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Cancer is still a major health problem around the world. The
treatment failure of cancer has largely been attributed to drug
resistance. Competitive endogenous RNAs (ceRNAs) are
involved in various biological processes and thus influence the
drug sensitivity of cancers. However, a comprehensive charac-
terization of drug-sensitivity-related ceRNAs has not yet been
performed. In the present study, we constructed 15 ceRNA net-
works across 15 anti-cancer drug categories, involving 217 long
noncoding RNAs (lncRNAs), 158 microRNAs (miRNAs), and
1,389 protein coding genes (PCGs). We found that these ceR-
NAs were involved in hallmark processes such as “self-suffi-
ciency in growth signals,” “insensitivity to antigrowth signals,”
and so on. We then identified an intersection ceRNA network
(ICN) across the 15 anti-cancer drug categories. We further
identified interactions between genes in the ICN and clinically
actionable genes (CAGs) by analyzing the co-expressions, pro-
tein-protein interactions, and transcription factor-target gene
interactions. We found that certain genes in the ICN are corre-
lated with CAGs. Finally, we found that genes in the ICN were
aberrantly expressed in tumors, and some were associated
with patient survival time and cancer stage.
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INTRODUCTION
Cancer is the second leading cause of death globally.1 It is estimated
that there were 18.1 million new cases of cancer and 9.6million deaths
from cancer in 2018.2 Drug resistance refers to some types of cancers
that are not sensitive to certain or multiple kinds of drugs, which is a
key issue in the treatment of cancer. The emergence of resistance to-
ward existing drugs is a major challenge in treating cancer. Most
advanced-stage cancers are not sensitive to conventional therapies.
Even though targeted therapies improved the clinical treatment of a
certain number of difficult-to-treat cancers, their efficiencies are
various depending on the different types of cancer and genetic back-
grounds of patients.3 Additionally, biomarkers for the diagnosis and
Molecular
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prognosis of drug resistance are also urgently needed. Therefore,
finding new ways to overcome the drug resistance of various cancers
has drawn the attention of many researchers.

Numerous studies have been conducted to identify the molecular
mechanisms of drug resistance. The effects of coding and noncoding
genes in drug resistance have been widely investigated regarding the
efflux of drugs, the inhibition of cell death, and then induction of
epithelial-mesenchymal transition (EMT), among other factors.4–6

In the initial stage of exploration, researchers mainly focused on the
alteration of coding genes. For instance, ATM deficiency is associated
with sensitivity to poly (ADP-ribose) polymerase-1 (PARP1) and
ataxia telangiectasia mutated and Rad3 related (ATR) inhibitors in
lung adenocarcinoma.7 In recent decades, noncoding genes have
also been reported to play important roles in drug resistance. Based
on their length, noncoding genes can generally be classified as micro-
RNAs (miRNAs or miRs) or long noncoding RNAs (lncRNAs).
miRNAs mediate gene expression regulatory effects at the post-tran-
scriptional level. For example, overexpression of miR-130b promotes
adriamycin resistance in breast cancer cells by targeting PTEN.8

Circulating exosomal miR-96 promotes the progression and cisplatin
resistance of lung cancer by targeting LMO7.9 lncRNAs are also corre-
lated with metastasis, drug resistance, and clinical outcome in
Therapy: Nucleic Acids Vol. 24 June 2021 ª 2021 The Author(s). 11
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cancer.10 The expression of lncRNA HOTAIR is upregulated in
various cancers, including lung cancer, breast cancer, and pancreatic
cancer, among others.11–13 Its upregulation decreases the sensitivity
of lung cancer cells to cisplatin.14 lncRNA activated by transforming
growth factor (TGF)-b (ATB) is highly expressed in breast cancer tis-
sues and cells, which could predispose patients to the invasion-metas-
tasis cascade and trastuzumab resistance.15 The upregulation of
lncRNA cancer upregulated drug resistant (CUDR) was observed in
doxorubicin-resistant human squamous carcinoma cells. This over-
expression could promote the resistance of squamous carcinoma cells
to doxorubicin and etoposide.16 Therefore, coding and noncoding
genes are both closely related to the drug sensitivity of cancer cells.
However, the interaction between coding and noncoding genes in
drug resistance has not been fully explored.

In recent years, Salmena et al.17 proposed a new way to reveal the
interaction between noncoding and coding RNAs, that is, a
competing endogenous RNA (ceRNA) theory. The roles of ceRNA
triplets including lncRNAs, miRNAs, and protein coding genes
(PCGs) have been confirmed in various pathological and physiolog-
ical conditions, and especially in the drug sensitivity of cancers.
lncRNA ARSR promotes doxorubicin and sunitinib resistance in
cancers, which occurs at least partially via competitive binding of
miR-34/miR-449.18,19 The downregulation of lncRNA GAS5 upre-
gulates miR-222 expression, which confers tamoxifen resistance in
breast cancer.20 Current studies suggest that lncRNAs are respon-
sible for the multi-drug resistance of cancers. Moreover, the ceRNA
mechanism plays an important role in drug resistance. However,
there is currently a lack of understanding concerning the global
drug-sensitivity-related ceRNA networks across different drug
categories.

