCMCs after 7, 14, 21, and 28 days of culture from Chm-Cre; Mcl-1+/+ mice and Chm-Cre; Mcl-1fl/fl mice. (A) 200× magnification. Data are pooled from three

independent experiments (n = 3 mice per group ± SEM).
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MMCs are found at relatively low numbers in most mucosal
tissues, especially in the intestines (29). It was, therefore, not
surprising to find that some of the intestinal tissues analyzed,
such as the ileum and colon, contained barely any detectable
MMCs (Figure 1C). Our data indicate that Chm-Cre; Mcl-
1fl/fl mice exhibited a significantly reduced number of intestinal
MMCs, even when the physiological number of MMCs in wild-
type mice was very low (Figure 1C) as previously described
(9). MMC populations of the gut are known to expand under
inflammatory conditions, such as parasitic infections and allergic
conditions (19–21). Further studies will be needed to characterize
if and how intestinal MMC numbers change in Chm-Cre; Mcl-
1fl/fl mice in these settings. This will help to characterize their role
and relevance for intestinal immune responses against parasites
and allergens.

Interestingly, we observed markedly reduced MMC numbers
in uterine tissue of Chm-Cre; Mcl-1fl/fl mice (Figure 2). Previous
studies have shown that uMCs have a positive influence on
implantation, placentation, and remodeling of spiral arteries
(SAs) as well as placenta size and fetal growth (16, 30,
31). In Chm-Cre; Mcl-1fl/fl mice, the placental and fetal
development was largely normal (Figure S1), but we did find
that placental thickness is decreased (Figure 3). It has been
recently demonstrated that the complete absence of all MCs,
i.e., of both CTMCs and MMCs, in KitW−sh/KitW−sh (sash)
mice is linked to a severe impairment in reproduction. The
selective depletion of Mcpt-5-positive CTMCs also negatively
impacts fetal and placental development (30). Our study suggests
that the selective absence of MMCs has no major impact on
fetal and placental growth. Previous studies have shown that
uterine natural killer cells (uNKs) are able to overcome the
absence of uMCs by counterbalancing their effects at the feto-
maternal interface to promote SA remodeling and placentation
(30). In addition, regulatory T cells (Treg) are known as key
regulators of placental implantation. Tregs transferred into
abortion-prone mice, which present with insufficient numbers
of uMCs, restore SA remodeling and placental development
by promoting the expansion of uMCs (16). Further studies
will help in understanding the functions of uNKs and Tregs
in Chm-Cre; Mcl-1fl/fl mice. uNKs and Tregs may rescue the
phenotype in Chm-Cre; Mcl-1fl/fl mice and thereby secure
normal implantation and placental development.

Interestingly, we also observed alcian blue/safranin double-
positive cells in Chm-Cre; Mcl-1+/+ mice (Figure S1). Alcian
blue staining is used to detectMMCs, and safranin stains CTMCs.
The presence of double-positive MCs in the uterus has previously
been reported (32–34). Whether these MCs are in a premature
state or in a conversion process is yet unclear. It has been
suggested by some authors that uMCsmay be able to change their
phenotype depending on the surrounding milieu (33, 34).

MCs can originate from bone marrow precursor cells, and
they then differentiate into MMCs and CTMCs according to the
local microenvironment. BMCMCs are used as an in vitromodel
for studying MC functions. They are a mucosal-like population
of MCs since they share some characteristics with MMCs,
like their protease composition. The generation of BMCMCs
from Chm-Cre; Mcl-1fl/fl mice, however, revealed no differences

when compared to Chm-Cre; Mcl-1+/+ mice, suggesting that
BMCMCs are immature MCs that are phenotypically distinct
from both MMCs and CTMCs (35). BMCMCs from Chm-Cre;
Mcl-1fl/fl mice were similar in proliferation and maturation as
compared to cells derived from control mice (Figures 5B,C),
indicating that the hematopoietic progenitor cell capacities for
MC differentiation are retained in Chm-Cre; Mcl-1fl/fl mice.
This is in line with previous findings showing that the BMCMC
population derived from Chm:Cre mice exhibit no specific Cre
activity (27), indicating that Cre-expression driven by the baboon
α-chymase promotor is restricted to mature MMCs.

