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Radioresistance is one of the primary causes responsible for therapeutic failure and recurrence of cancer. It is well documented
that reactive oxygen species (ROS) contribute to the initiation and development of gastric cancer (GC), and the levels of ROS
are significantly increased in patients with GC accompanied with abnormal expressions of multiple inflammatory factors. It is
also well documented that ROS can activate cancer cells and inflammatory cells, stimulating the release of a variety of
inflammatory cytokines, which subsequently mediates the tumor microenvironment (TME) and promotes cancer stem cell (CSC)
maintenance as well as renewal and epithelial-mesenchymal transition (EMT), ultimately resulting in radioresistance and
recurrence of GC.

1. Introduction

Gastric cancer (GC) is the second most frequently diagnosed
cancer and the second leading cause of cancer-related
mortality in China [1]. Almost one million new cases are esti-
mated to occur worldwide every year [2]. Radiotherapy (RT)
can optimize outcomes in patients with gastric cancer [3].
However, the impact of RT is hindered by a frequent devel-
opment of resistance to the treatment [4]. Radiotherapy
causes tissue damage in two different ways, a direct damaging
effect from radiotherapy itself and an indirect effect resulting
from the alteration of cellular pathways [5]. Radiotherapy
can generate DNA breaks and induce cell apoptosis to indi-
rectly militate against the antitumor treatment by inducing
the reactive oxygen species (ROS). ROS are products of an
excessive oxidative phosphorylation in mitochondria, as well
as products of peroxisome-mediated β-oxidation of branched
and very long-chain fatty acids (VLCFAs) [6], which regulate

a variety of important signaling pathways for cell proliferation
and survival.

Chronic low-level increased ROS can activate the change
of the tumor microenvironment. Radiotherapy typically
causes chronic oxidative stress and induces higher levels of
ROS. The haemal levels of ROS in gastric cancer patients
are obviously increased, along with the abnormal expression
of factors such as P38 which modulates the expression of
inflammatory factors [7–9]. ROS also directly alter the tumor
microenvironment by activating cancer cells and inflamma-
tory cells, which in turn release a variety of inflammatory
factors to promote CSC renewal [10], leading to therapeutic
resistance [11].

1.1. Effects of Radiotherapy in Gastric Cancer

1.1.1. ROS-Associated Radioresistance in Gastric Cancer. The
biological effects of radiotherapy are mainly a consequence of
DNA damage, such as breaks in the double-strand (ds)
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structure. These breaks can be directly caused by interactions
between rays and DNA molecules, or indirectly from
ROS-related cellular water radiolysis [12] (summarized in
Figure 1). High levels of ROS suppress tumor growth
through the inhibition of cell proliferation and induction of
apoptosis and senescence. Incorporation of oxidized purine
nucleoside triphosphates, such as 8-oxo-2′-deoxyguanosine
triphosphate (8-oxo-dGTP) and 2-hydroxy-2′-deoxyadeno-
sine triphosphate (2-OH-dATP), into genomic DNA plays
an important role in apoptosis induced by ROS [13]. In addi-
tion, some studies confirm that tumor-infiltrating lymphocyte
(TIL) can be attracted by ROS and exert their antitumor
effects [14]. However, some cancer cells can survive ROS by
activation of DNA repair and the antioxidant system [15].
Consequently, both activation of cellularDNAdamage check-
points and the ability to repairDNA in cells like CSCs contrib-
ute to cellular survival after receiving radiotherapy [10].

1.1.2. ROS-Related Alterations in the TumorMicroenvironment
after Radiotherapy. Radiotherapy can break the DNA of
tumor cells and increase the levels of ROS, leading to damage
in tumor cells and changes in the microenvironment. After
radiotherapy exposure, normal and tumor tissues show
inflammatory responses, including vascular trauma, tissue
edema, and hypoxia. Pulmonary fibrosis is one of the most

