
RESEARCH ARTICLE

Priming of leaf litter decomposition by algae

seems of minor importance in natural

streams during autumn

Arturo Elosegi1*, Angie Nicolás2, John S. Richardson2

1 Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain,

2 Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada

* arturo.elosegi@ehu.eus

Abstract

Allochthonous detritus of terrestrial origin is one of the main energy sources in forested

headwater streams, but its poor nutritional quality makes it difficult to use by heterotrophs. It

has been suggested that algae growing on this detritus can enhance its nutritional quality

and promote decomposition. So far, most evidence of this "priming effect” is derived from

laboratory or mesocosm experiments, and its importance under natural conditions is

unclear. We measured accrual of algae, phosphorus uptake capacity, and decomposition of

poplar leaves in autumn in open- and closed-canopy reaches in 3 forest and 3 agricultural

streams. Chlorophyll a abundance did not change significantly with stream type or with can-

opy cover, although in some agricultural streams it was higher in open than in closed canopy

reaches. Canopy cover did not affect either phosphate uptake capacity or microbial decom-

position. On the other hand, although there was no effect of canopy cover on invertebrate

fragmentation rate, a significant interaction between canopy cover and stream suggests

priming occurs at least in some streams. Overall, the results point to a weak or no priming

effect of algae on litter decomposition in natural streams during autumn.

Introduction

Organic detritus from terrestrial origin, and leaf litter in particular, is one of the main energy

sources for food webs in forested headwater streams [1,2], where riparian shading limits pri-

mary production [3]. This detritus tends to be dominated by recalcitrant compounds such as

lignin and cellulose, is stoichiometrically imbalanced for the needs of consumers [4–7], and

thus, has low nutritional value [8]. Once in the water, leaf litter is colonised and "conditioned"

by microbes, especially bacteria and aquatic hyphomycetes [9]. The conditioned detritus has a

lower C:N ratio that enhances its overall palatability and nutritional value for detritivorous

invertebrates [10,11], which thus choose the most nutritious leaf patches [12].

However, the lack of components such as essential fatty acids can still limit the nutritional

value of leaves even after microbial conditioning [13,14]. Recently, it has been reported [15]

that leaf-litter leachate (DOC and nutrients) and light interact to promote algal biofilm accrual,
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which can in turn enhance the nutritional quality of leaf litter and thus promote the consump-

tion by detritivorous invertebrates [16]. This is an example of the priming effect, i.e., the

enhancement of decomposition of recalcitrant organic matter by addition of labile carbon (S1

Fig), which has been extensively documented in terrestrial ecosystems [17], but much less fre-

quently in aquatic ecosystems [18–20]. In the case of freshwater ecosystems, priming can

involve the transfer of algal-produced C to heterotrophs [19], or the direct consumption of

algae by detritivorous invertebrates [16,21,22], which would thus grow faster and have a larger

effect on litter breakdown. In oligotrophic lakes it has even been suggested that consumers

would preferentially use low-quality terrestrial carbon sources (e.g. leaf litter) for respiration,

whereas they would preferentially use algae for secondary production [23].

Therefore, the priming effect could have important consequences for food webs, as well as

for the management of stream ecosystems, as it would imply an additional effect of changes in

riparian cover. However, most of the evidence on the priming effect in freshwaters is derived

from experiments either in the laboratory or in artificial channels. For instance, Danger et al.

[24] in a factorial mesocosm experiment with light and nutrients, showed that under low

nutrient concentrations diatom growth enhanced microbial litter decomposition. The impor-

tance of the priming effect under field conditions is currently unclear. In theory, priming

should be most important in periods of stable baseflow and high light-availability, which pro-

mote the accrual of algal biomass [25]. However, it is possible that priming could be less

important in high-flow periods, in strongly shaded reaches or in periods of large accumula-

tions of detritus, as heterotrophic microbes have been shown to outcompete algae for limiting

nutrients [26,27]. In particular, in many temperate streams the bulk of leaf fall occurs in

autumn [28], a period in which the differences in light availability between open and closed

reaches decrease as a consequence of leaf fall and shorter daylight period, which might reduce

the real effect of priming. Also, it has been suggested that the priming effect is more important

in nutrient-poor conditions, where algae would release more labile C exudates [18], but there

is so far little empirical evidence of this.

