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Abstract: Perinatal brain injury is a major cause of morbidity and long-standing disability in
newborns. Hypothermia is the only therapy approved to attenuate brain injury in the newborn.
However, this treatment is unfortunately only partially neuroprotective and can only be used to treat
hypoxic-ischemic encephalopathy in full term infants. Therefore, there is an urgent need for adjunctive
therapeutic strategies. Post-ischemic neuro-inflammation is a crucial contributor to the evolution of
brain injury in neonates and constitutes a promising therapeutic target. Recently, we demonstrated
encouraging neuroprotective capacities of anti-cytokine monoclonal antibodies (mAbs) in an
ischemic-reperfusion (I/R) model of brain injury in the ovine fetus. The purpose of this review
is to summarize the current knowledge regarding the inflammatory response in the perinatal sheep
brain after I/R injury and to review our recent findings regarding the beneficial effects of treatment
with anti-cytokine mAbs.

Keywords: brain; cytokines; ischemia reperfusion; neuro-inflammation; ovine fetus; monoclonal antibodies

1. Introduction

Hypoxic-ischemic (HI) brain injury is the most significant common neurologic problem occurring
during the perinatal period [1]. HI injury can result in significant mortality and long term neurological
sequelae including cognitive, behavioral, and intellectual deficits [2–5]. Therapeutic hypothermia
or targeted temperature management is the only effective neuroprotective strategy available to
attenuate secondary cerebral insults associated with hypoxic-ischemic encephalopathy (HIE). However,
hypothermia is only approved to treat newborns, who are 36 weeks of gestation or greater with HIE.
In addition, hypothermia is only partially neuroprotective and surviving neonates with moderate
to severe HIE remain at risk of dying or developing significant neurodevelopmental impairment,
emphasizing the need for additional adjunctive therapeutic strategies [6–9].

Multiple complex processes occur in the brain after ischemic-reperfusion (I/R) related
injury including excitotoxicity, oxidative stress, free radical and inflammatory mediator release,
and blood-brain barrier (BBB) dysfunction [10–12]. The responses to I/R evolve over time,
are interdependent, and result in neuronal and glial injury and cell death. Post-ischemic inflammation
represents a critical component in the evolution of brain injury [13–16]. The inflammatory
response begins within hours after an ischemic insult but can last from days up to weeks after
the insult. Pro-inflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-1β
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(IL-1β), and interleukin-6 (IL-6) can be released within the systemic circulation and locally within
the central nervous system (CNS) parenchyma. Elevated cytokines within the brain parenchyma can
originate locally from stimulated intrinsic cells within the brain including activated cerebrovascular
endothelium, from infiltrated cells having originated in the systemic circulation and/or by crossing
the normal or injured BBB. Cytokines can then stimulate or amplify inflammatory cascades within
the CNS. Activation of cytokine signaling pathways can result in sustained inflammation that could
accentuate the ischemic damage. Inflammation has been shown to affect brain development with
long-lasting consequences predisposing to neurologic disorders [13,17,18]. Strategies to attenuate
secondary damage resulting from CNS inflammation could have a potentially wider therapeutic
window compared with therapies that target primary damage immediately after an ischemic insult.
Consequently, accumulating evidence suggests that targeting pro-inflammatory cytokines could
represent a potentially important neuroprotective strategy to treat perinatal HI injury [10,19–22].
However, caution needs to be exercised when considering cytokines as therapeutic targets because
their roles remain controversial as they have both favorable and detrimental effects within the
CNS [23,24]. The immune system is a dynamic contributor to wound healing and at least some
inflammation is critical in the early stages of CNS injury to remove damaged tissue and promote
tissue remodeling [25]. Moreover, maternal cytokines that cross the placenta are important to the
establishment and maintenance of pregnancy, as well as for normal fetal development [26–31].

The sheep fetus has been widely used to examine many aspects of brain development [32–35]
as the neurodevelopment of the immature sheep brain has many similarities to those of premature
neonates [36–39]. Sheep pregnancy at full term is considered to be 145–150 days gestation. The fetal
sheep brain between 94 and 96 days of gestation is considered similar to that of the preterm human
infant between 24 and 28 weeks of gestation, whereas the fetal sheep brain at approximately 135 days
of gestation is similar to that of a full term infant [32,39]. Therefore, the ovine fetus represents a very
useful well established translational model to study HI injury in the preterm and full-term brain.
We have formerly described white matter and cortical injury resulting from bilateral carotid artery
occlusion in the ovine fetus [40]. In this context, we have examined the effects of in utero brain ischemia
on inflammatory responses in order to develop therapeutic strategies using neutralizing anti-cytokine
monoclonal antibodies (mAbs). We produced and purified specific and sensitive mouse anti-ovine
IL-1β and -IL-6 mAbs for use in fetal sheep that effectively neutralized the effects of the corresponding
proteins [41–43]. The purpose of this review is to summarize our findings in the ovine fetal model
of I/R induced brain injury and our advances in the progress with two potentially neuroprotective
anti-cytokine antibodies.

