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Abstract

Background and Aims: The present study was designed to verify the influence of acute fat loading on high density
lipoprotein (HDL) composition, and the involvement of liver and different segments of small intestine in the changes
observed.

Methods and Results: To address these issues, rats were administered a bolus of 5-ml of extra-virgin olive oil and sacrificed
4 and 8 hours after feeding. In these animals, lipoproteins were analyzed and gene expressions of apolipoprotein and HDL
enzymes were assessed in duodenum, jejunum, ileum and liver. Using this experimental design, total plasma and HDL
phospholipids increased at the 8-hour-time-point due to increased sphingomyelin content. An increase in apolipoprotein
A4 was also observed mainly in lipid-poor HDL. Increased expression of intestinal Apoa1, Apoa4 and Sgms1 mRNA was
accompanied by hepatic decreases in the first two genes in liver. Hepatic expression of Abcg1, Apoa1bp, Apoa2, Apoe, Ptlp,
Pon1 and Scarb1 decreased significantly following fat gavage, while no changes were observed for Abca1, Lcat or Pla2g7.
Significant associations were also noted for hepatic expression of apolipoproteins and Pon1. Manipulation of postprandial
triglycerides using an inhibitor of microsomal transfer protein -CP-346086- or of lipoprotein lipase –tyloxapol- did not
influence hepatic expression of Apoa1 or Apoa4 mRNA.

Conclusion: All these data indicate that dietary fat modifies the phospholipid composition of rat HDL, suggesting a
mechanism of down-regulation of hepatic HDL when intestine is the main source of those particles and a coordinated
regulation of hepatic components of these lipoproteins at the mRNA level, independently of plasma postprandial
triglycerides.
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Introduction

Several studies have found significant associations between

impaired elimination of postprandial lipoproteins and cardiovas-

cular diseases [1,2]. Triglyceride rich lipoproteins (TRL) observed

in the postprandial state are of intestinal or hepatic origin and are

referred to, depending on the lipid source, as exogenous or

endogenous, respectively [3]. When released from intestine, the

lipid core is enveloped by apolipoprotein (APO) B-48 and

packaged into chylomicrons (CM). When the source is the liver,

lipids engorge a particle containing APOB-100 known as very low

density lipoprotein (VLDL). Such clear distribution of apolipo-

protein composition reflecting exogenous and endogenous sources

of TRL in humans, cannot be extended to rodents due to the fact

that their livers produce both apolipoprotein B isoforms [3,4]. In

the periphery, lipoprotein lipase from adipose and muscle tissues

releases fatty acids and converts TRL into remnant particles that

should be cleared by the liver [5]. These tissues and organs are

gatekeepers [6] that regulate postprandial lipemia and potential

targets for regulation in response to a great variety of stimuli such

as hormones, feeding schedules, composition of foods, etc

[6,7,8,9,10].

High density lipoproteins (HDL) are produced in liver and

intestine and to a certain extent, these lipoproteins may be

metabolic products of CM and VLDL as observed in knockout

mice for intestinal apolipoprotein B and for lipoprotein lipase

genes. The latter mice had no HDL when lipoprotein lipase was

completely missing, and the particles were produced when the

activity was restored after expression the enzyme was achieved in

muscle [11]. A genetic model for absent chylomicron formation in
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mice in which APOB was not expressed in intestine also resulted in

low HDL cholesterol levels [12]. These close metabolic relation-

ships among CM, VLDL and HDL demonstrate that HDL may

be subject to postprandial regulation, a possibility that needs to be

tested in different experimental settings. In addition, several HDL

apolipoproteins (eg APOA1, APOA4) are expressed in organs such

as liver and intestine [13], and the cross-talk between them to

sustain a coordinated response also should be explored in depth

considering the complexity of HDL lipoparticles [14].

In rats, due to the absence of cholesteryl ester transfer protein

(CETP), most of the plasma cholesterol is transported in HDL

[15], -an activity found to parallel postprandial triglyceride

response- [16]. Therefore, this model represents a good approach

to the study of changes in the postprandial state without the

interference of the aforementioned protein and an anticipatory

scenario of metabolic changes in humans treated with CETP

inhibitors [17] or those lacking this enzyme [18]. Indeed, these

subjects showed increased APOA1 and HDL cholesterol levels,

mainly corresponding to esterified cholesterol [19], in agreement

with the kind of particles also observed in rodents [18]. In

addition, rat lipoprotein metabolism has been found to be sensitive

to chronic dietary fat amount and composition [20,21]. In

previous experiments in rats, we have shown that a bolus of

16 ml olive oil/kg was sufficient to induce their plasma

postprandial response and hepatic lipids and modify the hepatic

transcriptome [22], which indicated that this could be a promising

approach for testing the hypothesis that an olive oil bolus can

influence postprandial HDL composition and regulation. To do

so, rats were subjected to gavage administration of virgin olive oil

and sacrificed at different time points. In these animals detailed

analyses of HDL lipoproteins and apolipoprotein gene expression

changes in duodenum, jejunum, ileum and liver were carried out

in order to characterize tissue-specific mechanisms involved in the

postprandial regulation exerted by an acute intake of fat.