With the development of pharmacogenomics, the collection of a large
amount of drug-sensitivity-related gene profile data has facilitated the
prediction of the mechanism of drug sensitivity. Therefore, large-scale
ceRNA networks involving different drug categories need to be con-
structed, as these would be helpful in elucidating the mechanism of
drug resistance and promoting the rational use of drugs. The present
study aimed to construct and analyze a drug-sensitivity-related ceRNA
network across 15 anti-cancer drug categories. The topological proper-
ties of the networks were investigated and an intersection ceRNA
network (ICN) across 15 anti-cancer drug categories was constructed.
Moreover, some genes in the ICN were found to be correlated with
clinically actionable genes (CAGs) and have clinical relevance.

RESULTS
Global landscape and comparison of ceRNA networks across 15

anti-cancer drug categories

To investigate the role of ceRNA triplets (lncRNAs-miRNAs-PCGs)
and the competitive patterns of drug-sensitivity-related ceRNAs, we
constructed 15 ceRNA networks across 15 anti-cancer drug categories
(Figure 1; Table S1). A total of 105,255 ceRNA interactions were iden-
tified, involving 217 lncRNAs, 158 miRNAs, and 1,389 PCGs. The
largest ceRNA network belonged to YK (1,759 nodes and 9,334
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edges), whereas the smallest ceRNA network belonged to Df (1,460
nodes and 4,661 edges). The number of lncRNAs, miRNAs and
PCGs, as well as the nodes and edges of the ceRNA networks for
each anti-cancer drug category, are shown in Table 1. The 15 ceRNA
networks across 15 anti-cancer drug categories are shown in Figure 1.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway ana-
lyses were performed for 15 ceRNA networks (Figure S1). Some
signaling pathways were shared by all drug categories, including
“pathways in cancer,” “microRNAs in cancer,” “PI3K-Akt signaling
pathway,” and “cell cycle,” among others, while some signaling path-
ways were drug type specific, involving “pertussis,” “tuberculosis,”
“herpes simplex infection,” and “Ras signaling pathway,” among
others. The topological evaluation of the ceRNA networks showed
that the degrees of these ceRNA networks all obeyed a power law
distribution, which conforms to the characteristics of biological net-
works (Figure S2). The node proportion of each ceRNA network is
shown in Figure S3. The original data of the 15 ceRNA networks
are shown in Data S1.

To explore the specificities and similarities across the 15 ceRNA net-
works, we compared their components of lncRNAs, miRNAs, and
PCGs by calculating the Jaccard coefficients. The results showed that
the ceRNA molecules, including lncRNAs and miRNAs, were more
conserved in the 15 ceRNA networks, while the miRNAs tended to
be shared among the different ceRNA networks (Figures 2A–2C). In
contrast, PCGs displayed the lowest similarities across these drug cate-
gories (Figures 2C and 2D). The average values of the Jaccard coeffi-
cients of the lncRNAs, miRNAs, and PCGs are shown in Figure 2D.
Then, we compared the distribution of lncRNAs, miRNAs, and PCGs
among all ceRNA networks (Figure 2E). The results indicated that
more lncRNAs and miRNAs were shared by different drug categories
than PCGs.

We also compared the hub nodes in the 15 ceRNA networks. Hub no-
des were identified as the highly connected nodes, which were consid-
ered to play a critical role in themaintenance of network stability.21–24

In this study, the lncRNA and PCG nodes with the top 5% highest de-
gree and degree >10 were defined as hub nodes.24 A total of 98 hubs
were defined across the 15 ceRNA networks. Among them, 56 hub
nodes were shared by all networks. These shared hub nodes belong
to lncRNAs, including XIST, H19, TUG1, and NEAT1, among others
(Figure 2F). Additionally, there are also some specific hub nodes,
including CDKN1A, VEGFA, BCL2, and CDK6 (Figure 2F).

In addition, we examined the properties of lncRNAs in these ceRNA
networks. The classes of lncRNAs in the 15 ceRNA networks were
identified according to lncRNA annotation (see Materials and
methods). The results showed that most of these competitive lncRNAs
were classified as long intergenic noncoding RNA (lincRNA), anti-
sense, and processed transcripts (Figure S4). lincRNAs show broad
biological activity through interacting with miRNAs.25,26 These results
provided evidence that ceRNAs may be a fundamental layer of gene
regulation in drug resistance. We further analyzed the ceRNA triplets
and found that almost all of the lncRNAs, miRNAs, and PCGs were



Figure 1. ceRNA networks of 15 anti-cancer drugs

Circular pink nodes represent miRNAs; triangular purple nodes represent lncRNAs; square green nodes represent PCGs.
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located in different chromosomes (Figure S5). This indicates that the
ceRNA triplet interactions tend to be through distant regulation, which
is also consistent with ceRNA theory.

