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Through synapses to spatial memory 
maps via a topological model
Yuri Dabaghian

Various neurophysiological and cognitive functions are based on transferring information between 
spiking neurons via a complex system of synaptic connections. In particular, the capacity of presynaptic 
inputs to influence the postsynaptic outputs–the efficacy of the synapses–plays a principal role in all 
aspects of hippocampal neurophysiology. However, a direct link between the information processed at 
the level of individual synapses and the animal’s ability to form memories at the organismal level has not 
yet been fully understood. Here, we investigate the effect of synaptic transmission probabilities on the 
ability of the hippocampal place cell ensembles to produce a cognitive map of the environment. Using 
methods from algebraic topology, we find that weakening synaptic connections increase spatial learning 
times, produce topological defects in the large-scale representation of the ambient space and restrict 
the range of parameters for which place cell ensembles are capable of producing a map with correct 
topological structure. On the other hand, the results indicate a possibility of compensatory phenomena, 
namely that spatial learning deficiencies may be mitigated through enhancement of neuronal activity.

The location-specific spiking activity of the hippocampal neurons, known as place cells1, gives rise to an internal-
ized representation of space–a cognitive map. Each place cell fires a series of action potentials in specific spatial 
region–its place field, so that the ensemble of such cells produces a “map” of the environment in which they are 
active (Fig. 1A). By construction, such a map defines the temporal order in which place cells fire as the animal 
explores the environment, and therefore it can be viewed as a geometric representation of the spatial memory 
framework encoded by the hippocampus2,3.

The exact nature of this framework is currently actively studied both computationally and experimentally. For 
example, it was demonstrated that if the shape of the environment gradually changes, then the place field map 
deforms in a way that preserves mutual overlaps, adjacencies, containments, etc., between the place fields4–8. This 
observation implies that the sequence in which the place cells fire during animal’s navigation remains invariant 
throughout the reshaping of the arena and suggests that the place cells do not represent precise geometric infor-
mation, but a set of qualitative connections between portions of the environment–a topological map8–11.

From the computational perspective, the topological nature of the cognitive map suggests that the informa-
tion transmitted via place cell spiking should be amenable to topological analyses. In our previous work12–16, we 
developed a topological model that allows tracing how the information provided by the individual place cells may 
combine into a large-scale topological map of the navigated space and quantifying the contributions of different 
neurophysiological parameters. However, previous studies did not include a key physiological aspect–the con-
tribution of the synaptic connections into the processes of assembling the map. Below we will use the topologi-
cal approach to model how synaptic imperfections can affect the topological structure of the cognitive map, its 
dynamics and its stability.

The paper is organized as follows. First, we outline the basic ideas and the key concepts used in the topological 
model–simplexes, simplicial complexes, topological loops, Betti numbers, etc., and explain how these concepts 
can be applied for describing hippocampal physiology. Second, we outline the parameters of synaptic connectivity 
and the constructions used to incorporate these parameters into the model. The analyses of the outcomes is given 
in the Results section and their implications are outlined in the Discussion.

The Model
Topological description of the place cell spiking patterns.  It is generally believed that the informa-
tion encoded by the place cell network is represented by the connectivity between the place fields. A specific link 
is suggested by the classical Alexandrov-Čech’s theorem of Algebraic Topology asserts that the pattern of overlaps 
between regions that cover a space X does, in fact, capture its topological structure17,18. The implementation of this 
theorem is based on constructing the so-called “nerve simplicial complex”  , whose vertexes correspond to the 
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individual domains of the cover: one-dimensional (1D) links–to their pairwise overlaps, two-dimensional (2D) 
facets–to the triple overlaps and so forth (Fig. 1B). In other words, each nth order overlap between the place fields 
is schematically represented by an n-dimensional simplex σ, so that the full set   of such simplexes incorporates 
the connectivity structure of the entire place field map12,19,20. According to the Alexandrov-Čech’s theorem, this 
complex has the same “topological shape” as X, i.e., the same number of pieces, gaps and holes21,22, which provides 
a link between the place cells’ spiking pattern and the topology of ambient space12–16, exploited below.

In general, simplicial complexes provide a convenient framework for describing a wide scope of physiological 
phenomena. For example, the combinations of the place fields traversed during the rat’s moves correspond to a 
chain of simplexes Γ = {σ1, σ2, …, σk} that qualitatively represents the shape of the physical trajectory: a closed 
chain represents a closed physical route, a pair of topologically equivalent chains represent two similar physical 
paths and so forth23,24. The pool of such chains can be used to describe the topological shape of the entire com-
plex–and hence of the corresponding environment. For example, the number of chains that can be deformed into 
the same vertex defines how many disconnected pieces   has. The number of topologically inequivalent chains 
that contract to a closed sequence of links defines the number of distinct holes that prevent these chains from 
contracting to vertexes and so forth21,22. In the following, we will refer to these two types of chains, counted up to 
topological equivalence, as to zero-dimensional (0D) and one-dimensional (1D) “topological loops” (a standard 
mathematical terminology), evaluate their numbers–in mathematical terms, zeroth and first Betti numbers, b ( )0   
and b ( )1  , and use them to describe shapes of the simplicial complexes.