Results

Hepatic lipids
Representative liver micrographs from different experimental

groups are shown in Fig. 1A–C. Quantitative morphological

evaluation of the percentage of lipid droplets in all animals is

depicted in Fig. 1D, which reveals no significant change. In

contrast, hepatic triglyceride (TG) content, shown in panel E,

increased significantly four hours after gavage with olive oil, and its

levels remained significantly elevated at the eight-hour time point.

No significant change was observed between the two time periods.

Hepatic cholesterol (Fig. 1F) was significantly increased at both

time points. Therefore, this experimental design constitutes an

interesting approach for the study of the presence of transitory

postprandial increase in fat content in liver, probably inside the

reticulum, without accumulation of lipid droplets.

Postprandial plasma lipids and lipoproteins
Table 1 shows total plasma lipid levels of rats four and eight

hours after gavage with 5 ml of virgin olive oil. Plasma

triglycerides were significantly increased under both experimental

conditions while plasma cholesterol was not modified at either

time point. Phospholipids did not experience any change at the

first time point, but increased significantly eight hours after the

gavage. As phospholipids are important components of HDL

lipoproteins, the increase observed at the 8-hour time point

suggests that these particles may have undergone important

changes. To address this issue, HDL from rats receiving the olive

oil were isolated and characterized. To test the quality of HDL,

equal amounts of protein were loaded onto a denaturing gel and

electrophoresed. Prepared HDL were devoid of albumin contam-

ination (data not shown) and did not need to be refloated.

Compared to the findings in fasted rats (Table 2), there were no

significant changes in cholesterol or in triglycerides in these

particles. However, HDL phospholipid content was significantly

increased, in agreement with the total values in plasma (Table 2).

When the lipoproteins were separated by FPLC and analyzed for

several components (Figure 2), no changes were observed for

APOA1 (Fig. 2A), total cholesterol (Fig. 2C), esterified cholesterol

(Fig. 2D) or phosphatidylcholine (Fig. 2E). However, there were

increases in APOA4 (Fig. 2B) and sphingomyelin (Fig. 2F), both in

lipid-poor HDL particles.

RNA analysis
To verify the tissue involvement and the potential coordinate

expression of apolipoproteins in several organs; liver, duodenum,

jejunum and ileum were analysed for their mRNA expressions.

Data in Tables 3 and 4 are expressed as arbitrary units referred to

the level of the appropriate reference gene [23]. Using this

experimental setting, a differential expression among intestinal

regions was observed. The most pronounced increases in genes

were observed in duodenum for Apoa1, Apoa4 and Sgms1 and the

Figure 1. Changes in hepatic steatosis in rats after gavage
administration of fat in the form of virgin olive oil. Represen-
tative micrographs (6400 magnification) of livers from fasted animals
(A) and 4 hours (B) and 8 hours (C) after receiving 5 ml of olive oil as a
bolus. Liver sections (4 mm) were stained with hematoxylin and eosin
and evaluated blindly. Morphometric changes in hepatic fat content (D)
and analysis of triglyceride (E) and cholesterol (F) contents in rats where
data are expressed as means 6 SD for each group. Statistical analysis to
evaluate dietary response was done using one-way ANOVA and the
Mann-Whitney U test as post hoc test. a, P,0.05 vs control and b

P,0.05 vs 4 h.
doi:10.1371/journal.pone.0055231.g001

Rat Postprandial High Density Lipoproteins
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Figure 2. Changes in postprandial lipoproteins in rats after gavage administration of fat in the form of virgin olive oil. After a 16-h
fast, male rats were subjected to oral gavage with virgin olive oil (16 ml kg21). Plasma lipoproteins were separated by FPLC and collected fractions
analyzed for APOA1 (A), APOA4 (B), total cholesterol (C), esterified cholesterol (D), phosphatidylcholine (E) and sphingomyelin (F). A representative
profile of one animal is shown. Fraction numbers 1–6 corresponded to VLDL/chylomicron remnants, 7–13 to low density lipoproteins, 14–18 to
cholesterol-rich HDL and 19–24 to cholesterol-poor HDL.
doi:10.1371/journal.pone.0055231.g002

Table 1. Time follow-up of rat plasma lipids following the
intake of 5 ml virgin olive oil as a fat gavage.

Group\ compounds Control (n = 5) 4 h (n = 5) 8 h (n = 5)

Cholesterol (mg/dl) 7064 6664 70612

Phospholipids (mg/dl) 85615 62615 155623a,b

Triglycerides (mg/dl) 862 2361a 40610a

Values are expressed as means 6 standard deviations. Statistical analysis was
done using non-parametric one-way ANOVA according to the Kruskal-Wallis
test and unpaired Mann-Whitney U test as post-hoc test. Superscripts (a vs
Control, b vs 4 h) indicate statistically significant differences (P,0.05).
doi:10.1371/journal.pone.0055231.t001

Table 2. Lipid composition of rat HDL following the
consumption of 5-ml bolus of virgin olive oil.