The objective of the present study was to test the importance of priming in natural streams

during the peak of litterfall. More specifically, we assessed the effects of autumnal riparian

cover on biofilm accrual and activity, and on litter decomposition in streams of contrasting

nutrient status. Our hypotheses were: i) that biofilm accrual and activity will be higher at open

than at closed reaches, ii) that higher biofilm accrual will boost litter breakdown in nutrient-

poor but not in nutrient-rich streams, and iii) that the effect will be higher for invertebrate

fragmentation than for microbial decomposition, as a consequence of an interactive effect

between enhanced microbial biomass and leaf palatability.

Methods

Study sites

The experiment was performed in six streams, 3 forested (F1 to F3) and 3 agricultural (A1 to

A3), near Vancouver, British Columbia, Canada (Table 1). The forest streams are located in

the Malcolm Knapp Research Forest (Maple Ridge, BC), a 52 km2 area owned by the Univer-

sity of British Columbia. It is almost entirely covered by forest, dominated by Douglas-fir

(Pseudotsuga menziesii), western hemlock (Tsuga heterophylla) and western red cedar (Thuja
plicata), and with red alder (Alnus rubra) and black cottonwood (Populus trichocarpa) abun-

dant in the riparian areas. The lithology is granitic, soils acidic and streams in the area have

extremely low conductivity and nutrient concentrations. The agricultural streams are located

ca. 30 km further south, in the Fraser River Delta (Surrey and Aldergrove, BC), a region with

intense agricultural activities, including berry farms and dairies, and scattered urban areas.

Stream decomposition priming
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The same tree species occur, but the forest cover is much lower than in the forest streams, with

grasses and shrubs becoming more important. Lithology is dominated by glacial till, streams

are circumneutral and richer in nutrients [29].

The climate in the Vancouver region is moderate oceanic, with an annual mean tempera-

ture near 11 ˚C and a precipitation ranging from 1500 mm per year in the coast to over 3000

mm in the mountains. Summers are drier, and autumn tends to be very rainy.

In each stream we selected two nearby (less than 200 m apart) riffle reaches, one with open

canopy (O), and the other with closed canopy (C).

Biofilm

To measure biofilm accrual and activity we used biofilm carriers. These are standard materials

where biofilm can attach, designed to promote self-purification in aquaria by encouraging

growth of bacteria inside the water pump. We used Bio-filter balls (Marineland, United Pet

Group, Spectrum Brand Inc., Blacksburg, VA), which consist of hollow plastic spheres, 2 cm

in diameter, with a surface made of thin plates, the space between plates allowing water flow to

promote biofilm growth. Two such balls were tied with fishing line to each of the rebars used

to deploy litterbags (see below), at mid depth (S2 Fig). Balls were recovered at the same time as

the litterbags, placed in pairs in 50 mL Falcon tubes with filtered (Whatman GF/F) stream

water, and carried to the laboratory in an ice chest to perform a phosphate-uptake bioassay.

Once in the laboratory, the stream water was replaced by an acclimation solution (1 L of Per-

rier1 water in 4 L of distilled water), designed to ensure a sufficient supply of micronutrients.

The Falcon tubes were incubated for 30 min in a LabRoller rotator at minimum speed inside a

Cenviron environmental chamber at 8 ˚C temperature and 50 μmol of PAR (Apogee quantum

sensor SQ100). After this acclimation period, the water in the Falcons was replaced by a 5 μM

solution of PO4
3-, prepared by dissolving H2NaO4P.H2O in the acclimation solution, and were

incubated for 1 h. An additional set of five pairs of uncolonized biofilm carriers was used as

blanks. After this period, water was filtered from the Falcons (Whatman GF/F) and frozen to

later analyse the remaining P concentration (see below), and the biofilm carriers were frozen in

the Falcon tubes. The uptake rate of phosphorus (Up, in mg P h-1) was calculated as:

Up ¼ V
Cb � Cc

T

where V is the volume of incubation solution (L), Cb is the final concentration of P (mg P L-1) in

the blank treatment (uncolonized biofilm carriers), Cc is the final P concentration in the colo-

nized treatment and T is the incubation time (h).