Learning dynamics.  To describe how the animal “learns” the environment, one can follow how the nerve 
complex and its Betti numbers develop in time. In the beginning of exploration, the nerve complex represents 
connections between the place fields that the animal had time to visit. Such a complex is small and may contain 
gaps that do not necessarily correspond to physical holes or inaccessible spatial domains of the environment. As 
the animal continues to navigate, the nerve complex grows and acquires more details; as a result, its the spurious 
gaps and holes (topological noise) disappear, leaving behind a few persistent ones that represent stable topological 
information (Fig. 2). The minimal time, T ( )min , required to recover the correct number of topological loops,

   = > ≥T b t b t T k( ): ( , ) ( ) for ( ) and 0, (1)k kmin min

can be used as a theoretical estimate of the time needed to learn path connectivity12. In the case of the environ-
ment illustrated on Fig. 1A, with the Betti numbers = =b b( ) ( ) 10 1  ,  =>b ( ) 0k 1 , the nerve complex is expected 
to have the same “topological barcode”:  > = > =b t T b t T( , ) ( , ) 10 min 1 min ,  > =>b t T( , ) 0k 1 min .

Temporal coactivity complex.  From the physiological perspective, the arguments based on the analyses 
of place fields and trajectories provide only an indirect description of information processing in the brain. In 
reality, the hippocampus and the downstream brain regions do not have access to the shapes and the locations of 
the place fields or to other artificial geometric constructs used by experimentalists to visualize their data. 
Physiologically, the information is represented via neuronal spiking activity: if the animal enters a location where 
several place fields overlap, then there is a probability, modulated by the rat’s location, that the corresponding 
place cells will produce spike trains that overlap temporally. This pattern of coactivity signals to the downstream 
brain areas that the regions encoded by these place cells overlap. Thus, in order to describe the learning process in 
proper terms, one needs to construct a temporal analogue of the nerve complex based only on the spiking signals, 
which is, in fact, straightforward. Indeed, one can represent an active place cell, ci, by a vertex vi; a pair of coactive 
place cells, ci and cj—by a bond σij between the vertices vi and vj; a coactive triple of place cells, ci, cj and ck—by a 
three vertex simplex σijk and so on12,19,20. This construction produces a time-dependent “coactivity complex”  t( )

Figure 1.  Place field map and nerve complex. (A) A place field map in a small 1m × 1m environment with one 
hole: spikes produced by different place cells are marked by dots of different colors. (B) In a schematic 
description of the place field map, each place field center gives rise to be a zero-dimensional vertex (0D simplex 
σi); each pair of the overlapping place fields is represented by a link between corresponding vertices (1D simplex 
σij); a triple of overlapping place fields by a triangle (2D simplex σijk), four simultaneously overlapping place 
fields are represented by a solid tetrahedron, (3D simplex σijkl) etc. A less dense place field map is represented by 
two adjacent triangles—a simple example of a nerve complex. A place field map that consists of six place fields is 
represented by a nerve complex that consists of three tetrahedrons, σ1234, σ1456 and σ1346. (C) According to the 
Alexandrov-Čech’s theorem, the nerve complex construction for a place field map has the same topological 
shape as the underlying environment—in case of the map shown on panel A, the nerve complex   has one 
connected piece and contains a hole in the middle.
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—a temporal analogue of the nerve complex  t( ) constructed above, whose dynamics can also be used to model 
topological learning, e.g., to compute the learning time from the spiking data, T ( )min , and so forth12.

Cell assembly complex.  The construction of a temporal complex can be refined to reflect more subtle phys-
iological details, e.g., the functional organization of the hippocampal network. Studies of place cells’ spiking times 
point out that these neurons tend to fire in “assemblies”—functionally interconnected groups that are believed 
to synaptically drive a population of “readout” neurons in the downstream networks25–29. The latter are wired to 
integrate spiking inputs from their respective cell assemblies and actualize the connectivity relationships between 
the regions encoded by the corresponding place cells29,30.

This structure can be represented by the cell assembly complex, CA —a temporal coactivity complex whose 
maximal simplexes represent cell assemblies, rather than arbitrary combinations of coactive place cells. A conven-
ient implementation of this construction is based on the classical “cognitive graph” model, in which place cells ci 
are represented as vertexes vi of a graph , while the connections (functional or physiological) between pairs of 
coactive cells are represented by the links, σij = [vi, vj] of 30–32. The place cell assemblies σ = [c1, c2, …, cn] then 
correspond to fully interconnected subgraphs of , i.e., to its maximal cliques15,16. Since a clique σ, as a combina-
torial object, can be viewed as a simplex span by the same sets of vertexes, the collection of cliques of the coactiv-
ity graph   produces a so-called clique simplicial complex33, which represents the population of place cell 
assemblies and may hence be viewed as a cell assembly complex CA (Fig. 3).

Phenomenological description of the synaptic parameters.  In the previous studies, we demon-
strated that such complexes can acquire a correct topological shape in a biologically plausible period of time, in 
both planar and in voluminous environments, provided that the simulated spiking parameters values fall into the 
biological range12–16. However, the organization and the dynamics of these complexes did not reflect the parame-
ters of synaptic connectivity, e.g., the mechanisms of transferring, detecting and interpreting neuronal (co)activ-
ity in the hippocampus and in the downstream networks. To account for these components, the topological 
model requires a basic modification: a particular coactivity pattern should be incorporated into an effective coac-
tivity complex eff  not by the virtue of being merely produced, but by the virtue of being produced, transmitted 
and ultimately detected by a readout neuron. In other words, only detected activity of a place cell ci should be 
represented by a vertex vi; a detected coactivity of two place cells, ci and cj—by a bond σij, a detected coactivity of 
three place cells, ci, cj and ck—by a simplex σijk and so on (Fig. 1B). The resulting complex eff  then constitutes a 
basic phenomenological model of a cognitive map assembled from the spiking inputs transmitted through imper-
fect synaptic connections.