undesired side effects of RT. Studies have confirmed that some
RT can cause acute lung injury, and the connective tissue
growth factor (CTGF) mediates a chronic inflammatory
response resulting in pulmonary fibrosis [16, 17]. Myofibro-
blast expansion and progressive deposition of the extracellular
matrix can be observed in this process. The radiotherapy-
induced vascular trauma, tissue self-healing, and immune cell
infiltration usually cause an increased demand for oxygen,
and the following hypoxic environment activates hypoxia-
inducible factors (HIFs) [11]. The HIFs, particularly HIF-1α
and HIF-2α, regulate tumor cell proliferation, migration, and
angiogenesis by regulating glucose metabolism and ROS
production [18, 19]. The hypoxia also influences the immune
system by recruiting immune cells, such as tumor-associated
macrophages (TAMs), T-cells, B-cells, and myeloid-derived
suppressor cells (MDSCs) [20]. Whether HIFs function posi-
tively or negatively in the tumor immune response is not
clearly understood. In addition, RT causes tumor cell death
and inflammatory infiltration, which induce the release of
tumor antigens and trigger antigen-presenting cells [21]. RT
also promotes dendritic cell (DC) recruitment and a T-cell
immune response through RT-induced IgM targeting of the
necrotic tumor cells. The inflammatory environment within
tumors can also attract TAMs and T-cells to suppress or pro-
mote tumor growth [22]. The microenvironment is deeply
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Figure 1: Radiotherapy and ROS promote antitumor effects. Radiotherapy irradiation causes cellular death through direct DNA breaks and
indirect ROS effects. ROS induces 8-oxo-dGTP and 2-OH-dATP into genomic DNA, which leads to tumor cell apoptosis.
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changed afterRT in response to the effects ofROS,which results
in the transformation of TME and contributes to resistant
cancer cells.

1.2. ROS-Mediated Tumor Microenvironment Transformation
in Gastric Cancer Patients. Elevated levels of ROS are closely
related to changes in the tumor microenvironment. The
interaction between ROS and inflammation is an important
pathogenic factor for GC carcinogenesis. Studies have shown
that inflammatory mediators, such as cytokines and growth
factors, can regulate nitrogen oxides (NOX) to produce
ROS [23]. IL-20 stimulates ROS production through the acti-
vation of the signal transducer and activator of transcription
3 (STAT3), protein kinase B (AKT)/phospho-c-Jun NH(2)-
terminal kinase (JNK)/extracellular signal-regulated kinase
(ERK) signals [24]. As an effector molecule, ROS attract
white blood cells involved in inflammation and tissue
damage.Many studies have shown that ROS participate in car-
cinogenesis by activating inflammatory mediators, thus trig-
gering an inflammatory microenvironment [25]. In Kupffer
cells, ROS induce the release of inflammatory mediators by
activating P38 to revitalize mitogen-activated protein kinase

(MAPK) and nuclear factor-kappa B (NF-κB) [26]. High
levels of ROS can also activate tumor necrosis factor alpha
(TNF-α), protein (p65), and transforming growth factor beta
(TGF-β) and downregulate the inhibitor of kappa B alpha
(IκBα) to mediate the release of inflammatory mediators
[23, 27, 28]. In addition, inflammatory cytokines can be
released through the signal transducer and activator of tran-
scription 1 (STAT1) signaling pathway, which is activated by
ROS [29, 30]. ROS activate NF-κB, TNF-α, and STAT3
signaling pathways in inflammatory cells and tumor cells to
release TNF, NOX2, IL-6, IL-2, IL-8, and CXCL12 involved
in the change of TME [23, 27] (summarized in Figure 2 and
Table 1). Our former researches and other groups have
confirmed that patients with GC are in a status of oxidative
stress [32] accompanied by abnormal expression of a variety
of inflammatory factors, including IL-1β, IL-6, and COX-2.
Therefore, ROS may stimulate tumor cells to proliferate and
resist apoptosis while promoting the development and
progression of GCby impacting the tumormicroenvironment.

1.3. Transformed Tumor Microenvironment Promotes
Gastric Cancer Development and Radiotherapy Resistance.
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Figure 2: ROS mediate TME alterations. ROS can activate TNF-α, TGF-β, MAPK, NOX3, and NF-κB signaling pathways and promote the
release of inflammatory factors TNF, NOX2, IL-6, IL-2, IL-8, and CXCL12, leading to tumor microenvironment changes and the
development of tumors.

Table 1: ROS and TME-relevant signaling.

ROS target Factors Signaling pathways Function References

P38 TLR2/6 P38 MAPK, JNK Translocation of NF-κB to the nucleus [26]

NF-κB
IL-1β, IL-6, COX-2, IL-2, IL-8,

TNF, NOX2, CXCL12
STAT3, NF-κB p65 Regulation of tumor proliferation and apoptosis [23, 27]

TNF TNFs TNF, NF-κB, JNK Cell survival or death [27]

TGF-β TGF EMT inducer [28, 30]