Group\ compounds Control (n = 5) 8 h (n = 5)

Cholesterol (mg/protein g) 128619 151612

Phospholipids (mg/protein g) 101615 178623a

Triglycerides (mg/protein g) 0.960.1 0.960.1

Values are expressed as means 6 standard deviations of 2 pools per group.
Statistical analysis was done using unpaired Mann-Whitney U test as post-hoc
test. Superscripts (a vs Control) indicate statistically significant differences
(P,0.05).
doi:10.1371/journal.pone.0055231.t002

Rat Postprandial High Density Lipoproteins
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latter two showing a time-dependent increase. In jejunum, there

were significant increases only in Apoa4, with no significant

changes between the two time points studied. No significant

changes were observed in ileum (Table 3). In liver (Table 4),

significant decreases were observed in Apoa1, Apoa2 and Apoa4

expression after gavage at both time points. Likewise, decreases

were also found for Apoe and Apoa1bp, although they were only

statistically significant 8 hours after the fat administration.

Expressions of enzymes phospholipase A2, group VII (platelet-

activating factor acetylhydrolase, Pla2g7) and paraoxonase/

arylesterase 1 (Pon1), involved in HDL anti-oxidant action, were

also explored and showed differing trends. While the former did

not experience any significant change, the latter was found to be

significantly decreased both 4 and 8 hours after the fat bolus.

Similar changes were detected for expression of genes associated

with lipid droplet dynamics, such as Syt1 and Cidec, with no change

in the former and reduced expression of the latter. Expressions of

enzymes phospholipid transfer protein (Pltp) and lecithin-choles-

terol acyltransferase (Lcat), and receptors Abca1, Abcg1 and Scarb1,

which participate in HDL metabolism, were also studied. While

Lcat and Abca1 expression did not experience any significant

change, Abcg1, Pltp and Scarb1 mRNA levels were significantly

decreased after gavage at both time points.

To verify whether the response of these gene expressions was

co-ordinately regulated, an analysis of the association between

gene expressions (Figure 3A) was carried out. Indeed, Apoa1

expression was associated with that of Apoa4 (r= 0.94, P,0.00),

Abcg1 (r= 0.77, P,0.001), Pltp (r= 0.63, P,0.01), Pon1 (r= 0.63,

P,0.01) and Apoa2 (r= 0.51, P,0.05). Apoa2 was associated with

Apoe (r= 0.86, P,0.00), Apoa1bp (r= 0.85, P,0.00), Pltp (r= 0.57,

P,0.02), Pon1 (r= 0.57, P,0.03) and Apoa4 (r= 0.51, P,0.05).

Apoa4 was associated with Abcg1 (r= 0.88, P,0.000), Pltp

(r= 0.61, P,0.02) and Pon1 (r= 0.59, P,0.02). Apoe was

associated with Apoa1bp (r= 0.78, P,0.001). These associations

suggest that the mRNA of all these apolipoproteins may share

some regulatory mechanisms under the proposed experimental

approach. To further characterize the existence of a common

compound, associations were carried out with hepatic cholesterol

and triglycerides as well. Hepatic gene messengers (Abcg1, Apoa1,

Apoa2, Apoa4, Apoe, Pltp, Pon1 and Scarb1) corresponding to HDL

components were negatively correlated with hepatic triglycerides

while only Apoa1, Apoa2, Apoa4, Pltp, Pon1 and Scarb1 were

negatively associated with cholesterol.

Effects of CP-346086 and tyloxapol on postprandial
serum lipid and mRNA levels

To explore the transformation of chylomicrons into HDL, two

in vivo approaches were used: one to inhibit the loading of

triglycerides by the action of the microsomal transfer protein

(MTP) inhibitor, CP-346086, [24] and the other involving

inhibition of plasma lipoprotein lipase by tyloxapol [25]. Using

the MTP inhibitor at a dose of 500 mg/kg, a significant reduction

in plasma triglyceride concentration occurred 8 hours after gavage

with olive oil (Fig. 4 C) with no changes in cholesterol or

phospholipids (Fig. 4 A and B). Based on FPLC analysis of

lipoprotein at the 8-hour time point, this decrease corresponded to

VLDL (Fig. 5 H). Based on the shift to the left observed in the

FPLC profile and corresponding to larger particles, CP-346086

treatment induced a larger HDL particle, as revealed by

measuring APOA1 (Fig. 5 A), APOA4 (Fig. 5 B), that had a

higher amount of total cholesterol (Fig. 5 C), mainly esterified

cholesterol (Fig. 5 D), and phosphatidylcholine (Fig. 5 F). No

variation in sphingomyelin was observed (Fig. 5G). Taken

together, these observations indicate that CP-346086 administra-

tion decreases the intestinal triglyceride loading and influences

postprandial composition of HDL. These changes in HDL

characteristics were not observed in either intestinal (Table 5) or

hepatic (data not shown) Apoa1 or Apoa4 mRNA expressions.

Table 3. Changes in gene expression in small intestine fragments following gavage of 5 ml of virgin olive oil.