Figure 2.  The dynamics of the topological information. (A) A mini place field map: nine place fields, enumerated 
in sequence they are traversed by the animal’s trajectory (black curve). The black circle in the middle represents an 
obstacle. First the animal enters the place field 1 at a moment, t1, the nerve complex  t( )1  shown on the panel  
(B) acquires a vertex σ1 (blue dot). At the time t2, the animal crosses the domain where the blue and the magenta 
place fields overlap, and the nerve complex t( )2  acquires the vertex σ2 and the edge σ12 between these two 
vertices. Then the animal enters the place field 3, which contributes a vertex σ3 and a link σ23 to t( )3 . As the 
trajectory goes back to the first place field, the complex  t( )4  acquires a loop. At the moment t5 the animal gets into 
the region where three place fields (1, 2 and 3) overlap; as a result, a two-dimensional simplex σ123 appears in  t( )5  
and closes the loop. At time t6 the animal gets into the intersection of place fields 4, 5 and 6, which contributes the 
second filled triangle to t( )6 , and so on. At the moment t11 the animal’s trajectory starts to go around the obstacle, 
and the nerve complex begins to grow a handle which closes into a loop at t14. After the animal has probed all 
intersection domains, the structure of the nerve complex ceases to change. (C) Each horizontal bar represents the 
timeline of a 0D or a 1D loop in t( ) . Notice, that there is only one persistent 0D loop, because, at all times, there is 
only one connected piece in  t( ). In addition, there are three 1D loops: two of them are spurious, appearing at t4 
and at t9 and disappearing in one time step. In contrast, the loop that appeared at t14, after all the place fields and 
their intersections are visited, persists forever and thus represents stable topological information. The time 
Tmin = t14 thus provides an estimate for the time required to “learn” this particular map.
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Statistical approach.  The mechanisms of spike generation, transmission and detection are probabilistic in 
nature. Transmitting action potentials requires producing a sufficient number of synaptic contacts in suitable 
locations of the postsynaptic neuron’s membrane, releasing proper amount of neurotransmitter at each synapse at 
suitable times, inducing the excitatory postsynaptic potential (EPSP) of required magnitudes, etc., all of which 
involve probabilistic mechanisms34,35. In addition, there may appear flaws and glitches in the axons, synaptic clefts 
and in the structure of the postsynaptic membrane’s polarization. Thus, there exists a probability <p 1k  that a kth 
connection in a cell assembly ς will induce sufficient EPSP in the readout neuron’s membrane and a probability 

<ςq 1 that the latter will spike upon receiving the inputs (Fig. 3C).
In principle, these values could be estimated from the synaptic configuration of each individual assembly, 

which, however, would present a tremendous computational challenge36–38. In order to avoid such complications, 
we will assume a basic statistical approach. First, we will regard the probabilities pk, and qς as the prime parame-
ters that describe the synaptic connections with the readout neuron. Second, we will view pk and qς as random 
variables, distributed according to a unimodal distribution, | ΔˆP p p( , )p  and | ΔˆQ q q( , )q  were p̂ and q̂ are the modes 
(the characteristic values) and Δp and Δq define the corresponding variances. Third, we will disregard synaptic 
plasticity processes and assume that the distributions are stationary, i.e., that the modes and the variances are 
fixed. Fourth, we will assume that both variables are distributed lognormally, as suggested by experimental obser-
vations39–41. We will also define the variances as functions of the modes, Δ ∝ p̂p

2 and Δ ∝ q̂q
2, which will allow 

us to exclude non-biological statistics and to study the topological properties of the emerging cognitive maps as 
functions of just two parameters, p̂ and q̂.

Implementation.  In order to isolate the effects of varying transition probabilities while keeping the temporal 
structure of the presynaptic spike trains “clamped”, we use the spiking data that was precomputed for the “ideal” 
synaptic connections (pk = qς = 1), and then screen out some of the spikes, to match each individual transmission 
probabilities <p 1k  and to simulate the readout neurons’ responses to the igniting cell assemblies with probabil-
ities <ςq 1.

To evaluate the latter, we reasoned as follows. Since in our approach the cell assemblies are modeled as the cliques 
of the coactivity graph , i.e., as composite objects assembled from n(n − 1)/2 pairs of place cells, the probabilities of 
igniting the higher order place cell combinations can be computed from the pairwise coactivities. Indeed, if the 
spikes produced by the place cells ci and cj are transmitted to the readout neuron with the probabilities pi and pj 
respectively, then the corresponding pairwise coactivity occurs with the probability pi pj. The probability of a third 
order coactivity, e.g., the ignition of a clique σijk = [ci, cj, ck] is then defined by the probability of transmitting the 
coactive pairs σij = [ci, cj], σjk = [cj, ck], and σik = [ci, ck] and detecting the result with the probability qς; the probability 
of igniting the fourth order cliques is defined by the corresponding six coactive pairs and so forth.