2. Inflammation Associated with Ischemic-Reperfusion Injury in the Ovine Fetal Brain

Inflammation with the release of pro-inflammatory cytokines is central to the progression of the
brain injury after HI [13–16]. Both the peripheral and CNS immune systems contribute to the activation
of brain inflammation after HI. IL-1β and IL-6 have been identified as important pro-inflammatory
cytokine intermediaries involved in inflammatory responses after HI [44]. Evidence suggests that
inflammatory proteins such as IL-1β can alter neuronal function and synaptic transmission in acute as
well chronic inflammatory conditions [45,46].

2.1. Cytokine Expression in the Developing Brain

IL-1β and IL-6 exhibit differential patterns of regional expression in the ovine fetal brain during
development [47]. The constitutive expression of IL-1β increased in the cerebral cortex from early in
fetal life (87–90 days of gestation) up to near term gestation (135–137 days of gestation). The expression
of IL-6 also increased in white matter during fetal development and exhibited upregulation in the
cerebral cortex at 122–127 days of gestation. In addition, gestational age- and brain region-dependent
variations in the expression patterns of IL-1β and IL-6 were observed with increasing gestation in the
brains of the pregnant ewes. The increases in IL-1β and IL-6 expression in the CNS of the ewes during
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gestation suggest that cytokines could contribute to interactions between the maternal immune and
reproductive systems, and that these interactions could include functions within the normal maternal
brain during pregnancy [47]. In summary, these findings suggest a key role for cytokines during
normal fetal brain development, during normal pregnancy in the maternal brain, and in pregnancy
maintenance [26–31].

Changes in IL-1β, IL-6, and the high-mobility group box-1 (HMGB1) cytokines were also observed
after ischemia in the brains of the fetal sheep [47–52]. Ischemia resulted in increases in the expression
of IL-1β and IL-6 in the white matter and of IL-1β in the cerebral cortex after 30 min of bilateral
carotid artery occlusion followed by 48 h or 72 h of reperfusion in utero [47]. HMGB1 is a nuclear
protein, which is translocated from the nucleus to the cytoplasm and released after ischemia in the
brain of adult rodents, thereby augmenting the inflammatory response [53,54]. We have recently
reported that ischemia results in the neuronal translocation of HMGB1 from the nuclear to cytoplasmic
compartment in the brain of fetal sheep [48]. The translocation may facilitate the action of HMGB1
as a pro-inflammatory cytokine and serve to accentuate HI injury in the developing brain. Therefore,
several pro-inflammatory cytokines exhibit upregulation after ischemia in the brain of fetal sheep.
These observations emphasize that the cytokines could be important mediators of HI-related brain
injury during the perinatal period. We cannot be certain of the specific cellular origin of the cytokines
in our studies. However, microglia and astrocytes are the two major reactive glial cell types that
play significant roles during CNS injury [13]. Pro-inflammatory cytokines are produced by both
intrinsic and infiltrating immune cells. Circulating immune cells including neutrophils infiltrate the
brain parenchyma to further exacerbate the inflammatory response and consequently exacerbate
brain injury. The infiltration of leukocytes is facilitated by chemokine secretion and the expression
of adhesion molecules at the endothelial cell surface. Moreover, neutrophils that aggregate in the
cerebral microvasculature can interfere with cerebral circulation and potentially further exacerbate
brain injury [16]. Although the upregulation of pro-inflammatory cytokines in the brain could result
from increases in local production by activated glia cells, neurons, and microvascular endothelial cells,
it could also result from increases in systemic circulating levels of cytokines along with increased
transport across the BBB after ischemia. In the ovine model of repetitive umbilical cord occlusions,
similar inflammatory responses were observed in the fetal brain. IL-1β expression was increased in
blood up to 24 h after exposure to repetitive umbilical cord occlusions and microglia counts were
increased in the white matter and hippocampus at 24 h [55]. Other studies also demonstrated the
central activation of microglia associated with systemic inflammation and the influx of neutrophils
into the brain after 25 min of umbilical cord occlusion in fetal sheep [56–59].