Duodenum Jejunum Ileum

Group\ Genes Control 4 h 8 h Control 4 h 8 h Control 4 h 8 h

Apoa1 1.360.8 38649a 42622a 1.160.5 1.560.9 1.360.9 1.460.5 0.860.5 0.760.6

Apoa4 0.860.9 27638a 88641a,b 1.060.5 3.662.6a 2.861.8a 1.961.1 2.262.0 2.062.0

Sgms1 1.160.6 20628a 56615a, b 1.561.5 4.763.7 5.063.7a 2.161.6 2.061.5 0.560.6a

Values expressed as means 6 standard deviations. Data represent arbitrary units obtained with the RT-qPCR normalized to Tbp, Ubc and Hprt expressions for
duodenum, jejunum and ileum, respectively. Statistical analysis was done using non-parametric one-way ANOVA according to Kruskal-Wallis test and unpaired Mann-
Whitney U-test as post-hoc test. Superscripts (a vs Control, b vs 4 h) indicate statistically significant differences (P,0.05).
doi:10.1371/journal.pone.0055231.t003

Table 4. Time follow-up of hepatic gene expression following
gavage with 5 ml of virgin olive oil gavage.

Group\ Genes Control 4 h 8 h

Abca1 1.962.0 1.862.4 1.361.1

Abcg1 1.160.4 0.460.3a 0.360.3a

Apoa1 1.960.7 0.460.1a 0.760.4a

Apoa2 1.060.5 0.560.3a 0.260.2a

Apoa1bp 1.160.5 0.760.3 0.460.3a

Apoa4 1.160.4 0.460.2a 0.460.3a

Apoe 1.260.9 0.860.7 0.360.2a

Cidec 1.160.7 0.560.2a 0.460.2a

Lcat 0.960.5 0.660.3 0.760.3

Pla2g7 1.060.3 1.360.7 1.260.4

Pltp 1.060.3 0.560.1a 0.360.1a

Pon1 1.260.9 0.460.2a 0.360.2a

Scarb1 1.160.5 0.560.2a 0.360.1a

Syt1 1.060.1 1.160.1 1.160.1

Values are means 6 standard deviations. Data represent arbitrary units
obtained with the RT-qPCR normalized to Rn18s. Statistical analysis was done
using non-parametric one-way ANOVA according to Kruskal-Wallis test and
unpaired Mann-Whitney U-test as post-hoc test. Superscripts (a vs Control)
indicate statistically significant differences (P,0.05).
doi:10.1371/journal.pone.0055231.t004

Rat Postprandial High Density Lipoproteins
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After treatment with tyloxapol, virgin olive oil-fed rats exhibited

an accumulation of triglycerides in their plasma that became

statistically significant four hours after feeding (Fig. 4 C).

Cholesterol and phospholipids showed the same pattern (Fig. 4

A and B). Blocking lipoprotein lipase activity with tyloxapol had a

profound impact on APOA1-containing particles, which nearly

disappeared (Fig. 5 A), and decreased HDL APOA4 (Fig. 5 B).

These changes were independent of intestinal and hepatic mRNA

levels (Table 5) since there were significant increases in jejunal

Apoa1 and duodenal Apoa4 messengers and no changes in hepatic

Apoa1 or Apoa4 mRNA expression (data not shown). In contrast,

accumulation of cholesterol (Fig. 5 C) -mainly as free cholesterol

(Fig. 5 E)-, phosphatidylcholine (Fig. 5 F) and sphingomyelin (Fig. 5

G) in VLDL and LDL size fractions explained the increase

observed in total plasma levels in rats receiving this agent (Fig. 4).

In this experimental approach intestinal Smgs1 expression was not

modified in concordance with plasma sphingomyelin levels

(Table 5).

Overall, these experiments indicate that tyloxapol increases

plasma triglycerides coming from intestinal loading and that

APOA1-containing particles are severely influenced by absence of

activity of lipoprotein lipase. This change in HDL characteristics

was not associated with hepatic and intestinal Apoa1 or Apoa4

mRNA expressions.

Discussion

The present study was designed to verify the influence of an

acute dose of fat, delivered as gastric bolus, on HDL composition

at different time points, and the implications of different organs in

the possible changes in a model lacking CETP. As expected,

plasma triglycerides increased after fat ingestion and, interestingly,

HDL showed enrichment of phospholipid content that was

reflected in total plasma phospholipids. The increase was mainly

Figure 3. Correlation matrices. Panel A shows the correlations
among hepatic mRNA expressions, and panel B represents those found
among hepatic mRNA expressions, cholesterol and triglycerides.
Correlations were calculated according to the Spearman test.
doi:10.1371/journal.pone.0055231.g003