With these assumptions, one can test how the spike transmission and detection probabilities affect the emer-
gence of a spatial map, e.g., how synaptic depletion affects spatial learning, how the learning times and the topo-
logical structure of the cognitive map depend upon the strengths of synaptic connections between the place cells 
and the readout neurons, at what point spatial learning may fail, and so on.

Figure 3.  Coactivity graphs and cell assembly complexes. (A) Active place cells are represented by the vertexes 
of the coactivity graph  (black dots placed at the centers of the corresponding place fields). Two vertexes are 
connected by an edge if the corresponding place cells exhibit coactivity. The fully connected subgraphs of –its 
cliques, e.g., the four interconnected black links on the right–correspond to the cell assemblies. (B) The 
collection of cliques viewed as simplexes of the cell assembly complex CA , represent the topology of underlying 
environment. In the model, every place cell in an assembly is synaptically connected to a readout neuron (blue 
pentagons). The spikes from an active place cells ck (an ignited cell assembly ς is shown in red) transmit to a 
readout neuron with probability <p 1k  and the readout neuron responds with probability <ςq 1.
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Results
Learning times.  Lowering the characteristic probability of spike transmissions and the characteristic proba-
bility of the readout neurons’ responses produces an uneven delay in spatial learning times (Fig. 4A). If the spike 
transmission probability is high (typically . ≤ ≤p̂0 9 1), then the small variations of p̂ do not inflict a strong 
impact on Tmin, i.e., the time required to learn the spatial map in a network with strong synaptic connections is 
nearly unaffected by occasional omissions of spikes. On the other hand, as p̂ lowers to a certain critical value p̂crit, 
the learning times become high and, as p̂ drops below p̂crit, the coactivity complex fails to produce the correct 
topological shape of the environment in finite time. For the intermediate values, the learning time increases at a 
power rate,

∝ − κ−ˆ ˆT p p( ) , (2)min crit

where κ ranges between 0.1 and 0.5 for different values of s, f, N. The effects produced by the diminishing proba-
bility of the postsynaptic neurons’ responses, q̂, are qualitatively similar but weaker than the effects of lowering the 
spike transmission probability p̂: the learning time shows a weak or no dependence for large q̂ (typically 
. ≤ ≤q̂0 8 1), followed by the power divergence near the critical value,

∝ − −^ ^T q q( ) , (3)min crit


Figure 4.  Synaptic transmission probability and the learning times. (A) The dependence of the learning time 
Tmin on the ensemble mean spike transmission probability, p̂, in an ensemble of N = 400 neurons with a mean 
firing rate of f = 28 Hz, and mean place field size 30 cm. The learning times, Tmin, are computed for 40 values of 
p̂, ranging between =p̂ 1 and = .p̂ 0 6. The size of the data points represents the percentage of the outcomes 
with the correct Betti numbers (  = =b b( ) ( ) 1eff eff0 1 ). For high probability of spike transmissions ( >p̂ 90%, 
blue-shaded area) the learning time remains nearly unchanged; as p̂ drops further, the learning time increases at 
a power rate. As the transmission probability approaches the critical value p̂crit (in this case, ≈ .p̂ 0 64crit , gray-
shaded area), the learning times become large and highly variable; below p̂crit the place cell ensemble fails to 
form the correct topological map, even though the place cells exhibit perfectly functional, spatially specific 
firing pattern. (B) The effect produced by the decreasing postsynaptic response probability (q̂, green curve) is 
similar, but smaller than the effect produced by the decreasing spike transmission probability (p̂, red curve). The 
combined effect (blue curve) is approximately additive, dominated by p̂-dependence. (C) Timelines of 0D (blue) 
and 1D (green) topological loops computed for the same map and = .p̂ 0 8. This panel serves as an illustration 
for the next two panels. (D) On average, the spurious loops appear in about a minute after the onset of the 
navigation, which approximately corresponds to the time required to run around the central hole of the 
environment (Fig. 1A). As the probabilities p̂ or q̂ decrease, the birth times ( ˆT p( )b  and ˆT q( )b  the pink and the light 
blue curve correspondingly) do not change significantly. In contrast, the times required by the spurious loops to 
disappear grow significantly: ˆT p( )d  (red curve) grows by over 100%, and ˆT q( )d  (blue curve) increases by a few 
percent. (E) The dependence of the spurious loops’ length as a function of spike transmission p̂, and the readout 
neurons’ response probability, q̂.
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with a small power exponent ≈ .0 1  (Fig. 4B). Lowering both p̂ and q̂ simultaneously leads to a combined, accel-
erated increase of the learning time (Fig. 4B).

An implication of this phenomenon is that, p̂ and q̂, being independent characteristics of synaptic efficacy, can 
also compensate for each other’s alterations: the effect of decreasing q̂ can be counterbalanced by increasing p̂ and 
vice versa. Indeed, the dependencies (2) and (3) also define the changes of the learning time induced by small 
variations in the transmission probability,

δ
κ

δ∝ −
−ˆ ˆ

ˆT T
p p

p ,
(4)

p min
min

crit

and by the variations of the postsynaptic neuron’s response probability,

δ δ∝ −
−

.
^ ^

^T T
q q

q
(5)

q min
min

crit



These relationships imply that the compensation of the changes of the learning time, δpTmin = −δpTmin, is 
achieved if

κ δ δ
−

≈ −
−

.
^

^ ^

^

^ ^

p
p p

q
q q (6)crit crit



Notice, that this dependence is Tmin-independent and nonlinear: given a particular value of δp̂, the required 
compensatory change of δp̂ depends on the initial values of both p̂ and q̂.