Relevance between ceRNAs across 15 drug categories and

cancer hallmark processes

Next, we investigated the role of these ceRNAs across 15 drug cate-
gories in cancer. To do this, we obtained cancer-related lncRNAs,
miRNAs, and PCGs from several databases (see Materials and
methods). The relevance between ceRNAs and cancer hallmarks
was calculated using a hypergeometric test. Competing triplets that
enriched lncRNAs, miRNAs, and PCGs of each drug category are
shown in Figure 3A. The results indicated that miRNA, which medi-
ates lncRNA-PCG competition pairs, is more likely to be related to
cancers (Figure 3A). The hypergeometric test result of Figure 3A is
shown in Table S2.
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 13
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Table 1. Statistical results for the ceRNA networks across 15 anti-cancer

drug categories

MOA miRNAs lncRNAs PCGs Nodes Edges

YK 158 217 1,384 1,759 9,334

Df 149 213 1,044 1,406 4,661

Ds 157 217 1,369 1,743 8,831

A7 158 217 1,379 1,754 9,241

AM 156 216 1,329 1,701 8,103

Db 151 211 1,073 1,435 5,299

Ho 158 217 1,380 1,755 9,085

Rs 146 209 1,140 1,495 4,423

Tu 155 217 1,346 1,718 8,167

T2 154 216 1,290 1,660 7,890

Apo 151 212 1,108 1,471 6,015

DNMT 148 209 1,104 1,461 4,390

STK 150 213 1,220 1,583 5,731

T1 152 209 1,049 1,410 4,597

Pr 145 210 1,078 1,433 4,302

MOA, mechanism of action.
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We then explored whether these PCGs for each drug category
were targeting cancer hallmark processes.27 After collecting the
cancer hallmark processes, the Jaccard coefficient was used to
measure intersections between cancer hallmark genes and PCGs
in each ceRNA network. The results showed that PCGs in the
ceRNA networks were represented across a broad range of cancer
hallmarks (Figure 3B). The hypergeometric test result of Figure 3B
is shown in Table S3. In particular, hallmarks including “self-suf-
ficiency in growth signals” and “insensitivity to antigrowth sig-
nals” were the two most significantly enriched terms across
different drugs. These findings suggest that these cancer hallmarks
tend to be common among different drugs and also further
confirm the existence of a common network of anti-cancer
drug-sensitivity-related ceRNAs. A number of genes were corre-
lated with multi-drug resistance.

Construction of the ICN across the 15 ceRNA networks and

analysis of its therapeutic potential

We found that there are many intersections of lncRNAs, miRNAs,
and PCGs among the 15 ceRNA networks (Figures 2 and 3). This rai-
ses the question of whether intersections exist among the ceRNA net-
works across the 15 drug categories. And, if they do, what are their
functions?

To determine this, we extracted the intersection edges of the 15
ceRNA networks and constructed an ICN, which is composed of 7
lncRNAs, 13 miRNAs, and 32 PCGs (Figure 4). This showed that
H19 is the most connected lncRNA node in the ICN, whichmay regu-
late key signaling pathways in drug resistance (Figure 4). Some of the
predicted relationships have been verified using HT29 and metho-
14 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
trexate-resistant HT29 (HT29-MTX) colon cancer cell lines.
Compared with HT29 cells, the expression ofHIF1A andH19was up-
regulated in HT29-MTX cells (Figures S6A and S6B). Additionally,
the knockdown of H19 upregulated miR-20a-5p, miR-20b-5p, and
miR-17-5p in HT29-MTX cells (Figures S6C–S6F). Also, to validate
the ceRNA network of lncRNA H19/miRNA/HIF1A, an additional
experiment was conducted. A dual-luciferase reporter assay was
used to validate the direct interaction between miR-17-5p and H19/
HIF1A. The results showed that miR-17-5p could directly bind to
H19 and HIF1A. Additionally, the knockdown of H19 could upregu-
late miR-17-5p and downregulated HIF1AmRNA and protein (HIF-
1a) expression levels, which was attenuated by miR-17-5p inhibition
(Figure S7).

To show the effect of the ICN on drug response, we analyzed the cor-
relation between drug sensitivity to 76 US Food and Drug Adminis-
tration (FDA)-approved anti-cancer drugs and the transcriptional
expression of genes in the ICN (Figure 5). The correlation between
the expression of genes in the ICN and drug sensitivity is shown in
Figure S8.