After their egress from the bone marrow or alternate stem
cell reservoirs, MC progenitors undergo differentiation and
maturation in their peripheral target tissues. MC progenitors that
populate the skin or peritoneum become CTMCs, whereas those
that differentiate and mature in mucosal epithelia and the lamina
propria becomeMMCs. The most important finding of our study
is that Chm-Cre; Mcl-1fl/fl mice exhibit a profound reduction of
MMCs in mucosal tissues of the glandular stomach and intestine
without affecting the number of CTMCs in connective tissues like
the skin and the peritoneal cavity.

Although mammalian MCs were first described more than
a century ago, their detailed functions remain to be elucidated.
MCs are considered to be multifunctional immune cells
implicated in several physiological and pathological processes.
However, the knowledge about the biological functions of the
different MC subtypes, especially MMCs, and the plasticity
of MCs is limited due to the lack of suitable models for
their investigation in vivo. Today, one of the most important
challenges for the development of MC-targeting therapeutic
applications is to understand their impact on different MC
subpopulations. Genetic mouse models are an important tool
for this, as well as for the identification and characterization of
physiological and pathological functions of MCs in vivo. Several
MC-deficient models have been described and used in the past:
mice deficient for Kit (KitW /KitW−v mice and KitW−sh/Kit/W−sh

mice), the receptor for stem cell factor (SCF), which is essential
for MC growth and survival, have been used for more than 30
years to analyze MC populations and their functions in vivo.
These mice exhibit a variety of non-MC-related phenotypic
abnormalities, including abnormalities affecting hematopoietic
cells other than MCs that can contribute to innate or adaptive
immune responses, such as neutrophils, basophils, γδ T-cells,
and myeloid suppressor cells (9, 11, 36). In recent years, Kit-
independent models became available including Cpa3-Cre; Mcl-
1fl/fl (28), Cpa3Cre/+ (“Cre-Master”) mice (37), and Mas-TRECK
(38), as well as Mcpt5-Cre iDTR (39), Mcpt5-Cre R-DTA (40),
and RMB mice (41) with an inducible or constitutive deficiency
for either the entire MC compartment, CTMCs only, or both
MCs and basophils. However, genetic mouse models with a
specific focus on MMC populations had not be reported, and
this has been a roadblock for improving our understanding of
the biology of MMCs.

In this study, we report a novel model for studying MMCs,
the Chm-Cre; Mcl-1fl/fl mouse, and we provide a phenotypic
characterization of its MC populations. The selective reduction
of numbers of MMCs in this novel mouse model is a useful tool
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inMC research, especially for investigating the role and relevance
of MMCs in health and disease.

METHODS

Mice
Genetically, Chm-Cre; Mcl-1fl/fl mice and congenic normal
Chm-Cre; Mcl-1+/+ mice (8–12 weeks old) were obtained
from breeding colonies of the animal facilities of Charité-
Universitätsmedizin Berlin. Mice were kept in community cages
at the Animal Care Facilities at light periods of 12 h and were
fed water and mouse chow ad libitum. All animal care and
experimentation was conducted in accordance with current
Institutional Animal Care and Use Committee guidelines at the
Charité-Universitätsmedizin Berlin under official permissions of
the State of Berlin, Germany.

Development of the Mouse Model
C57BL/6 alpha-chymase-Cre transgenic (Chm-Cre) mice
previously described by Müsch et al. (27) were crossed
to C57BL/6 Mcl-1+/fl mice for one generation to obtain
heterozygote Chm-Cre; Mcl-1+/fl mice. The offspring was
identified by PCR genotyping. The heterozygote Chm-Cre; Mcl-
1+/fl mice were bred as breeder to obtain Chm-Cre; Mcl-1+/+,
Chm-Cre; Mcl-1+/fl, and Chm-Cre; Mcl-1fl/fl mice.

Genotyping
Genotyping was performed by PCR. The genotype of transgenic
offspring from Chm-Cre; Mcl-1+/fl mice was detected by ear
biopsies DNA as described before (22). (Primers: Chm-CreFor: 5′

CGG CGC TAA GGA TGA CTC TGG TCA G 3′, Chm-CreRev:
5′ GTC CAA CGT TCC GTT CGC GCG G 3

′
, Mcl-1For: 5′ CGA

TGC AAC GAG TGA TGA GG 3′, Mcl-1Rev: 5′ GCA TTG CTG
TCA CTT GGT CGT 3′). Three reactions are performed during
the genotyping, in brief: one to test for Chm-Cre, one to test for
the wild-type Mcl-1 allele (PCR product: 360 bp), and one to test
for the Mcl-1 flox allele (PCR product: 400 bp).