Dynamics of the effective coactivity complex.  The failures of the learning and memory capacity caused 
by deterioration of synapses are broadly discussed in the literature42–44. However, empirical observations provide 
only correlative links between these two scopes of phenomena. Indeed, the direct effects of the synaptic changes, 
e.g. the alterations of EPSP magnitudes, the spike transmission probabilities, the parameters of synaptic plasticity, 
etc., occur at cellular scale. It therefore remains unclear how such changes may accumulate at the network scale to 
control the net structure and the dynamics of the large-scale memory framework at the organismal level. The 
topological model allows addressing these questions at a phenomenological level, in terms of the structure of the 
coactivity complex eff—its topological shape, its size, the dynamics of its topological loops and so forth, in 
response to the changes of synaptic parameters.

For example, one can evaluate the statistics of birth (Tb) and death (Td) times of the topological loops in the 
coactivity complex. As shown on (Fig. 4C), the time when spurious loops begin to emerge depend only margin-
ally on spike transmission probability. However, the spurious loops’ disappearance times are impacted much 
stronger: although Td shows only weak p̂-dependence at high p̂, further suppression of the spike transmissions 
may double or triple the loops’ disappearance time. The contribution of the decreasing response probability q̂ is 
similar, but at a smaller scale: over the range < ≤ˆ ˆq q 1crit , the learning time changes only by a few percent 
(Fig. 4D). Similar effects are indicated by the p̂- and q̂-dependencies of the spurious loops’ lengths, which may 
grow significantly as a result of the diminishing spike transmission probability, but increase only by 30–50% due 
to the lowering probability of the readout neuron’s responses (Fig. 4E).

Taken together, these results explicate the power growth of the learning times indicated by (2) and (3) and 
provide a simple intuitive explanation for the decelerated spatial learning and its eventual failure caused by the 
synaptic depletion: according to the model, lowering synaptic efficacy stabilizes spurious topological loops in the 
coactivity complex, making it harder to extract physical information from the transient noise.

Additional perspective on the mechanisms of the cognitive map’s deterioration is produced by analyzing the 
size of the coactivity complex and the number of the topological loops in it. As shown on Fig. 5A, the decay of p̂ 
causes rapid decay of the coactivity complex’s size: the number of its two-dimensional simplexes (i.e., links in the 
coactivity graph, see below) drops as ∝ − δˆ ˆN p p( )crit2 , where δ > 1. Diminishing q̂ also shrinks the coactivity 
complex, but at a slower rate, ∝ − εˆ ˆN q q( )crit2  with ε< <0 1. However, despite the shrinking size of the coac-
tivity complex, the number of 1D spurious loops in it grows exponentially, ∝ −ˆ ˆb p plog( ) ( )crit1 , from a few dozen 
to a few hundred, accompanied by a weak ˆb p( )0  increase (Fig. 5B). Similar effects are produced by the lowering 
detection probability, but again, at a much smaller scale: the number of 1D loops, ˆb q( )1 , increases by about 30% 
while the ˆb q( )1  does not change (Fig. 5C).

These outcomes indicate that, as a result of weakening synaptic connections, the spurious topological loops do 
not only stabilize but also proliferate, thus preventing the effective coactivity complex from capturing the correct 
topology of the ambient space. In physiological terms, the model predicts that weakening synapses produce large 
numbers of longer-lasting topological defects in the cognitive map, which results in a rapid increase of the time 
required to learn the topology of the physical environment from poorly communicated spiking inputs.

Critical probabilities.  As indicated above, if the synaptic efficacies are too weak, i.e., if either the spike trans-
mission or the postsynaptic response probability drops below their respective critical values, then the effective coac-
tivity complex eff  may disintegrate into a few disconnected pieces and lose its physical shape–a single large piece 
with a hole in the middle ( =b b( ) ( )0 0N E  and N E=b b( ) ( )1 1 , Fig. 1C), may be replaced by a “spongy” configuration 
containing several smaller pieces with many holes45,46. Thus, the cognitive map may appear in two distinct states: for 

>ˆ ˆp pcrit and >ˆ ˆq qcrit the spurious topological defects can be separated from the topological signatures of the phys-
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ical environment, whereas below the critical values, topological noise overwhelms physical information. The transi-
tion between these two states is accompanied an increased variability of the learning times (Fig. 4A) and by their 
power divergence caused by the exponential proliferation of the topological fluctuations in the coactivity complex. 
These effects suggest that, near p̂crit and q̂crit, the coactivity complex may experience a phase-like transition47–49 from 
a regular state, in which spatial learning is effective to an irregular state, in which spatial learning fails.