Interaction between CAGs and genes in the ICN

To further understand the clinical implications of the ICN, the
expression profiles of genes in the ICN were correlated with CAGs.
CAGs are FDA-approved drug target genes and associated biomarker
genes, including 132 target therapeutic genes and 19 immunothera-
peutic genes. The expression profiles of 151 genes were obtained
and Pearson’s correlation coefficient (PCC) values were calculated
(Figure 6). Gene pairs with PCCs |R| >0.3 and a false discovery rate
(FDR) <0.05 were screened. We observed that 94.7% of the CAGs
were associated with genes in the ICN (Figure 6). Genes in the ICN
were also correlated with CAGs. Among them, some protein-protein
interactions (PPIs) and transcriptional factor-gene interactions were
observed (Figure 6). These results showed that CAGs could be regu-
lated by ceRNAs, including through targeted therapy and immuno-
therapy. This data analysis was based on the PPI and transcription
factor (TF) data from the Human Protein Reference Database
(HPRD) (http://www.hprd.org/)28 and BioGRID (https://thebiogrid.
org/) databases.29 The results showed that ceRNAs have many effects
on CAGs. Therefore, the significant interactions between CAGs and
ceRNA-associated genes may affect the drug response.

Clinical relevance of the ICN

We then explored the association of genes in the ICN with patient
survival time and cancer stage. We identified 1 lncRNA, 13 miRNAs,
and 33 PCGs associated with overall survival in at least one cancer
type (Figure 7A). Most of the genes in the ICN were negatively corre-
lated with the survival of brain low-grade glioma (LGG) patients,
while only a small number of these genes showed a correlation with
that of acute myeloid leukemia (LAML) patients. Also, many genes
in the ICNwere correlated with patient survival time and cancer stage
of kidney renal clear cell carcinoma (KIRC), stomach adenocarci-
noma (STAD), and breast invasive carcinoma (BRCA). Some genes
act as either promotors or suppressors of cancers and are closely

http://www.hprd.org/
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Figure 3. Relevance between ceRNAs across the 15 drug categories and cancer hallmark processes

(A) p values of the hypergeometric test that evaluated the significance of overlap between 15 ceRNA networks and cancer-lncRNAs, miRNAs, and PCGs, respectively. (B)

Jaccard coefficient matrix for PCGs in the pan-drug ceRNA networks and cancer hallmark processes.
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correlated with the outcome of patients. For example, patients with a
low expression level of E2F2 showed significantly worse survival in
head and neck squamous cell carcinoma (HNSC) (log-rank test,
p = 0.0018), STAD (log-rank test, p = 0.018), and rectum adenocar-
cinoma (READ) (log-rank test, p = 0.018) (Figure 7B). In contrast,
several other genes promote the progression of cancer. ITGB8 is taken
as an example. The enhanced expression of ITGB8 was associated
with worse survival in bladder urothelial carcinoma (BLCA) (log-
rank test, p = 0.021), LGG (log-rank test, p < 0.0001), and pancreatic
adenocarcinoma (PAAD) (log-rank test, p = 0.0023) patients
(Figure 7B).

DISCUSSION
Drug resistance continues to be a major factor in treatment failure of
cancers. In recent years, the ceRNA has become a research hotspot, as
it reveals a new way to regulate gene expression. A large number of
studies have shown that ceRNAs play important roles in the patho-
genesis and treatment of cancer. A recent study revealed the role of
ceRNA modules in drug resistance across multiple cancers through
ceRNA network-based drug sensitivity prediction.30 In the present
study, we systematically constructed and dissected ceRNA networks
across 15 anti-cancer drug categories.
Figure 2. Similarities across the 15 ceRNA networks and hub nodes analysis

(A) Correlation of lncRNAs across the 15 ceRNA networks. (B) Correlation of miRNAs acr

(D) Average values of the Jaccard coefficients of lncRNAs, miRNAs, and protein codin

networks. (F) Hub analysis of the ceRNA networks across the 15 anti-cancer drug categ

Purple boxes represent lncRNAs and green boxes represent PCGs.
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Fifteen ceRNA networks were constructed across 15 anti-cancer drug
categories. The largest ceRNA network belongs to YK, which repre-
sents tyrosine kinase inhibitor. Although YK therapy is widely used
clinically, there may also exist a small population of insensitive cancer
cells that lead to treatment failure, manifesting as minimal residual
disease.31 Consistent with this, we found the ceRNA network based
on YK has the largest number of shared hub nodes. There are also
some specific hub nodes shown in Figure 2F, including CDKN1A,
VEGFA, BCL2, and CDK6. Among them, CDKN1A is the specific
hub node of both Df and A7 drug categories. Rs has the largest num-
ber of specific hub nodes, involving EGFA, BCL2, and CDK6. These
genes are potential drug sensitivity markers. Therefore, the identifica-
tion of these specific hub nodes may promote personalized treatment
in the clinic.