Biofilm carriers were later thawed, kept as pairs in 20 mL of acetone overnight at 4 ˚C, and

their content of chlorophyll a was measured fluorometrically (TD-700, Turner Designs), using

uncolonized biofilm carriers in acetone as a blank.

Table 1. Main characteristics of the studied streams. Land covered data obtained from the Land Use 2010 map by the Canada Government (https://open.canada.ca/

data/en/).

Stream Name Coordinates Stream order Basin (Km2) Forest (%) Agriculture (%) Urban (%) Water (%)

F1 Blaney Creek 49˚16’14” N 122˚35’20” W 2 8.74 94 0 0 6

F2 Spring Creek 49˚16’15” N 122˚34’30” W 2 2.55 100 0 0 0

F3 Mayfly Creek 49˚15’06” N 122˚32’51” W 2 1.14 100 0 0 0

A1 Pepin Creek 49˚00’14” N 122˚28’18” W 2 15.38 33 29 35 0

A2 Bertrand Creek 49˚01’58” N 122˚32’04” W 3 30.87 27 34 35 0

A3 Little Campbell River 49˚’01’60” N 122˚41’06” W 3 28.74 56 21 21 2

https://doi.org/10.1371/journal.pone.0200180.t001
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Leaf decomposition

We studied the decomposition of black cottonwood leaves, a common riparian tree in the area

whose leaves are relatively poor in nutrients [30], and thus, could be more prone to priming

effects. Recently fallen leaves were collected below five adjacent trees in Burnaby (BC, Canada),

taken to the laboratory and air-dried. Batches of 3.0 (±0.1) g of dry leaves were enclosed in

mesh bags. These were either coarse (9 mm mesh), which allowed invertebrate colonization,

or fine (250 μm), where the fine mesh prevented invertebrate input and thus, decomposition

was mainly microbial. Fine-mesh bags were closed, and one fine-mesh bag plus three addi-

tional g of leaves were enclosed inside each coarse bag, thus ensuring that they were subject to

the same environmental conditions, and that invertebrates could access the leaves in the

coarse, but not those in the fine-mesh bag. Bags were taken to the field and tied with cable

binders simultaneously to the biofilm carriers, to five metal rebars per reach (1 double bag per

rebar), anchored in riffle sections. Bags were retrieved after two months of incubation (a

period when they would have lost about 50% of the initial mass), enclosed in zip-lock bags and

carried to the laboratory in an ice chest. There, they were opened, the remaining leaf material

was cleaned with tap water on a 250-μm sieve, and the ash-free dry mass (AFDM) was mea-

sured gravimetrically after drying (60 ˚C, 96 h) and ashing (500 ˚C, 4 h). The initial ash-free

dry mass was calculated from ten additional batches of dry leaves, which were dried and ashed

as explained. Breakdown rates were calculated according to the negative exponential model

[31] with time in degree-days. Following [32] we calculated the mean litter fragmentation rate

(λF) as

lF ¼ kc �
kf � kc

lnðkf Þ � lnðkcÞ

where λF is the mean fragmentation rate (consumption by detritivorous invertebrates and

physical abrasion) and kc and kf are the breakdown rates in coarse- and fine-mesh bags,

respectively.

Environmental variables

On five occasions during the decomposition experiment, we measured wetted cross-sec-

tion with a ruler and a measuring tape, and water velocity at 25-cm intervals (current

meter Swoffer 2100) to calculate stream discharge. Additionally, we measured water tem-

perature, conductivity and pH (field probe YSI Pro1030) and dissolved oxygen (field

probe YSI ProODO), and collected water samples, which were filtered (Whatman GF/F),

carried to the laboratory in an ice chest, and frozen immediately for analysis of nutrients.

The concentrations of nitrate, nitrite, ammonium and soluble reactive phosphorus (SRP)

in water were determined by an OI-Analytical “Alpkem Flow System IV” automated

chemistry analyser at the Department of Analytical Chemistry, British Columbia Minis-

try of Environment and Climate Change Strategy, Victoria, British Columbia. Dissolved

inorganic nitrogen (DIN) was computed summing nitrate-, nitrite- and ammonium-

nitrogen.