NOX-3 NADPH MAPK, STAT1 Inflammation and apoptosis [31]
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Radioresistant GC cells have stem cell-like features. Sev-
eral studies have shown that cancer stem cells (CSCs) play
an important role in developing resistance and recurrence
of cancer. The change of the tumormicroenvironment after
radiotherapy can activate CSC renewal and epithelial-
mesenchymal transition (EMT) [33, 34]. CSCs display an
EMT phenotype that is resistant to conventional therapies.
Self-renewal of such cells is the main cause for treatment
resistance and recurrence of GC (summarized in Table 2).
In some human and mouse mammary tumors, ROS levels
in CSCs are lower than those found in corresponding non-
tumorigenic cells (NTCs). Compared to NTCs, CSCs show
less DNA damage and are more viable. A highly activated
free radical scavenger system contributes to lower levels
of ROS in CSCs. Pharmacologic depletion of ROS scaven-
gers in CSCs significantly decreases their ability to form
colonies, leading to increased radiosensitivity [51]. These
suggest that, similar to stem cells, CSCs in tumors can
enhance reactive oxygen defense and reduce ROS levels,
which may lead to cancer radiotherapy resistance [15].
Recent reports confirm that ROS are associated with GC
stem cell markers CD133, CD166, and CD44 [52–54];
ROS can also regulate EMT-related indicators, such as
E-cadherin, N-cadherin, snail, and twist [55].

EMT is crucial not only in regulating tissue development
but also in tumor invasion andmetastasis [56]. The change of
the microenvironment plays an important role in the devel-
opment of tumors, stem cell transfer, and self-renewal. ROS
change the tumor microenvironment by regulating a variety
of cell signaling pathways to promote CSC transformation
[57, 58]. ROS also regulate the activity of NF-κB, which is
an important mediator of the release of inflammatory factors
by tumor cells [59, 60]. In breast cancer, head and neck
squamous cell carcinoma, gastric cancer, and glioma, IL-6
promotes stem cell self-renewal through the classical IL-6R/
gp130/STAT3 signaling pathway [61] (summarized in
Figure 3). An elevated level of IL-6 is related to cancer cell
proliferation, angiogenesis, and metastasis via stimulation
of MAPK, STAT3, and AKT signaling pathways [62, 63].
IL-6 accelerates EMT through an altered expression of
N-cadherin, E-cadherin, twist, snail, and vimentin, which
results in cancer metastasis. It is reported that the levels

of ROS, IL-6, COX2, and TNF-α are abnormally increased
in patients with GC. Therefore, ROS may activate NF-κB to
cause GC cells and cancer-associated fibroblast cells (CAFs)
to release IL-6, thus mediating tumor metastasis and self-
renewal that will consequently facilitate CSC self-renewal
and maintenance. The activation of the cellular DNA damage
checkpoint and the ability of DNA repair in CSCs result in
their survival of radiotherapy, thus establishing radioresis-
tance in GC cells.

1.4. Targeting ROS and ROS-Associated Tumor
Microenvironment Signaling Pathways. Recently, multiple
medicinal and chemical therapies are investigated to
target the factors and signaling pathways associated with
ROS-mediated TME alteration, ROS-mediated DNA dam-
age, and apoptosis (summarized in Table 3). Selenium
nanoparticles (SeNPs) possess special chemical and physi-
cal properties and generate ROS in cells to provide a novel
strategy for the rational design and synthesis of chemo-
radiosensitizing therapeutic materials [65]; SeNPs are
also confirmed to affect on TNF and IRF1 to induce
ROS-mediated activation of necroptosis [70]. There are
also reports demonstrating that an increased level of ROS
is a feasible strategy to improve radiotherapy efficacy
[64–66]. Most of the drugs like bortezomib, celecoxib,
5-FU, and other compounds are validated to enhance the
generation of ROS. Other reports suggest that microRNAs
and other materials can repress the factors in ROS-
mediated TME and enhance radiosensitivity in numerous
cancer cells, including GC cells [72, 73]. Nonetheless, the
mechanisms of ROS-mediated TME alteration in GC are
not explicitly understood, particularly regarding key genes
and proteins that influence the signaling pathways within
the TME, inflammatory factors releasing, CSCs, EMT,
and ROS scavenging.

2. Conclusion

The purpose of radiotherapy is to eliminate tumor cells, but
spare normal cells and tissues from radiotherapy damage.
However, currently single-course radiotherapy cannot pro-
vide sufficiently high-dosage radiotherapy for effective treat-
ment of GC. While ROS can be induced chronically during
multiple rounds of radiotherapy, its antitumor effect may
be compromised. Within the tumor microenvironment,
radiotherapy and several key cytokines can promote ROS
production, consequently suppressing the antioxidant sys-
tem. Patients with GC suffer from chronic oxidative stress
and have higher levels of locally induced ROS, which leads
to an abnormal expression of cytokines and inflammatory
factors. ROS can activate a variety of signal molecules, such
as MAPK, NF-κB, TNF-α, and TGF-β that transform the
TME by releasing inflammatory factors, including IL-1β,
IL-6, COX-2, TNF, and NOX2. These inflammatory factors
promote the development and progression of GC through
cellular proliferation and apoptosis signal pathways. The
GC stem cell markers like CD133, CD166, and CD44 are also
associated with ROS and EMT markers. ROS can also acti-
vate several cell signal pathways to regulate the CSCs. ROS-

Table 2: CSCs involve in the mechanisms of radioresistance.