Across the 15 ceRNA networks, we found that hub nodes tend to be
shared by various ceRNA networks. Of all the hub nodes identified
across the 15 ceRNA networks, 56 of them are shared by all networks.
The hub nodes belonging to lncRNAs include XIST, H19, TUG1,
NEAT1, and others. These hub genes have been shown to be related
to drug resistance. lncRNA XIST is downregulated in recurrent can-
cer, and its expression level correlates significantly with Taxol
oss the 15 ceRNA networks. (C) Correlation of PCGs across the 15 ceRNA networks.

g genes (PCGs). (E) Distribution map of the number of drug types in the 15 ceRNA

ories. Distribution of the hub genes across the pan-drug ceRNA networks is shown.



Figure 4. Intersection ceRNA networks (ICNs) of

different drugs

Circular pink nodes represent miRNAs; triangular purple

nodes represent lncRNAs; and square green nodes

represent PCGs.
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(paclitaxel) sensitivity in ovarian cancer.9 In contrast, it was upregu-
lated in doxorubicin-resistant colorectal cancer tissues and cells. The
interference of lncRNA XIST enhanced the anti-cancer effect of doxo-
rubicin in colorectal cancer through the regulation of the miR-124/
SGK1 axis.32 lncRNA NEAT1 could act as a ceRNA to upregulate epi-
gallocatechin-3-gallate (EGCG)-induced CTR1 by sponging hsa-
miR-98-5p, thus enhancing the cisplatin sensitivity of non-small
cell lung cancer (NSCLC) cells.33 lncRNA H19 is upregulated in
cisplatin- and methotrexate-resistant cancer cells. The expression of
H19 was negatively correlated with the cisplatin-based chemotherapy
response in ovarian cancer patients.34 Knockdown of H19 promoted
the sensitivity of colorectal cancer to methotrexate.11 These findings
indicate that hub nodes may play important roles in drug resistance.

We investigated the relevance of ceRNAs across 15 drug categories
and cancer hallmark processes. The results showed that ceRNAs
were enriched in the cancer genes. This indicates that genes in the
ceRNA networks are highly conserved and are also crucially relevant
in various cancers. Compared with lncRNAs and PCGs, miRNAs
were more likely to be associated with cancers. Cancer hallmark func-
tional analysis revealed that these ceRNAs were related to hallmark
processes such as “self-sufficiency in growth signals,” “insensitivity
to antigrowth signals,” and “tissue invasion andmetastasis” (Figure 3).
These functions are all drug resistance-associated biological processes
in cancer cells.

We then explored the specificities and similarities among the 15
ceRNA networks. Interestingly, although these drug categories have
dramatically different molecular mechanisms, they shared many
Molecula
ceRNAs. Additionally, the constructed 15 ceRNA
networks across 15 drug categories had many in-
tersections. These findings suggested that there
may be an intersection ceRNA network across
different anti-cancer drug categories. Therefore,
we speculated that there exists a common ceRNA
network across the 15 drug categories. An ICN
was constructed as expected (Figure 4). lncRNA
H19 is the hub node across 15 ceRNA networks,
which is regulated by miR-20a-5p, miR-20b-5p,
miR-92a-3p, and miR-17-5p, as shown in the
ICN. Some of the ceRNA relationships that we
predicted (Figure 4) have now been substanti-
ated. A recent study conducted by Zhu et al.35

proved one of the signaling pathways in the
ICN. They found that the expression of H19
was increased and miR-20b-5p was decreased
in endometrial cancer tissues and cells. Addition-
ally, H19 accelerates the tumor formation of endometrial cancer
through the miR-20b-5p/AXL/HIF-1a signaling pathway. Addition-
ally, the knockdown of H19 showed a therapeutic significance
through the inhibition of tumor growth and the promotion of cell
apoptosis. Moreover, we established a methotrexate resistance colon
cancer cell line (HT29-MTX) to further prove the predicted signaling
pathways in the ICN. Compared with HT29 cells, the HIF1A expres-
sion was upregulated in HT29-MTX cells (Figure S6A). This result
was consistent with the findings that HIF-1a (encoded by HIF1A)
confers drug resistance in colorectal cancer.36 Simultaneously, we
found that the expression of lncRNA H19 was also upregulated in
HT29-MTX cells (Figure S6B). The downregulation of H19 upregu-
lated miR-20a-5p, miR-20b-5p, and miR-17-5p in HT29-MTX cells
(Figures S6C–S6F). Additionally, the relationship among H19/miR-
17-5p/HIF1A has been validated (Figure S7). These results are also
in accordance with the prediction in the ICN. Consistent with our
findings, Huang et al.37 found that H19 was also upregulated in
NSCLC cell lines. Silencing H19 could suppress the growth, migra-
tion, and invasion of NSCLC cells via sponging miR-17. Similarly,
Liu et al.38 found that H19 may competitively bind to miR-17a-5p
and is thus involved in the pathogenesis of thyroid cancer. Addition-
ally, Italiano et al.39 identified that THBS1 is the target of the miR17-
92 cluster (miR-17, miR-18a, miR-19a, miR-20a, and miR-92a).