Additionally, water temperature was recorded continuously at each reach by Onset TidBit

v2 temperature loggers tied to one of the rebars. Riparian cover was estimated from zenithal

photos taken with a 28 mm (35 mm equivalent) lens (camera Fujifilm X20), which were later

processed to maximize contrast and then analysed with ImageJ, a free software downloadable

from https://imagej.nih.gov/ij/ to measure total image brightness, which was converted into

cover [33].
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Statistical analyses

We used linear mixed effect models to contrast stream water characteristics (IBM SPSS V.24)

with stream type (agricultural vs forested) and canopy cover (open vs closed) as fixed factors,

and stream identity as random effect with five levels. Nutrient variables (SRP and DIN) were

log transformed to meet normality assumptions. Significance for each term was assessed by

model comparisons using likelihood ratio test [34].

Results

The experiment started in late September 2017, after an unusually dry summer that

caused extremely low baseflows in the streams in the area. The weather suddenly changed

after the 16th of October, when large storms affected the area for five days (http://climate.

weather.gc.ca/). Floods scoured away all bags and most of the biofilm carriers deployed

in Blaney Creek (stream F1), which led us to remove this stream from the study. After

these floods, weather remained fairly dry from 26th October to 7th November, and then it

rained almost every day until the end of the experiment, although no large floods were

registered.

Riparian cover at the beginning of the experiment ranged from 0 to 45% at the open

reaches, whereas it was higher than 76% at the closed reaches (Table 2). It decreased along the

experiment in all reaches, as deciduous trees lost their leaves, but the closed reaches still main-

tained riparian cover higher than 55%. Average discharge over the study period ranged from

129 L s-1 in stream A1 to 586 L s-1 in stream A2. The average temperature (S1 Dataset) was

higher in agricultural than in forest streams (9.2–9.9 vs 7.0–8.5 ˚C, respectively), but differ-

ences were statistically marginal (LMM F1,4 = 5.1; p = 0.088). pH was significantly higher in

agricultural than in forest streams (7.0–7.4 vs 6.4–6.5, F1,4 = 58.5; p = 0.002), as was conductiv-

ity (163–252 vs 19 μS cm-1, F1,4 = 239.2; p<0.001). On the contrary, oxygen concentration

tended to be significantly higher at forest (mg L-1) than at agricultural streams (11.0–11.9 vs

9.3–10.1 mg L-1, F1,4 = 64.6; p = 0.001). Average DIN concentrations were below 0.30 mg N L-1

in forest streams, whereas they ranged from 0.47 to 1.81 in agricultural streams, differences

being, again, statistically significant (F1,4 = 16.1; p = 0.016). SRP concentrations were below

6 μg P L-1 in forest streams, whereas they ranged from 12.8 to 35.0 in agricultural streams,

again with significant differences (F1,4 = 27.8; p = 0.006).

Table 2. Environmental characteristics of the study reaches. F stands for forest, A for agricultural, O for Open, C for Closed. Canopy cover values are point values mea-

sured at the beginning and at the end of the experiment. The rest of the values are mean ± SD of 5 measurements during the experiment. DIN (dissolved inorganic nitro-

gen) is the sum of nitrate-, nitrite- and ammonium-nitrogen. SRP, soluble reactive phosphorus. Discharge was only measured in one site per stream, where it was most

convenient, not necessarily in any of the sampling reaches.