Figure 4. Effect of CP-346086 or tyloxapol administration to
rats on postprandial serum lipid levels at different time points.
Male rats were fasted overnight and administered vehicle, CP-346086
(500 mg/kg i.p.) or tyloxapol (700 mg/kg i.p.). One hour later, they were
subjected to gavage with 5 ml of virgin olive oil, and serum cholesterol
(A), phospholipids (B) and triglycerides (C) were determined at the
indicated time points. Values are expressed as the mean and SD of 7
animals for each group. Statistical analysis to evaluate dietary response
was done using one-way ANOVA and the Mann-Whitney U test as post
hoc test. a, p,0.05 and A p,0.01 for MTP vs control; b, p,0.05 and B
p,0.01 for tyloxapol vs control; and c p,0.05 and C p,0.01 for MTP vs
tyloxapol.
doi:10.1371/journal.pone.0055231.g004

Rat Postprandial High Density Lipoproteins
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Figure 5. Effect of CP-346086 or tyloxapol administration to rats on postprandial lipoprotein profile at eight hours. Rats were fasted
overnight and administered vehicle, CP-346086 or tyloxapol. One hour later, they received a gavage dose of virgin olive oil and were sacrificed
8 hours after feeding. A representative profile of lipoprotein distribution according to APOA1 (A), APOA4 (B), total cholesterol (C), esterified
cholesterol (D), free cholesterol (E), phosphatidylcholine (F), sphingomyelin (G) and triglyceride (H) contents.
doi:10.1371/journal.pone.0055231.g005

Table 5. Effect of CP-346086 or tyloxapol administration to rats on intestinal gene expression 8 hours after of 5 ml virgin olive
gavage.

Duodenum Jejunum

Group\ Genes Control CP-346086 Tyloxapol Control CP-346086 Tyloxapol

Apoa1 1.361.6 2.362.1 3.162.3 1.260.7 1.761.0 3.862.3a

Apoa4 1.361.9 2.360.4 3.261.9a 1.361.0 1.561.2 2.261.4

Sgms1 1.661.4 2.061.3 1.661.1 1.060.9 1.661.4 1.561.1

Rats were fasted overnight and administered vehicle (control group), CP-346086 or tyloxapol. One hour later, they received a gavage dose of virgin olive oil and were
sacrificed 8 hours after feeding. Values are means 6 standard deviations of 7 rats. Data represent arbitrary units obtained with the RT-qPCR normalized to Tbp and Ubc
expressions for duodenum and jejunum, respectively. Statistical analysis was done using non-parametric one-way ANOVA according to Kruskal-Wallis test and unpaired
Mann-Whitney U-test as post-hoc test. Different superscripts (a vs Control) are significantly different from each other at P,0.05.
doi:10.1371/journal.pone.0055231.t005

Rat Postprandial High Density Lipoproteins
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due to an increase in sphingomyelin, carried by lipid-poor HDL

particles containing APOA4, and associated with increased

expression of its Golgi biosynthetic enzyme Sgms1 in duodenum.

Plasma APOA4 levels are reflected in the increased expression of

the mRNA of this protein in duodenum and jejunum. Hepatic and

intestinal Apoa1 and Apoa4 mRNA expressions showed opposing

patterns between these organs, and highly associated expressions

in liver. Administration of CP-346086 and tyloxapol had little

impact on hepatic Apoa1 and Apoa4 mRNA expressions despite the

profound changes in plasma TG, APOA1 and HDL.

The postprandial state was induced by administration of fat by a

gavage dose of virgin olive oil as a single constituent. This

approach had been used previously by our group in mice [13] and

rats [22], and by others [26,27,28], and was well tolerated in both

animal models. The present experimental design avoids potential

confounding introduced by other components and enables

dissection of the effects of the fat, as a single component, on the

process [8]. Furthermore, the 16 ml olive oil/kg used, assuming

that the rat metabolic rate is tenfold higher than the human, would

represent a 1.6 ml/kg and for a 70 kg subject, a supply of 112 g of

fat; an amount easily used in postprandial human studies [8]. Our

endeavour is particularly relevant to explore phenotype charac-

teristics of models lacking genes where compensatory mechanisms

may arise and stressful situations are required [13]. In this regard,

the recent incorporation of transgenic and knock-out technology

to rat genetics will promote a renewed interest in the use of this

animal [29,30] and our approach may be a useful test for this

animal. In contrast, a potential limitation of this approach is the fat

bolus accounted for 112% of daily calorie intake, which is not

physiological in current nutrition.

The selective enrichment of HDL with phospholipids, together

with the modification of fatty acid composition, the latter

resembling that of incoming fat (data not shown), and the

increased mRNA expressions of Apoa1 and Apoa4 in duodenum

and jejunum suggest a selective origin from these sources. Further

support for this notion is obtained from the decreased mRNA

expressions of hepatic Abcg1, Apoa1, Apoa2, Apoa4, Apoe, Pltp, Pon1

and Scarb1 particularly as plasma APOA4 was increased mainly in

lipid-poor HDL. Moreover, blocking the lipoprotein lipase activity

using tyloxapol prior to gavage induced elimination of APOA1-

containing particles but not of APOA4. These actions were

independent of intestinal mRNA expressions which were increased

or not modified (Table 5). The dramatic reduction in APOA1-

containing particles would be in agreement with results in

lipoprotein lipase knock-out mice [11] and in humans with low

activity of this enzyme [31] but the less severe observation for

APOA4-containing particles would indicate that not all nascent-

particles are equally sensitive to this enzyme action. On the other

hand, using CP-346086 as an MTP inhibitor, produced a

substantial decrease in plasma TG observed with no change in

hepatic and intestinal Apoa4 gene expressions. Overall, these

findings suggest a coordinated regulation between liver and

intestine exerted at the mRNA level but independent of plasma

triglyceride and intestinal posttranscriptional mechanisms.