Since in most of the studied cases, the critical synaptic transmission probability, p̂crit, is easier to achieve than 
the critical probability of the readout neuron’s responses, q̂crit, we studied the dependence of the former on the 
ensemble parameters, i.e., on the number of place cells in the ensemble, their mean firing rate and the mean place 
field size,

= .ˆ ˆp p s f N( , , ) (7)crit crit

The results shown on Fig. 6 reveal power-law dependencies: ∝ αp̂ fcrit , ∝ βp̂ Ncrit , and a more complex 
s-dependence. Since the domain of these dependences covers the experimentally observed range of parameters, 
the results can be interpreted physiologically. First, if the ensemble firing rates are too low, or if the place fields are 
too meager, or the number of the active neurons is too small (the left ends of the dependencies shown on Fig. 6), 
then the corresponding place cell ensemble fails to learn the spatial map of the environment, even if the synaptic 
connections are nearly perfect ( > .p̂ 0 75), which corresponds to the results discussed in12–14. As the mean firing 
rate and the number of active neurons increase, the critical probability p̂crit steadily decreases, which implies that 
the synaptic depletion may be compensated by enhancing neuronal activity, as observed in experimental stud-
ies50–52. In contrast, the dependence p̂ s( )crit  saturates and even reverses its direction for overly large place fields. 
This, however, is a natural result since poor spatial specificity of the place cells’ spiking should prevent successful 
spatial leaning even for large p̂12–14.

Electrophysiological studies show that only up to 10−20% of spikes are transmitted between the neurons in 
CA1 slices, which is lower than the critical values discussed above39,53,54. However, the results shown on Fig. 6C 
imply that the experimentally observed values of p̂ can be achieved for larger values of N, i.e., in larger place cell 
ensembles. Interpolated p̂ N( )crit  dependence indicates that the physiological values of ∼ . − .p̂ 0 1 0 2crit , can be 
achieved for the ensembles of N ~ 3000 cells, which corresponds to the experimentally observed values55,56.

Learning region.  One of the key characteristics of the place cell spiking activity produced by the topological 
model is the range of the spiking parameters, for which the coactivity complex can assume a correct topological 
shape in a biologically feasible period. Geometrically, this set of parameters forms a domain in the parameter space 
that we refer to as the learning region, 12. The shape and the size of the learning region varies with the geometric 
complexity of the environment and the difficulty of the task: the simpler is the environment and easier the task, the 
larger is , i.e., the wider the range of physiological values that permits learning a map of that space57,58. On the 
other hand, a larger  implies a greater range within which the brain can compensate for physiological variation: if 
one parameter begins to drive the system outside the learning region, then successful spatial learning can still 
occur, provided that compensatory changes of other parameters can keep the neuronal ensemble inside . For 
example, a reduction of the number of active neurons can sometimes be compensated by adjusting the firing rate 
or the place field size in such a way as to bring their behavior back within the perimeter of the learning region.

Interpreting the parameters of a given place cell ensemble in the context of its placement within or relative to 
the learning region sheds light on the mechanism of memory failure caused by certain neurophysiological condi-
tions, e.g., by the Alzheimer Disease59,60, or by aging61,62 or certain chemicals, e.g., ethanol63,64, cannabinoids65,66 or 
methamphetamines67,68, which appear to disrupt spatial learning by gradually shifting the parameters of spiking 

Figure 5.  Deterioration of the coactivity complex. (A) The size of the complex shrinks with the diminishing 
spike transmission (p̂-dependence, red line) and the readout neurons’ response (q̂-dependence, green line) 
probability at a power rate, ∝ − δˆ ˆN p p( )crit2 , and ∝ − εˆ ˆN q q( )crit2 . In this case, δ ∼ .1 5 and ε ∼ .0 4. The 
combined effect of reducing both p̂ and q̂ is illustrated by the blue line. (B) The spurious topological loops in eff  
proliferate exponentially with decreasing transmission probability p̂. The blue and the red curve show the 
dependence of zeroth and first Betti numbers on the transmission probability, ˆb p( )0  and ˆb p( )1  respectively. (C) 
The dependence of the numbers of 0D and 1D on the readout neuron’s response probability q̂ is weaker: while 

ˆb q( )1  exhibits a moderate growth, the ˆb q( )0  remains unchanged.
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activity beyond the learning region. On the other hand, the performance of a place cell ensemble can improve by 
enhancing place cells spiking activity pharmacologically or by Deep Brain Stimulation69, or by modulating the 
hippocampal neural oscillations70, as the model predicts12–14.

In contrast, diminishing spike transmission probability produces a qualitatively different effect: as shown on 
Fig. 7, it reduces the learning region from its original (largest) size at =p̂ 1 to its compete disappearance at the 
critical value =ˆ ˆp pcrit. During this process, the time required to form the cognitive map of the environment pro-
gressively increases from a few minutes to over an hour (Fig. 7).

Physiologically, these results suggest that if the synaptic connections are too weak, then the system may fail 
to form a map not only because the parameters of neuronal firing are pushed beyond a certain “working range,” 
but also because that range itself may diminish or cease to exist. In particular, the fact that the learning region 
disappears if the transmission probability drops below the critical value, implies that the deterioration of mem-
ory capacity caused by synaptic failure may not be compensated by increasing the place field’s firing rates or by 
recruiting a larger population of active neurons, i.e., some neuropathological conditions may indeed be primarily 
“synaptic” in nature42.