2.2. Blood-Brain Barrier Dysfunction

The BBB is primarily composed of microvascular endothelial cells that comprise the brain capillary
walls but it has very specific features that result from close interactions with other brain cells that
constitute the neurovascular unit including pericytes, astrocytes end foot processes, and basement
membranes [60,61]. The BBB regulates the exchanges between the brain and blood to provide
an optimal environment for neuronal activity. Restriction of the entry of low molecular weight
molecules by paracellular diffusion is mainly due to tight junction (TJ) complexes that seal neighboring
microvascular endothelial cells [62]. Passage of essential nutrients into the brain is facilitated by a
wide variety of transporters and receptors that allow for the uptake of some large molecules and
small nutrients into the brain. These include the glucose transporter GLUT1 and the Solute Carriers
(SLC) for many amino acids [60]. Several studies, including our work on fetal sheep, have described
BBB dysfunction resulting in vasogenic edema after HI [49–51,63–65]. We have examined the BBB
permeability by calculation of the blood-to-brain transfer constant measured with α-aminoisobutyric
acid in the fetal sheep brain [66]. We demonstrated that BBB permeability was increased from 4 h up
to 48 h after brain ischemia, indicating the leakage of potential blood-borne neurotoxic constituents
into the brain parenchyma [51]. The expression of four TJ proteins (occludin, claudin 5, and accessory
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proteins zonula occludens ZO-1 and -2) was decreased 4 h after ischemia, consistent with the increases
in BBB permeability. However, we observed a partial recovery of BBB function, as well as a return
toward control levels for TJ protein expression, beginning at 24 h after reperfusion. This suggests
that BBB leakage is a transient phenomenon in the first few hours after the insult, followed by partial
restoration of the barrier function. Morphological analysis of the fetal cerebral cortex also revealed that
neovascularization occurs within 72 h after ischemia in the fetal brain [67]. Neovascularization was
associated with increases in cerebral cortical basic fibroblast growth factor and astrocytic proliferation.
Astrocytes represent vital components of the neuro-vascular unit [68,69]. This further supports the
contention that the cerebral vasculature begins to recover within days after an ischemic insult in the
fetal brain.

Perturbations in BBB function can also be mediated by changes in pro-inflammatory
cytokines [70,71]. Cytokines bind to their receptors at the endothelial cell surface and activate signaling
pathways to enhance endothelial abnormalities, leading to modifications in the physical barrier. In this
regard, we demonstrated that exposure to IL-6 protein for 24 h in vitro reduced TJ protein expression
(claudin-5 and occludin) in cerebral cortical microvessels from yearling and adult sheep [72]. However,
the specific signaling pathways involved in such regulation remain to be determined.

Likewise, microvascular endothelial cells are active participants in the neuro-immune response
by the transport of circulating pro-inflammatory cytokines [73–76]. There is a considerable quantity
of clinical evidence supporting the concept that elevated circulating pro-inflammatory cytokines
predispose to the development of brain damage in neonates [77,78]. In order for inflammatory
substances produced in the systemic circulation to reach the fetal brain, they need to cross the BBB of the
fetus [77]. Disorders such as systemic inflammation, sepsis, necrotizing enterocolitis, and mechanical
ventilation in the premature infant, which increase systemic pro-inflammatory cytokines, also result
in future brain injury in premature infants [79–81]. Although it has long been postulated that
systemic cytokines could gain access to the fetal brain by crossing the BBB, there was very little
experimental evidence to support this contention until our recent report [52]. We have shown that
systemic IL-1β crosses the intact BBB and that ischemia with reperfusion for four hours facilitates
the entrance of systemic IL-1β into brain parenchyma [52]. These findings confirmed our earlier
data showing that ovine IL-1β, as well as IL-6, was able to cross the murine BBB by the use of a
saturable transport mechanism [73]. The increase in cytokine transport across the fetal BBB after
ischemia might result from increases in paracellular BBB leakage after ischemia and/or increases
in receptor mediated transcellular transport [52]. Consequently, the changes in the BBB physiology
after I/R increase the availability of pro-inflammatory cytokines within the brain parenchyma [52].
Taken together, our observations in the ovine brain emphasize that BBB dysfunction represents a
central constituent of I/R related injury in the fetus, pro-inflammatory cytokines predispose to the
endothelial barrier dysfunction, and pro-inflammatory cytokines can cross the intact and injured BBB
in the fetus. Therefore, we have postulated, based upon the findings described above, that neutralizing
the detrimental effects of pro-inflammatory cytokines at the BBB and in the cerebral parenchyma could
represent a potentially beneficial strategy to attenuate perinatal brain injury after HI. The multiple
interactions between inflammatory mediators and BBB abnormalities after HI insult are schematically
represented in Figure 1.
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the endothelial cells surface. Altogether, these signals at the blood-brain barrier can trigger 
parenchymal brain injury. Resident immune cell activation is most likely an important component of 
this response in the brain. 
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Girard et al. used a rat model of perinatal brain injury combining prenatal LPS induced 
inflammation and postnatal hypoxia-ischemia [84]. The animals treated with the IL-1 receptor 
antagonist had both motor function and exploratory behavior preserved in the model. The myelin 
loss in the internal capsule and gliosis was also prevented in the animals that were treated [84]. 
Consistent with these findings, the neuroprotective effects of the immunosuppressive drug, 
minocycline, was thought to be mediated by the reductions in IL-1 synthesis after traumatic brain 
injury [85–87]. The findings in rodents summarized above emphasize the therapeutic potential of 
targeting the neuro-immune response to attenuate brain injury. The generation of mAbs is an 
effective and specific technique to block signaling pathways activated by a pro-inflammatory 
cytokine. Previous work has also demonstrated that anti-cytokine therapeutic strategies attenuate 
the effects of traumatic brain injury [88], stroke [54], and subarachnoid hemorrhage [89] in adult 
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Ovine-specific IL-1β and IL-6 proteins along with mAbs specific for these cytokines were 
successfully produced and purified [41,42]. The capacity of the mAbs to neutralize the cytokine 
inflammatory cascade was demonstrated in vitro in ovine splenic mononuclear cell cultures [43]. 
The pro-inflammatory effects of IL-1β and IL-6 proteins were characterized in mononuclear cells by 
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downstream signaling mediators characteristically upregulated after IL-1β and IL-6 proteins bind to 
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Figure 1. Schematic diagram of the interactions between the blood-brain barrier and the
pro-inflammatory cytokines. Stars schematically represent cytokines. Circulating pro-inflammatory
cytokines can activate signaling pathways leading to blood-brain barrier dysfunction, increase
inflammatory responses, and be transported across the barrier by interacting with their receptors at the
endothelial cells surface. Altogether, these signals at the blood-brain barrier can trigger parenchymal
brain injury. Resident immune cell activation is most likely an important component of this response in
the brain.