Reach Canopy cover (%) Discharge

(L s-1)

Temp

(˚C)

pH Cond

(μS cm-1)

Oxygen

(mg L-1)

DIN

(mg N L-1)

SRP

(μg P L-1)

F2O 7.2–3.2 143±142 8.4±2.2 6.4±0.3 19.1±10.0 11.8±0.6 0.22±0.10 5.8±5.2

F2C 86.3–79.1 8.5±2.3 6.5±0.4 19.2±10.1 11.7±0.7 0.22±0.13 4.0±2.5

F3O 0.7–3.1 172±253 7.1±2.1 6.6±0.4 18.7±9.1 11.0±0.7 0.20±0.04 3.0±1.9

F3C 76.5–71.4 7.0±2.0 6.5±0.2 18.9±8.9 11.8±0.8 0.20±0.07 2.7±1.1

A1O 0.0–0.2 129±92 9.2±1.7 7.3±0.2 252±97 9.3±0.2 0.82±0.36 31.8±4.0

A1C 83.9–62.2 9.2±1.7 7.4±0.1 224±63 9.3±0.3 0.82±0.41 35.0±5.3

A2O 45.0–24.6 586±956 9.9±2.6 7.3±0.2 174±46 10.1±0.8 1.81±0.60 56.8±49.0

A2C 85.8–73.4 9.8±2.3 7.3±0.2 173±44 10.1±0.8 1.69±0.30 53.4±46.7

A3O 0.0–0.0 640±565 9.5±2.4 7.0±0.2 163±58 10.0±0.4 0.62±0.22 15.6±7.8

A3C 79.7–55.9 9.6±2.2 7.2±0.3 163±58 10.1±0.4 0.47±0.28 12.8±8.4

https://doi.org/10.1371/journal.pone.0200180.t002
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Chlorophyll a per pair of biofilm carriers ranged from 0.83±0.43 μg (mean±SD) in F2 to

10.53±7.99 in A1 (Fig 1). Differences were not significant between stream types (LMM, F1,3 =

2.4; p = 0.216) nor between open and closed reaches (F1,3 = 3.5; p = 0.154), and neither was the

interaction canopy�type significant (F1,3 = 2.12; p = 0.239). Nevertheless, there were statisti-

cally significant differences of the stream factor (F3,3 = 13.5; p = 0.030) as well as for the cano-

py�stream interaction (F3,37 = 3.2; p = 0.035), showing that the canopy effect was significant at

some streams. In these cases, open reaches had more chlorophyll a than closed ones.

Phosphate uptake in the bioassay performed with biofilm carriers ranged from 0.96±
0.28 μg P h-1 in reach F2C to 1.52±0.37 in reach F3C (Fig 2). The uptake per unit of chlorophyll

a ranged from 32.2±12.4 to 1582±382 μg P mg Chl-1 h-1 (Fig 2). It was lowest in streams A1

and A2, the two with highest concentrations of SRP in water. None of the factors and interac-

tions tested by LMM resulted statistically significant for phosphate uptake (p>0.05 in all

cases), but there were significant differences in uptake per unit of chlorophyll a for the factor

stream (F3,3 = 10.3; p = 0.044) and the interaction canopy�stream (F3,37 = 4.0; p = 0.014), being

in general higher in closed than in open reaches.

After two months of incubation, the leaf AFDM remaining in fine mesh bags ranged from

18.0±6.3 in reach AO3 to 49.4±2.5% in FC2 (S3 Fig). No clear differences could be detected

Fig 1. Chlorophyll a per pair of biofilm carriers. Black columns, closed reaches, white columns, open reaches of agricultural (A) and forest (F) streams.

Values are arithmetic means, error bars show standard deviation. Note logarithmic scale.

https://doi.org/10.1371/journal.pone.0200180.g001
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either between agricultural and forest streams, nor between closed and open reaches. The leaf

AFDM remaining in coarse mesh bags ranged from 1.8±2.0 in AO3 to 47.2±2.3 in FO3. It was

higher in forest than in agricultural streams, but no obvious differences were detected between

open and closed reaches. The temperature-corrected breakdown rates ranged from 0.0015

±0.0001 to 0.0032±0.0006 dd-1 in fine-mesh bags and from 0.0018±0.0003 to 0.0082±0.0021

dd-1 in coarse-mesh bags. In fine-mesh bags there were no obvious differences between agri-

cultural and forest streams, but in coarse-mesh bags agricultural streams tended to have higher

breakdown rates (Fig 3). No clear differences were seen between open and closed reaches.