Deteriorating cognitive graph.  A simple alternative explanation of these results can be provided in terms 
of the place cell coactivity statistics. As pointed out in Section 2, the collection of the unique pairs of the coactive 
place cells in a network with ideal synaptic connections ( = =ˆ ˆp q 1) is represented by the coactivity graph . The 
imperfect synapses diminish the pool of the transmitted and the detected coactive pairs, which then corresponds 
to a smaller, effective coactivity graph ⊂p̂( )eff . The corresponding set of higher order coactivities–the effective 
coactivity complex p̂( )eff  induced from p̂( )eff  is a subcomplex of the original coactivity complex, with poten-
tially altered topological properties. The net results discussed above imply that, for high transmission probabili-
ties, the effective coactivity complex eff  retains the original topological shape of  , but as p̂ diminishes, the 
effective complex shrinks, acquires multiple topological defects and eventually loses its correct shape, indicating 
a failure of spatial learning.

An illuminating perspective on the changing structure of the coactivity graph  described above is provided 
by its Forman curvature–a combinatorial analogue of the standard differential-geometric notion of curvature71,72. 
The Forman curvature is adopted for discrete, combinatorial structures, such as datasets, networks and 
graphs73–76, and can be flexibly defined in terms of an individual network’s characteristics–the “weights” of its 
vertexes and edges. Specifically, for an undirected edge e with a weight w(e) connecting the vertexes v1 and v2 with 
the weights w(v1) and w(v2) it is defined as
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where the summation goes over the other edges ev1
 and ev2

 connecting to v1 and v2. The curvature associated with 
a vertex, RF(v), equals to the mean curvature of the edges that meet at v.

As discussed in73–76, the values RF(e) and RF(v) provide a measure of the divergence of information flow across 
the network, highlighting the most “important” edges and vertexes. Applying these ideas to the case of the coac-
tivity graph, weighing its vertexes with the number of spikes produced by the corresponding place cells and its 
edges with correlation coefficients between the corresponding pairs of cells, reveals that the distribution of the 
resulting Forman curvatures follows the structure of the occupancy map (Fig. 8A,B). In other words, the most 
visited vertexes and edges appear as the most “curved” ones, controlling the flow of information in eff .

This quantification also allows a natural interpretation of the effective coactivity graph’s dynamics: as the spike 
transmission probability p̂ decreases,  p̂( )eff  sheds the “least important” vertexes and links with low curvatures 
(Fig. 8C,D,E). Thus, as the synaptic efficacies weaken, the emerging effective coactivity graph reflects only the 

Figure 6.  Critical transmission probability as a function of spiking parameters. (A) Increasing the mean 
ensemble firing rate f reduces the critical transmission probability at a superlinear rate. Shown is the 
dependence p̂crit vs. f−α, where α ≈ 4. (B) As the number N of active place cell in the ensemble grows, the critical 
transmission probability drops as ∝ βp̂ Ncrit , with β ≈ 1.2. (C) The transmission probability also drops as a 
function of the mean place field size s, ∝ γp̂ scrit , γ ≈ 0.4, as long as the place fields are not too large. As the place 
cells loose spatial specificity of firing activity (s > 20), a low transmission probability cannot be sustained.
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most persistently firing place cells and the highly correlated pairs of such cells, which can sustain the full topolog-
ical connectivity information, but only for so long. As the synapses deteriorate below critical value, <ˆ ˆp pcrit, the 
corresponding effective coactivity complex acquires an irreparable amount of topological defects and fails to 
encode the correct topological map of the environment.

Discussion
Countless observations point out that deteriorations of synapses often accompany memory deficiencies. For 
example, the recurrent connectivity of CA3 area of the hippocampus and the many-to-one projections from the 
CA3 to the CA1 area29,77 suggest that the CA1 cells may provide readouts for the activity of the CA3 place cell 
assemblies16. Behavioral and cognitive experiments demonstrate that weakening of the synapses between these 
two areas, a reduction in the number of active neurons in either domain, diminishing neuronal activity and so 
forth, correlate with learning and memory deficiencies observed, e.g., in Alzheimer’s disease59,60 or in aging sub-
jects61,62. However, without a theoretical framework that can link the “synaptic” and the “organismal” scales, the 
detailed connections between these two scopes of phenomena are hard to trace. For example, if the spike trans-
mission rate in an ensemble of place cells decreases, e.g., by 5%, will the time required to learn the environment 
increase by 1%, 5% or by 50%? Does the outcome depend on the “base” level of the transmission probability? Can 
an increase in learning time caused by synaptic depression always be compensated by increasing the population of 
active cells, or by elevating their spiking rates? The topological model permits addressing these questions compu-
tationally, at a phenomenological level, thus allowing us to move beyond mere correlative descriptions to a deeper 
understanding of the spatial memory deterioration mechanisms.

Figure 7.  Synaptic connection strengths affect spatial learning. By simulating spatial learning in a given 
environment for various ensemble-mean values of place field size (4 < s < 30), firing rates (4 < f < 40) and the 
size of the place cell population (50 < N < 500), we can estimate the domain within a large parametric space 
representing the set of place cell ensembles that can produce a correct spatial map–the Learning Region (). 
Each dot represents a hippocampal state as defined by a particular triple (s, f, N); the color of the dot is the mean 
time required for a given ensemble to encode an accurate map of the environment’s features, averaged over ten 
place field configurations. Outside  learning is inaccurate or unreliable. As the transmission probability p̂ 
decreases, the learning region shrinks and disappears as the transmission probability p̂ approaches p̂crit.
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The hypothesis about topological nature of the hippocampal map8 is broader than the proposed Algebraic 
Topology (AT) model or the scope of questions that this model allows addressing. For example, the descrip-
tion based on the AT algorithms does not capture biologically relevant metrical differences between topologi-
cally equivalent paths or qualitative differences between topologically equivalent environments, e.g., between 
the widely used W-, U- or T-mazes, even though such differences are reflected in the place cell spiking patterns 
and are known to affect animals behavior78–80. Addressing these differences requires using alternative mathemat-
ical apparatuses, e.g., Qualitative Space Representation (QSR) techniques, such as Region Connection Calculi 
(RCC)81–83, which would complement the scope of topological methods used in neuroscience30. In the current 
approach, we use AT instruments to assess a particular scope of questions, namely to estimate the conditions that 
guarantee structural integrity of the cognitive map and to describe its overall topological shape.