To further explore the role of ceRNA triplets in drug resistance, this
study focused on genes in the ICN. We analyzed the correlation be-
tween drug sensitivities to 76 FDA-approved anti-cancer drugs and
the transcriptional expressions of genes in the ICN. The genes in
the ICN were potentially related to sensitivity and resistance of
r Therapy: Nucleic Acids Vol. 24 June 2021 17
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Figure 6. Correlation of transcriptional expression between genes in the ICN and clinically actionable genes (CAGs)

Pearson’s correlation coefficients |R| > 0.3, p < 0.05; blue indicates a negative correlation; red indicates a positive correlation; color scale reflects Pearson’s correlation

coefficient. The x axis (CAGs) is ordered by the number of positively correlated genes in the ICNminus the number of negatively correlated genes in the ICN. The y axis (genes

in the ICN) is ordered by the total number of correlated CAGs. If the number of cancer types is less than five, the fill color of the cell is white. Bold boxes highlight the

transcriptional factor-gene interactions of CAGs and genes in the ICN. � marks the protein-protein interactions (PPIs) of CAGs and genes in the ICN based on the

experimental evidence from HPRD.
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various anti-cancer drugs (Figure 5). Some genes (e.g., BRCA1,
FAM96a, TRMT1) are significantly correlated with resistance (posi-
tive correlation) to most anti-cancer drugs, while others (e.g.,
ITCH, miR-21-5p, miR-23b-3p) are genes in the ICN that are sensi-
tive (negative correlation) to most anti-cancer drugs. These drug
sensitivity- or resistance-correlated genes we identified are of clinical
significance, and they may be novel predictors of drug sensitivity. Pre-
vious studies showed that BRCA1, miR-23b-3p, and H19 were
involved in the chemoresistance of cancer cells.34,40,41 These findings
were confirmed in our analysis. These results also indicate the genes
that may potentially be involved in the sensitivity or resistance of anti-
cancer drugs.

The genes in the ICN are likely to confer multi-drug resistance to can-
cers. To explore the clinical implications of the ICN, the interactions
between genes in the ICN and CAGs were identified through co-
expression, PPI, and transcription factor data (Figure 6). This result
suggested that these genes in the ICN should be considered in cancer
therapy. We observed some validated PPIs, including NOTCH1,
CDC25A, BRCA1, MYC, and NFKB1. CDC5A was positively corre-
lated to CCNE1 while negatively correlated to EGFR. These genes in
the ICN could also act as transcriptional activators. For example,
MYC could promote the transcription of CDK4.42 Our results suggest
Figure 5. Correlation between drug sensitivity and genes in the ICN

Yellow indicates a negative correlation; red indicates a positive correlation; and size re

indicate drugs and their category.
that CAGs are regulated by the genes in the ICN, and they highlight
the significance of these genes in the treatment of cancer.

Finally, we identified genes in the ICN that have potential clinical
relevance based on the associations of the expression level with pa-
tient survival time and cancer stage (Figure 7A). Multiple genes are
differentially expressed among tumor stages and associated with pa-
tient survival. For example, miR-20b-5p is positively correlated with
the prognosis of patients in various cancers, including glioblastoma
multiforme (GBM), HNSC, kidney renal papillary cell carcinoma
(KIRP), liver hepatocellular carcinoma (LIHC), and PAAD. lncRNA
H19 is dysregulated in various cancers and correlated with the prog-
nosis of patients (Figure 7A; Figure S9). Also, the expression level of
H19 in colon adenocarcinoma (COAD) depends on the individual
cancer stage according to The Cancer Genome Atlas (TCGA) data-
base (Figure S10). E2F2 and ITGB8 were negatively or positively
correlated with the survival of cancer patients, respectively (Fig-
ure 7B). E2F2 is a transcription factor that is upregulated in ovarian
cancer. Enforced E2F2 expression promotes MCM4, CCNE2, and
WHSC1 expression and is negatively correlated with the overall sur-
vival of ovarian cancer patients.43 ITGB8 encodes integrin beta 8,
which is a transmembrane receptor. It is overexpressed in gefitinib-
resistance HepG2 cells (HepG2/G). The silencing of ITGB8 reversed
flects absolute Pearson’s correlation coefficient (p value). Color bars in the y axis
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Figure 7. Clinical relevance of the ICN across 21 kinds of cancer.