Cells
Mouse femoral and tibial BM cells from Chm-Cre; Mcl-1 mice
were cultured for 4 weeks in complete IL-3-containing medium
with 1% antibiotics to generate BM-derived cultured mast cells
(BMCMCs). Peritoneal cells (PMCs) were obtained by injecting
Chm-Cre; Mcl-1 mice i.p. with 5ml of PBS for the peritoneal
lavage. Morphological analysis of MCs was assessed by Alkaline-
Giemsa staining of cytospins. MC differentiation was assessed by
flow cytometric analysis for surface expression of CD117 (c-kit)
and FcεRI.

Histology
Mice were euthanized, and samples of back skin, ear pinna,
were fixed in 4% buffered formaldehyde (vendor); stomach,
duodenum, ileum, and colon were fixed in 4% methanol-free
formaldehyde, dehydrated, and embedded in paraffin ensuring a
cross-sectional orientation of all tissues, and 5-µm sections were
stained with alkaline-Giemsa solution for histologic examination
and enumeration of MCs. To examine stomach MMCs, stomach

samples were stained by alcian blue solution. To examine MMCs
of the duodenum, jejunum, ileum, and colon, 5-µm sections of
intestinal tissue were stained for chloroacetate esterase-positive
MMCs, as previously described (35). To examine uMCs, 5-µm
paraffin embedded uterus samples were stained by toluidine blue,
alcian blue, or safranin. At least three random sections per mouse
were analyzed. Ten high-power fields (HPF) per section have
been analyzed.

Determination of MC Numbers
In all histological assessments, cell numbers were enumerated
by a single observer not aware of the identity (mouse group) of
the individual sections. Cell numbers were based on counting 10
medium-power fields (200×) or HPF (400×), and mean values
were calculated. In this study, MCs were classified according to
anatomic location as previously described (42). Skin MCs were
quantified according to horizontal field length of dermis, uterine
MCs were quantified according to area, and gastrointestinal MCs
were quantified according to anatomical structure (per field of
mucosa and submucosa). MCs superficial to the deep border of
the muscular layer, including the epithelium and lamina propria,
were classified as MMCs. Images were captured with a Zeiss
Axioplan 2 Imaging microscope using a Zeiss AxioCam camera
run by AxioVision Rel. 4.8 software.

Ultrasound Imaging
Serial high-frequency ultrasound measurements were performed
with the Vevo R© 2100 Imaging system (FujiFilm VisualSonics
Inc.) by using the transducer MS550D-0421. Isoflurane
(Baxter)-anesthetized mice were placed on the heating platform,
abdominal hair was removed with depilatory cream (Reckitt
Beckiser), and eye protection cream (Bayer) and prowarmed
ultrasound gel (Gello GmbH Geltechnik) were applied. During
measurements, ECG, body temperature, and respiratory
physiology were controlled. B-Mode was used to visualize
anatomical structures in 2D grayscale image. Ultrasound
examinations were performed at gd5 (implantation size) and
gd10 (implantation size, placenta area/thickness/diameter), and
all implantations found within the mothers were imaged. Mice
were never exposed longer than 1 h to gaseous anesthesia.

Statistics
Unless otherwise indicated, all data were tested for statistical
significance using the unpaired Student’s t-test and expressed
as mean ± SEM. A p ≤ 0.05 was considered to reflect
statistical significance.
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Figure S1 | Chm-Cre; Mcl1fl/fl mice exhibit no differences in the analyzed

placental parameters comparing to Chm-Cre; Mcl1+/+ mice. (A) Placental weight

of Chm-Cre; Mcl-1+/+ (mice n = 4, placentas n = 21) and Chm-Cre; Mcl-1fl/fl

(mice n = 5, placentas n = 34) females paired with Balb/c males at gd10. (B)

Number of implantations at gd5 or gd10, abortions, and abortion rate at gd10

from Chm-Cre; Mcl-1+/+ (n = 3–4) and Chm-Cre; Mcl-1fl/fl (n = 3–5) females

paired with Balb/c males at gd10. Results are presented as individual values ±

median. (C) Representative bicorneal uteri of Chm-Cre; Mcl-1+/+ and Chm-Cre;

Mcl-1fl/fl mice at gd5 or gd10. (D) SA wall thickness and SA wall-to-lumen ratio

from 3 to 9 SAs per mice of Balb/c-paired Chm-Cre; Mcl-1+/+ (n = 4) and

Chm-Cre; Mcl-1fl/fl (n = 5) females at gd10. Statistical differences were analyzed

with the Mann–Whitney test. gd, gestation day; SA, spiral artery.
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