Regional differences were observed among intestinal expres-

sions of apolipoprotein gene in response to gavage with virgin olive

oil. In this regard, duodenal Apoa4 expression increased in a time

dependent manner (Table 3), while the jejunal increase in terms of

this gene message was independent of time. These results are

consistent with the data of other authors [26,32,33] for the

proximal segments of intestine. The basal expression of Apoa1 and

Apoa4 has been reported to be higher in jejunum than in

duodenum and ileum [34]. However, in our experimental

approach, duodenum was the site of the greatest increases in the

expressions of these genes. Indeed, some authors have claimed a

saturation in Apoa4 jejunal expression at dietary 80 mmol [26],

which could explain the less marked response observed in our

experimental design using 5500 mmol of triolein. The absence of

changes in ileum would be consistent with an ileal blokage

executed by nervous signals after fat feeding [35] or compensatory

responses of other intestinal segments [36], and would be

particularly relevant at triolein intake higher than 1100 mmol

[37]. Overall, these data indicate an important role of intestine in

providing apolipoproteins for HDL after a fat loading, particularly

APOA4. This aspect has been not considered in many studies

more focused on APOA4 levels [26,37], their satiating properties

[27,38,39] or their antioxidant and antioxidant properties [40,41].

Another interesting observation from our work is the increase in

sphingomyelin in lipid-poor HDL containing APOA4, a finding

that reinforces the observation published by Duverger et al. [42]

that LpA-IV contained more sphingomyelin, and it supports the

notion that this particle is a postprandial phenomenon. When our

group cloned the pig SGMS1 gene, we observed a high intestinal

expression [43], and we have now found that its intestinal

expression increases postprandially. Recently, genetic manipula-

tion of sphingomyelin synthases 1 and 2 has been proved to

regulate plasma sphingomyelin levels [44,45]. Likewise, several

environmental conditions have been found to modified plasma

sphingomyelin (SM). In this regard, dietary casein significantly

raised the amount of sphingomyelin in the VLDL fraction and

lowered that of HDL in rats. These findings were explained by

enhanced rates of biosynthesis and reduced rates of degradation in

the liver. The opposite action was reported when pectin was the

source of protein. Dietary cholesterol has also been shown to

increase plasma sphingomyelin by down-regulating hepatic

activity of acid sphingomyelinase in the liver [46,47,48]. Com-

pared to coconut oil, olive oil lowered plasma sphingomyelin levels

by enhancing hepatic catabolism [49]. In humans, fish oil

supplementation has been shown to increase HDL sphingomyelin

[50,51]. Our data indicate a postprandial rise in sphingomyelin by

increasing intestinal Sgms1 expression. This finding represent a

new element of regulation and would be in agreement with the

Nilsson and Duan’s suggestion that plasma SM increases when

plasma lipoprotein pools expand in response to large lipid loads or

metabolic abnormalities [52]. Sphingomyelin has proposed to be a

physiological inhibitor of cholesterol esterification in the plasma,

by virtue of its competition with phosphatidylcholine, the acyl

donor for the lysolecithin acyltransferase (LCAT) reaction [53]. It

may also inhibit lipoprotein lipase and the interaction of

lipoproteins with receptors [52]. These would be in agreement

with our data of the tyloxapol experiment when an increase in

VLDL/remnant chylomicron sphingomyelin was associated with

an increase in free cholesterol (Figure 5). However, the opposite

effect of APOA4-containing HDL with higher content of

sphingomyelin as a stimulatory of LCAT activity [42]and the

cellular efflux [54] has also been reported to. In this regard, our

increase in HDL sphingomyelin following the postprandial

regimen (Figure 2) was not reflected in changes in esterified

cholesterol. Overall, these data are indicating that the source of

lipoproteins containing sphingomyelin may be important regard-

ing the global effect of this phospholipid.

The close correlations noted in hepatic gene expressions of

Abcg1, Apoa1, Apoa2, Apoa4, Apoe, Pltp and Pon1 genes add an

additional feature of a potential common regulatory mechanism

under the forced choice of this experimental design. Interestingly,

all these hepatic gene messages were negatively correlated with

hepatic triglycerides (Fig. 3B). This fact indicates that these

compounds would drive the hepatic transcription of these genes. A
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particular limitation of this study could be the use of a single

dietary component such as olive oil, taking into consideration that

other dietary components (vg cysteine) may be involved in HDL

and APOA1 regulation [55].