(A) Clinical relevance of the ICN across different cancer types. Pink boxes indicate genes that are differently expressed between the ICN and different cancer samples. Dark

yellow and light yellow boxes represent the upregulation or downregulation of genes in later stages (fold change of transcriptional expression between stages III/IV and stages

I/II larger than 1.5). Dark green and light green boxes indicate high and low expression in tumors associated with worse overall survival times (log-rank test FDR < 0.05),

respectively. (B) Kaplan-Meier curves of multiple cancer types stratified by median expression level of E2F2 and ITGB8.

Molecular Therapy: Nucleic Acids

20 Molecular Therapy: Nucleic Acids Vol. 24 June 2021



www.moleculartherapy.org
gefitinib resistance of HepG2 cells.44 Similarly, the downregulation of
ITGB8 could also restore cisplatin resistance of ovarian cancer cells.45

These results highlight the possible clinical utility of genes in the ICN
in human cancer patients.

Our study provides a comprehensive analysis of the genes in the ICN
across 15 drug categories and highlights their potential clinical utility
in cancer therapy. The construction of the ICN suggested that a
certain number of genes participate in multi-drug resistance. The
design limitation in this work is that we only investigated single-
drug effects, with no drug combination comparisons. In the following
studies, we will assemble drug combination comparison data to
strengthen our approach and predictability.

In summary, our study depicted the ceRNA crosstalk landscape
across 15 anti-cancer drug categories. By systematically analyzing
the ceRNA networks, we have revealed some important properties
of ceRNA regulation. Additionally, our recent work characterized
the small-molecule drugs and their affected lncRNAs.46 These find-
ings not only provide new insight into the investigation of anti-cancer
drug resistance, but they also provide new insight into the clinical
rational use of drugs.

MATERIALS AND METHODS
Candidate lncRNA-miRNA-PCG competing interactions

We obtained the lncRNA-miRNA-PCG interactions data using a pre-
vious study, which aimed to develop a pipeline to systematically
identify lncRNA-associated competing triplets.47 Briefly, the
miRNA-lncRNA interactions were predicted using four miRNA target
prediction methods, including miRanda (http://www.miranda.org/),
RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/),
TargetScan (http://www.targetscan.org/vert_72/), and PITA (https://
genie.weizmann.ac.il/pubs/mir07/mir07_data.html). The miRNA-
lncRNA interactions predicted based on different methods were inte-
grated. Then, to identify experimentally supported miRNA-binding
sites on lncRNA sequences, the Argonaute-cross-linking and immu-
noprecipitation (CLIP) data were used to filter the miRNA-lncRNA
interactions. The miRNA-PCG interactions were obtained from
two high-quality databases, TarBase (http://carolina.imis.athena-
innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex) and
miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php), that
store manually curated collections of experimentally supported
miRNA targets. lncRNA-PCG pairs that shared a single miRNA
were regarded as one candidate lncRNA-miRNA-PCG competing
interaction. Finally, we obtained 526173 non-redundant lncRNA-
miRNA-PCG interactions for further analysis.

Generation of anti-cancer drug sensitivity-associated ceRNA

networks

We collected drugs and drug-sensitivity-related PCGs and miRNAs
from the CellMiner database (https://discover.nci.nih.gov/cellminer/
).48 The CellMiner database provides access to 60 human tumor cell
lines (NCI-60 cell lines) and transcripts for 22,379 genes and 360 miR-
NAs along with activity reports for 20,503 chemical compounds
including 102 drugs approved by the FDA.48 In theCellMiner database,
these anti-cancer drugs were divided into 15 drug categories according
to their mode of action (Table S1). The transcripts were detected using
untreated cell lines (NCI-60 cell lines), whereas the half-maximal inhib-
itory concentration (IC50) was calculated after treatment of the cell
lines. First, we selected FDA-approved drugs and clinical trial drugs
and filtered out drugs not in the DrugBank (https://go.drugbank.
com/) database. Then, we integrated all drug files downloaded from
CellMiner, thus obtaining drug-miRNA and drug-PCG matrices.

lncRNA expression profiling in the NCI60 cancer cell line panel ob-
tained by using high-throughput real-time PCR and corresponding
data were downloaded from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/) (GEO: GSE80332). A drug-lncRNA matrix was
constructed by calculating the PCC. Assigning 0.3 as the PCC
threshold, we obtained 31,230 correlations of drug-lncRNA pairs,
9,557 of drug-miRNA pairs, and 363,654 of drug-PCG pairs.