There was no statistically significant effect of stream type, canopy cover or their interaction on

microbial (fine-mesh) decomposition rate, but stream had an effect (LMM, F3,3 = 33.8;

p = 0.008), being higher in stream A3. For coarse-mesh bags the only statistically significant

difference was attributed to the canopy�stream interaction (F3,36 = 3.45; p = 0.027), although

the direction of the difference was not consistent among streams.

Fig 2. Phosphate uptake by biofilm carriers. Black columns, closed reaches, white columns, open reaches of agricultural (A) and forest (F) streams. Left panel,

phosphate uptake by pair of biofilm carriers. Right panel, phosphate uptake by unit chlorophyll. Values are arithmetic means, error bars show standard

deviation.

https://doi.org/10.1371/journal.pone.0200180.g002

Fig 3. Temperature-corrected breakdown rates. Black columns, closed reaches, white columns, open reaches of agricultural (A) and forest (F) streams. Left

panel, fine-mesh bags show microbial decomposition. Right panel, coarse-mesh bags show total decomposition. Values are arithmetic means, error bars show

standard deviation. Note the different scale of Y axes.

https://doi.org/10.1371/journal.pone.0200180.g003
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Finally, the fragmentation rate, i.e., the contribution of shredders and physical abrasion to

total decomposition, ranged from 0.0011 to 0.0259 d-1, and tended to be higher in agricultural

than in forest streams (Fig 4), although differences between stream types were not statistically

significant. LMM only found a statistically significant effect for the interaction between canopy

cover and stream (F3,36 = 4.83; p<0.006), thus showing that fragmentation rate was higher in

open than in closed reaches of some streams.

Discussion

Our results point to a weak to no priming effect by algae on autumn litter decomposition in

the study streams. In agricultural streams there was a trend for open reaches to have more

chlorophyll a than closed ones, but the differences were not consistent and did not translate

into faster litter decomposition. Although stream�canopy interactions showed differences

between open and closed reaches in some streams, the direction of the difference was not con-

sistent among streams. Thus, our overall results suggest that other environmental factors over-

ride the potential effect of algal growth on leaf litter dynamics.

Our experimental design, with open and closed reaches very close to each other, aimed at

reducing the potentially confounding effects of other environmental variables apart from can-

opy cover. Among our forest streams open reaches are rare and very short, whereas among

our agricultural streams usually there is an alternation of short open and closed reaches.

Therefore, none of the environmental variables measured in addition to canopy cover showed

Fig 4. Fragmentation rate of leaves in bags. Black columns, closed reaches, white columns, open reaches of agricultural (A) and forest (F) streams. Values are

arithmetic means, error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0200180.g004
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systematic differences among reach types, as water quality variables usually respond to riparian

cover at longer scales, on the order of hundreds to thousands of metres [35,36]. On the other

hand, the differences in canopy cover between open and closed reaches decreased but did not

disappear over the study period, and therefore, the changes found among reach types can be

attributed to canopy cover.

Under these conditions, algal biomass showed no response to canopy cover in the forest

streams, thus suggesting algal growth there to be limited by factors other than light, probably

nutrients. The concentration of phosphorus in our forest streams was close to, when not

below, detection limits. Additionally, high N:P atomic ratio ranged from 52 (A1C) to 164

(F3C), suggesting P to be the limiting nutrient in all our sites [37,38]. As the winter

approaches, other factors such as low water temperature, decreased day length, low elevation

of the sun in the horizon, frequent cloudy days and high flow tend to limit algal growth [33],

which probably explains the lack of differences in our forest, nutrient-limited streams. Long

baseflow periods promote biofilm accrual [39], whereas floods scour algae [40], and thus, in

mountain streams frequent floods can override the effects of canopy cover on algal biomass

[41]. It is likely that, even if there were no differences in chlorophyll a content, the algal assem-

blages differed between open and closed reaches, as algal taxa differ in their competitive abili-

ties depending on light and nutrient availability [22,42,43]. However, even if this was the case,

overall it had no measurable effect on our decomposition rates.