In conclusion, a selective lipid and apolipoprotein composition

of HDL is modulated by gavage administration of fat in the form

of virgin olive oil. Changes at the mRNA levels in liver, duodenum

and jejunum are involved. The opposite nature of the changes in

the liver and intestine in terms of Apoa1 and Apoa4 points to the

latter organ as the main source of lipoproteins responsible for the

increase in postprandial plasma APOA4. The decreases observed

in hepatic Abcg1, Apoa2, Apoe, Pltp, Pon1 and Scarb1 also corroborate

this effect. Furthermore, the close correlation among hepatic

expressions of all HDL hepatic components suggests an orches-

trated regulation of them, not necessarily dependent on plasma

triglyceridemia. Further research is necessary to gain more insight

into the proposed mechanisms and to achieve a complete picture

of them.

Materials and Methods

Rats
Male Wistar rats, weighing 250–300 g (purchased from Charles

River, Barcelona, Spain), were used for experiments. Rats, housed

in sterile filter-top cages (3–4 per cage), were acclimatized in a

room maintained at 20uC with a 12-h light-dark cycle for 10 days,

allowed ad libitum access to water and standard chow diet (Pascual

S.A., Barcelona, Spain), and fasted for 18 h before experiments.

Animals were handled and killed always observing criteria from

the European Union for care and use of laboratory animals in

research, and the protocol was approved by the Ethics Committee

for Animal Research of the University of Zaragoza.

Experimental design
Postprandial assay. A baseline fasting blood sample was

obtained from tail vein. Blood samples were collected in heparin-

coated capillary tubes and centrifuged at 2000 g for 5 min. The

plasma obtained was maintained at 4uC for immediate triglyceride

analysis and used for randomization of rats into three groups of 5

each. The control group did not receive any fat meal. The other

two groups were fed 5 ml of extra virgin olive oil (Aceites Toledo,

Spain) as a bolus and sacrificed 4 and 8 hours after the feeding,

respectively. This amount represents the use of a dose of 16 ml

olive oil/kg (112% of daily calories), sufficient to induce a plasma

postprandial response in rat and to evaluate absorption without

the use of radioactivity [22].The fatty acid composition of the olive

oil, shown in Table S1, indicates that oleic acid was the main fatty

acid component. Olive oil was administered directly to stomach

using a 1.1-mm diameter, 50-mm-long flexible Abbocath

connected to a sterile polypropylene syringe and delivered in

4 seconds. At the moment of sacrifice, rats were anesthetized with

1 ml of 8% Avertine (Aldrich Chemical Co., Madrid, Spain) in

0.1 M phosphate, pH 7.2, and blood drawn from hearts. Blood

was collected in tubes containing 1 g/l sodium EDTA. Liver and

small intestine were removed and quickly frozen in liquid N2 until

total RNA was extracted.

Postprandial assay in presence of lipoprotein lipase and

microsomal triglyceride transfer protein inhibitors. An

18-hour-fasting blood sample was obtained from tail vein. Then,

three groups of 7 male rats were established and intraperitoneally

injected: the first group (control) with 0.5 ml of PBS, the second

with an identical volume containing the lipoprotein lipase

inhibitor, Tyloxapol (Sigma), to provide a dose of 700 mg/kg

per animal [25], and the third group with a solution containing the

microsomal triglyceride transfer protein inhibitor, CP-346086

(Sigma) [24], at 500 mg/kg. One hour later, all animals underwent

gavage with 5-ml extra virgin olive oil (Aceites Toledo, Spain).

Blood samples from tail vein were obtained at 2, 4 and 8-hours

post-feeding. At the latter time point, animals were euthanized and

liver and small intestine were removed and quickly frozen in liquid

N2 until total RNA was extracted.

Lipid and lipoprotein analyses
Total plasma cholesterol, triglyceride (corrected for free

glycerol) and phospholipid concentrations were quantified enzy-

matically in a microtiter assay using commercial kits from Sigma

Chemical Co. (Madrid, Spain) and Roche (Barcelona, Spain).

Cardiolipid (Sigma) was used as quality control.

Lipoprotein fractions were prepared from 2 pools of fresh

plasma samples of (5 animals per group) by ultra centrifugation in

a Kontron T-2060 using a Kontron TST 41.14 rotor and based on

a combination of the methods proposed by [56] and [57]. First,

chylomicrons were removed by ultra-centrifuging 12 ml of plasma

at 40,000 rpm for 30 min at 4uC. Then, 2 ml of the CM-depleted

plasma were mixed with 0.77 g of NaBr to reach a final density of

1.44 g/ml, and Sudan Black (0.2 mg/ml in dimethyl sulfoxide)

was added. Next, a sodium-bromide discontinuous gradient

(2.2 ml of d = 1.389, 1 ml of d = 1.210, 3 ml of d = 1.100, 2 ml

of d = 1.063, 2 ml of d = 1.019 and 1 ml d = 1.006 g/ml) was

carefully layered and used to separate very-low-density lipopro-

teins, intermediate-density lipoproteins, low-density lipoproteins

and high-density lipoproteins by ultracentrifugation (40,000 rpm

for 22 h, at 4uC). Ultracentrifuge tubes were sliced, each volume

fraction was collected and NaBr eliminated by centrifugation in

Centricon tubes number 10, pore size 10K (Amicon Inc. Beverly,

MA, USA). The density of the efflux was measured using a

refractometer to estimate the buoyant density for each fraction and

the values obtained were similar to those previously reported [58].