Fundamentally, producing a cognitive map requires two key components: a proper temporal structure of the 
spike trains and a physiological mechanism for detecting and interpreting neuronal coactivity–a suitable network 
architecture, a proper distribution of the connectivity strengths, of the parameters of synaptic plasticity, etc. All 
these components influence spike transmission and detection probabilities, which, in our model, affect the shape 
and topological structure of the coactivity complex, the statistics of learning times, the structure of the learning 
region, etc. This produces a quantitative connection between the information processed at the microscopic level 
(neurons and synapses) and the properties of the large-scale representations of space emerging at the organismal 
level, described here by means of the Persistence Homology theory84–86.

Lastly, it should be pointed out that the low-dimensional components of the coactivity complexes were used 
above to represent cognitive maps, i.e., frameworks spatial memories. However, the combinations of the coactive 
place cells, modeled as simplexes of eff , may represent generic memory elements87,88. In other words, it can be 
argued that the net structure of eff  represents not only spatial, but also nonspatial memories–a larger memory 
framework that can be viewed as a “memory space”89,90. Thus, a disintegration of the cell assembly complex caused 
by deteriorating synapses discussed above may also be viewed as a model of the full memory space decay. From 
such perspective, it may be noticed that the results of the model parallel the experience of patients acquiring a 
slowly progressing dementia. For example, the model provides an explanation for the reason cognitive declines 
often do not manifest until quite a lot of damage has occurred. It also predicts that when the weakening synapses 
deteriorate beyond the range of parameters within which learning is effective, the damages push the neuronal 
ensemble beyond the bounds of the learning region. As a result, the failure becomes more frequent, and finally, 
the brain cannot perform that particular learning task, certain memories or abilities begin to flicker and then are 
lost mostly for good (Fig. 9).

Figure 8.  The decay of the coactivity graph. (A) The occupancy map of the simulated rat’s trajectory. The 
highlighted areas indicate where the rat spends more time (gray colorbar). (B) The coactivity graph  computed 
for perfect connections ( = =ˆ ˆp q 1): the thickness and the shade of the edges (gray colorbar), as well as the 
sizes and the colors of the vertices (jet colorbar) are scaled according to their respective Forman curvatures. (C) 
The effective coactivity graph eff  computed for the spike transmission probability = .p̂ 0 65 is significantly 
sparser that at =p̂ 1: only about 10% of edges with high Forman curvatures remain. Notice that in both cases, 
the edges and vertexes with high curvature concentrate in the area that were visited most by the rat (panel A). 
(D) The effective coactivity graph shrinks as a function of the transmission probability decay. The mean Forman 
curvature of the vertexes (panel E) and of the edges (F) also decreases as a function of decaying p̂, as the low-
curvature vertexes and edges disappear.
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Methods
The computational algorithms used in this study were described in12,13:

The simulated environment shown on Fig. 1A is designed similarly to the arenas used in typical electrophys-
iological experiments. Combining such small arenas allows simulating learning in larger, more complex envi-
ronments13. The simulated trajectory represents non-preferential, exploratory spatial behavior, with no artificial 
patterns of moves or favoring of one segment of the environment over another.

Place cell spiking probability was modeled as a Poisson process with the rate
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where fc is the maximal rate of place cell c and sc defines the size of its place field centered at rc = (xc, yc)91. In an 
ensemble of N place cells, the parameters sc and fc, are log-normally distributed with the means f and s and the 
variances σf and σs. To avoid overly broad or overly narrow distributions, we used additional conditions σf = af 
and σs = bs, with a = 1.2 and b = 1.712. In addition, spiking probability was modulated by the θ-wave13,92,93. The 
θ-wave also defines the temporal window w ≈ 250 ms (about two θ-periods) for detecting the place cell spiking 
coactivity, as suggested by experimental studies92–94 and by our model13. This value also defines the timestep used 
in the computations. The place field centers rc for each computed place field map were randomly and uniformly 
scattered over the environment.

Place cell ensembles are specified by a triple of parameters (s, f, N) and hence the learning region represents a 
domain of this 3D parameter space. The ensembles studied above contain between N = 50 and N = 400 place cells. 
The ensemble mean peak firing rate f ranges from 4 to 40 Hz, and the average place field size ranges between ~12 
cm and ~90 cm ( ≤ ≤s4 30 cm).

Persistent Homology Theory is used to describe the evolving topological shape of the coactivity complexes 
in terms of their homological invariants84–86. In particular, it allows computing the time-dependence of the Betti 
numbers and deducing the dynamics of its topological loops–their mean lifetimes, their mean lengths, their 
numbers, etc. Computations were performed using javaplex computational software developed at Stanford 
University95.
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