Contrary to our expectations, phosphate uptake capacity, a proxy for biofilm activity, did

not differ between forest and agricultural streams, or between open and closed reaches. In gen-

eral, the metabolic activity of stream biofilm depends on its biomass [44], whereas the uptake

per unit biomass tends to be greatest at oligotrophic, nutrient-poor reaches [45]. Nevertheless,

internal phosphorus recycling at the biofilm level gains importance in nutrient-rich reaches

[46], which usually reduces uptake rate [47] and results in our bioassay yielding highest uptake

rate in moderately enriched streams (Arturo Elosegi, unpublished data). The small differences

we found in P uptake rate per unit of chlorophyll a suggest a part of the algal biomass to be not

very active, probably as a consequence of the senescence of algal mats by the end of autumn,

which reduces the biological activity even if the biomass is large [48]. Interestingly, the weak

trends found between open and closed reaches point towards a higher nutrient uptake per unit

biomass in the latter, which again, was contrary to our expectations, and could be related to

site-specific characteristics such as flow velocity.

Microbial decomposition, as measured by temperature-corrected breakdown rate in fine-

mesh bags, did not differ between agricultural and forest streams, or between open and closed

reaches, although the random factor stream was statistically significant. This is a surprising

result, as moderate nutrient concentrations as those found in our agricultural streams have

been shown to promote litter decomposition [49], although effects are much clearer for total

decomposition [50]. For coarse-mesh bags, there seemed to be a trend for litter to decompose

faster at agricultural streams, however, the differences in temperature-corrected breakdown

rates were again not statistically significant, contrasting with clear patterns shown elsewhere

[51]. Nevertheless, the statistically significant interaction between canopy cover and stream

suggested a weak priming effect in some of the streams. We can only speculate about the rea-

sons for this difference occurring only in some streams, but it is likely that local factors differ-

entially affected the two reaches studied in one stream, thus overriding the weak effects of

priming. Indeed, litter decomposition is sensitive to small differences in flow velocity [52], sed-

iment deposition [53] or biological communities [54], factors that can change at the micro-

habitat scale [55]. In our case, shredders were present in all sites (Arturo Elosegi, personal

observation), including agricultural streams. Intense human activities can result in local
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extinction of large shredders such as crustacean gammarids, and thus impact litter decomposi-

tion [56], but our streams seem not to have crossed this impairment threshold.

The trend towards higher fragmentation rates suggests that invertebrates were even more

important in our agricultural than in our forest streams, which is usually not the case [56].

Again, the interaction between stream and canopy cover was statistically significant, suggest-

ing that the priming effect can be important at least in some streams.

Overall, our results suggest that algal priming of litter decomposition, a key ecosystem pro-

cess [57], is at best weak in natural streams during autumn, when the environmental condi-

tions become less favourable for algal growth. The relevance of priming in streams remains a

controversial effect and Bengtsson et al. [20] found in their meta-analysis that the priming

effect may be negligible or non-existent in many freshwaters. Although the nutritional quality

of biofilms tends to be greater when algae are present [58] and much of the nitrogen assimi-

lated by stream consumers is of algal origin [8], the effects on litter decomposition are often

unclear. Most of the research has been performed in the laboratory or in artificial streams, and

even there results are far from unequivocal. For instance, a recent laboratory experiment [16]

found enhanced nutrients but not light to promote shredder biomass and breakdown rate,

contrasting with other experiments [22], who found no effect on shredder-mediated decompo-

sition, although light promoted the growth of Asellus and Gammarus crustaceans. Guo et al.

[16] attributed the lack of effect to the small difference between their two light levels (21 and

114 μmol m-2 s-1). We did not measure differences in light levels between our open and closed

reaches, but it is likely that they were rather small and decreased during the experiment, as a

consequence of leaf fall, shortening of the day and increased cloudiness. As for field experi-

ments, although some authors [19] found exposure to light to stimulate decomposition in the

field, their "shadow" treatment was artificial, as they covered the channel with cloth. Similarly,

Vonk et al. [59] found that, whereas in microcosms, invertebrates showed a preference for arti-

ficial substrate with poly-unsaturated fatty acids added, this effect could not be detected in the

field, probably because it was overruled by unknown sources of variation. Priming could be

more important in summer, when the differences in light availability between open and closed

reaches are largest and the long baseflow periods make biological effects more marked.
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