Concentrations of HDL cholesterol, triglycerides and phospholip-

ids were determined as described above. Protein content was

quantified by Bradford’s method [59]. Quality of HDL was

assessed by electrophoresis of 15 mg of protein fraction on 4–22%

polyacrylamide gel, run at 85V for 18 h, and stained with

Coomassie brilliant blue-R, or with silver stain [60] when more

sensitivity was required. Images were acquired by Gel Doc 1000

and analyzed using Quantity OneH software version 4.5.0 (Biorad,

Madrid, Spain).

Plasma lipoprotein profile was also determined in 100 ml of

plasma samples by fast protein liquid chromatography (FPLC) gel

filtration [61] using a Superose 6B column (Amersham Pharmacia,

Barcelona, Spain), and the total cholesterol in each fraction was

measured using a fluorometric method (Amplex Red, Molecular

Probes, USA). Free cholesterol was estimated with the fluorimetric

assay omitting cholesterol esterase and esterified cholesterol as the

difference between total and free cholesterol forms. Apolipopro-

teins (APOA1 and APOA4) were quantified by ELISA using

specific polyclonal antibodies (Biodesign, Saco, ME, and Santa

Cruz Biotechnology, Santa Cruz, CA, USA), as previously

described [62]. Phosphatidylcholine and sphingomyelin were

determined using the enzymatic procedure of Hojjati et al. [63]

coupled to fluorometric detection as described by He et al. [64].

Histological analysis
A sample of liver from each rat was stored in 4% buffered

formaldehyde and embedded in paraffin. Sections (4 mm) were

stained with hematoxylin and eosin and observed using a Nikon

microscope, and images were captured with Nikon camera. The

surface area of lipid droplets was quantified in each liver section
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with Adobe Photoshop CS2 and expressed as percentage of total

liver section [65].

Hepatic lipid analysis
Tissues (10 mg) were homogenized in 1 ml of PBS. An aliquot

was saved to determine protein concentration by the BioRad dye

binding assay (BioRad, Madrid, Spain). One volume of homog-

enate was extracted twice with two volumes of chloroform:

methanol (2:1). The separated organic phases of each animal were

combined and evaporated under N2 stream. Extracts were

dissolved in 100 mL of isopropanol to estimate cholesterol and

triglyceride concentrations using commercial kits as mentioned

above.

RNA isolation
RNA was isolated using Tri reagent (Sigma). Contaminant

DNA was removed by TURBO DNAse treatment from AMBION

(Austin, TX, USA). RNA was quantified by absorbance at

A260/280 (the A260/280 ratio was greater than 1.75). The integrity

of samples was verified by the 28S/18S ratio of ribosomal RNAs

and the RNA integrity number (Agilent 2100 Bioanalyzer). No

significant differences were observed among the groups tested for

either index [23].

Quantification of mRNA
Equal amounts of DNA-free RNA from each sample of each

animal were used in reverse transcriptase-quantitative polymerase

chain reaction (PCR) analyses. First-strand cDNA synthesis and

the PCR reactions were performed using the Power SYBRH
Green (Applied Biosystems, Foster City, CA), according to the

manufacturer’s instructions and as previously described [66].

Primers were designed by Primer ExpressH (Applied Biosystems)

and checked by BLAST analysis (NCBI) to verify specificity and

selective amplification of the target gene, as well as to amplify

cDNA but not genomic DNA. The characteristics, according to

MIQE guidelines [67], are shown in Table S2. Real time PCR

reactions were performed in an ABI PRISM 7700 Sequence

Detector (Applied Biosystems) following the standard procedure.

The specificity of the PCR reaction was confirmed by observing a

single dissociation curve. The relative amount of all mRNAs was

calculated using the comparative 22DDCq method. After a careful

evaluation of reference genes, Rn18s, Tbp, Ubc and Hprt were used

to normalize gene expression changes for liver, duodenum,

jejunum and ileum, respectively [23].

Statistical analysis
The results are expressed as means 6 SD. Comparisons were

made using one-way ANOVA and the Tukey-Kramer multiple

comparison test (post hoc) when the distribution of the variables was

normal. When the variables did not show such a distribution

(according to the Shapiro-Wilk test), or failed to show homology of

variance, comparisons were calculated by the Mann-Whitney U

test. Correlations between variables were sought using the Pearson

or Spearman correlation coefficients. SPSS version 15.0 (SPSS

Inc, Chicago, IL) and Instat 3.02 software packages for Windows

(GraphPad, S. Diego, CA, USA) were used for calculations.

Significance was set at P#0.05.

Supporting Information

Table S1 Fatty acid composition of virgin olive oil.

(DOCX)

Table S2 Nucleotide sequence of primers used for RT-qPCR

according to MIQE guidelines.

(DOCX)
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