Mechanism Signaling pathways References

Protection of
DNA repair

PARP
ATR-Chk1

ATR-Cnk1, ATM-Chk2
Chk1, Chk2

ATM-ZEB1-Chk1
Myc-Chk1 and Chk2
AKT/cyclin D1/Cdk4

Upregulated DNA repair genes

[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42, 43]

Protection of
ROS scavenging

Nrf2 signaling pathway
The Prdx family of antioxidant

enzymes

[44–46]
[47, 48]

Protection of
TME change

HIF-mediated mechanisms and
negative immune responses

[14, 18, 49, 50]
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Figure 3: The IL-6R/gp130/STAT3 signaling pathway. The IL-6 secreted by tumor cells andCAFs through the ROS-mediatedNF-κB signaling
pathway can promote tumor metastasis, radioresistance, and CSC self-renewal. IL-6 promotes GC metastasis and CSC self-renewal through
the classical IL-6R/gp130/STAT3 signaling pathway.

Table 3: Novel therapies targeting the ROS-mediated TME alteration.

Therapy Target Material type Mechanism References

BEMER electromagnetic
field therapy

ROS Cancer cell lines
Enhanced ROS formation and

induced DNA damage
[64]

X-ray responsive selenium
nanoparticles

ROS HeLa and NIH3T3 cells
ROS overproduction causing the

cell apoptosis
[65]

Diisopropylamine
dichloroacetate

ROS
Human esophageal squamous cell

carcinoma cell lines Eca-109 and TE-13
Modulated mitochondrial oxidation [66]

Bortezomib, romidepsin NF-κB Human NSCLC cell lines (A549)
Increasing ROS and stimulating
the extrinsic pathway of apoptosis

[67]

Bortezomib ROS, Noxa
Mantle-cell lymphoma cell lines

and patients
Cytotoxic effect through ROS
generation and Noxa induction

[68]

Celecoxib, 5-FU ROS
Human squamous cell lines (SNU-1041
and SNU-1076), orthotopic tongue

cancer mouse model

Inhibiting the AKT pathway and
enhancing ROS production

[69]

Selenium nanoparticles TNF, IRF1
Human prostate adenocarcinoma cell

line (PC-3)
Causing TNF and IRF1-induced

ROS-mediated necroptosis
[70]

miR-139-5p Multiple genes
Breast cancer patients, human
breast cancer cell line (MCF7),

xenograft mouse model

Suppression of gene networks of
DNA repair and ROS defense

[71]

Ursolic acid
BGC-823 human adenocarcinoma

gastric cancer cell line
Enhanced G2/M arrest, increasing

ROS, promoting apoptosis
[72]

miR-200c nanoparticles CSC

Human gastric adenocarcinoma cell
lines (BGC823, SGC7901, and MKN45)
and an immortalized human gastric

mucosa cell line (GES-1)

Impairing ROS generation and
DNA repair by the miR-200c

[73]
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activated NF-κB mediates the release of IL-6 in GC, breast
cancer, glioma, and HNSCC. The IL6R/gp130/STAT3 signal
pathway regulates CSC renewal and cancer metastasis which
leads to radiotherapy resistance. Further investigation of
treatment options addressing the pathways associated with
ROS in GC may increase the sensitivity of radiotherapy in
patients with GC. Since inflammatory factors play an impor-
tant role in ROS-mediated TME alteration and CSCs, anti-
inflammatory drugs, such as NSAIDs and glucocorticoids,
can be used to regulate the release of inflammatory factors
and restore the aberrant TME. In addition, an optimal dosage
of radiotherapy in less therapeutic frames of radiotherapy,
along with other strategies to increase radiosensitivity, may
significantly augment effective ROS levels for GC treatment.

Additional Points

Highlights. (i) This review focuses on recent advances in the
research of radiotherapy-mediated tumor microenvironment
changes in gastric cancer. (ii) There is accumulating evidence
that reactive oxygen species induce the transformation of
the tumor microenvironment that promotes cancer stem
cells and epithelial-mesenchymal transition. (iii) This review
proposes key targets for improving the radiosensitivity of
gastric cancer.
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