Then, we performed some dealing steps to reduce false-positive re-
sults and construct the anti-cancer drug-sensitive ceRNA networks.
For each drug, (1) we obtained the lncRNA-miRNA-PCG triplets
that contain at least one drug-related gene (|PCC| > 0.3) and (2)
the expressions of lncRNA and PCG should be positive or negative
at the same time. Finally, we constructed 15 anti-cancer drug sensi-
tivity-associated ceRNA networks (Table S1). The intersection edges
of the 15 ceRNA networks were extracted and an ICN was con-
structed. The lncRNAs in the profiles of GEO: GSE80332 were
selected for further analysis. In the ICN, most of the lncRNAs are
not well characterized, and only H19 was annotated. Therefore,
H19 was selected for the following analyses.

Collection of cancer-related lncRNAs, PCGs, and miRNAs

In order to explore the functional roles of these anti-cancer drug
sensitivity-associated ceRNA networks in tumorigenesis, we exam-
ined whether lncRNAs, miRNAs and PCGs involved in them were
intrinsic cancer driver genes or were closely associated with tumors.
Thus, we collected the cancer-related lncRNA, PCG, and miRNA
sets. The cancer-associated lncRNAs were downloaded from
LncRNADisease (http://www.cuilab.cn/lncrnadisease).49 In addition,
cancer-related PCGs were extracted from COSMIC (https://www.
sanger.ac.uk/cosmic)50 and a previous study.51 miRNAs associated
with cancer were collected from miR2Disease (http://www.
miR2Disease.org)52 and HMDD (http://www.cuilab.cn/hmdd),53

both of which are all manually curated databases for miRNA deregu-
lation in human disease. In total, we obtained 20 lncRNAs, 324 PCGs,
and 217 miRNAs that are associated with cancer. Then, a hypergeo-
metric test was used to evaluate whether the genes in the anti-cancer
drug sensitivity-associated ceRNA networks were significantly en-
riched in our collected cancer-related lncRNA, PCG, and miRNA
sets.

Cancer hallmarks and functional analysis

Functional enrichment analysis was used to understand the functional
roles of genes in the ceRNA networks. First, we derived the cancer
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hallmark Gene Ontology (GO) terms from the research of Plaisier
et al.54 Then, the p values of the cumulative hypergeometric test were
used to evaluate the significance of lncRNAs competitively regulating
PCGs that enriched pathways/cancer hallmarkGO terms. The cumula-
tive hypergeometric test formula can be represented as follows:

P = 1�
Xm

k = 0

 
n
k

! 
N� n
M� k

!
 
N
M

! ; (1)

where N is all of the genome-wide genes, M is the number of a given
GO term gene that is annotated in the N genes, n is the number of
genes of a particular ceRNA, and m is the number of genes partici-
pating in a ceRNA network and annotated for the given cancer hall-
mark GO term.

Additionally, the Jaccard coefficient is used to calculate the similarity
among 15 networks and is also used to measure intersections between
cancer hallmark genes and PCGs in each ceRNA network. It is the ra-
tio of intersection to union as follows:

JacðA; BÞ = jAXBj
jAWBj JacðA;BÞ=

jAXBj
jAWBj;

Interactions and correlations between genes in the ICN and

CAGs

To derive a list of CAGs, we first obtained 132 target genes from Eli-
ezer's study.55We also obtained 19 targeted genes for immunotherapy
from another study.56 We calculated PCC and considered |PCC| >0.3
with a p value <0.05 as a significant correlation between the transcrip-
tional expressions of the genes in the ICN and CAGs. PPI data were
obtained from HPRD (http://www.hprd.org/) and BioGRID (https://
thebiogrid.org/), and transcription factor data were obtained from
TRANSFAC (http://gene-regulation.com/pub/databases.html).57

Identification of clinically relevant genes in the ICN

To further identify genes in the intersection network that have poten-
tial clinical relevance based on the associations between the expres-
sion level, patient survival time, or cancer stage, the clinical data
from TCGA database were collected.

The differential miRNAs between tumor and normal tissue were ob-
tained from an online tool named miRNACancerMap (http://cis.hku.
hk/miRNACancerMAP/).58 Additionally, we downloaded TCGA sur-
vival data and molecular subtypes of cancer from OncoLnc (http://
www.oncolnc.org/) and UALCAN (http://ualcan.path.uab.edu/index.
html).59

These tools performed a log-rank test to calculate the association
between the expression of genes in the ICN and overall survival. Tran-
script expression levels were categorized by the upper quartile of tran-
22 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
scripts per kilobase of exon model per million mapped reads (TPM),
and a p value <0.05 was considered to denote statistical significance.
UALCAN used a t test to detect genes in the ICN with differential ex-
pressions among different disease stages, and we considered a
p value < 0.05 to denote a significant difference.
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