3. Anti-Cytokines Antibodies as a Potential Neuroprotective Strategy

3.1. Anti-Cytokines Strategy

The significant contribution of pro-inflammatory cytokines, especially IL-1β, in HI-induced brain
injury has been increasingly recognized and represents an attractive therapeutic target. The infarct
volume in an adult rat model of ischemic brain injury was attenuated after administration of a
recombinant IL-1 receptor antagonist directly into the brain or peripherally [82,83]. More recently,
Girard et al. used a rat model of perinatal brain injury combining prenatal LPS induced inflammation
and postnatal hypoxia-ischemia [84]. The animals treated with the IL-1 receptor antagonist had both
motor function and exploratory behavior preserved in the model. The myelin loss in the internal
capsule and gliosis was also prevented in the animals that were treated [84]. Consistent with these
findings, the neuroprotective effects of the immunosuppressive drug, minocycline, was thought to
be mediated by the reductions in IL-1 synthesis after traumatic brain injury [85–87]. The findings
in rodents summarized above emphasize the therapeutic potential of targeting the neuro-immune
response to attenuate brain injury. The generation of mAbs is an effective and specific technique to block
signaling pathways activated by a pro-inflammatory cytokine. Previous work has also demonstrated
that anti-cytokine therapeutic strategies attenuate the effects of traumatic brain injury [88], stroke [54],
and subarachnoid hemorrhage [89] in adult rodents.

Ovine-specific IL-1β and IL-6 proteins along with mAbs specific for these cytokines were
successfully produced and purified [41,42]. The capacity of the mAbs to neutralize the cytokine
inflammatory cascade was demonstrated in vitro in ovine splenic mononuclear cell cultures [43].
The pro-inflammatory effects of IL-1β and IL-6 proteins were characterized in mononuclear cells
by the upregulation of the NF-κβ and STAT-3 transcription factors, respectively. NF-κβ and STAT-3
are downstream signaling mediators characteristically upregulated after IL-1β and IL-6 proteins
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bind to their receptors and activate pro-inflammatory signaling pathways [90–92]. The upregulation
was reduced by treatment with the specific purified mAbs [43]. This in vitro study confirmed that
anti-IL-1β and -IL-6 mAbs have high sensitivity and specificity for their corresponding ovine cytokine
proteins. Based on these observations, we considered that these mAbs represented potential therapeutic
candidates to attenuate the CNS inflammatory responses after ischemia in vivo. Consequently,
we tested the ability of these mAbs to attenuate the disruption of the BBB and brain injury after
exposure to in utero brain ischemia in fetal sheep.

3.2. Brain Distribution of mAb Antibodies

The delivery of antibody therapeutics into the brain to treat CNS disorders has represented a
major challenge for drug development. In general, it has long been assumed that antibodies do not
cross the intact BBB as a result of their large size and the absence of specific transporters. These factors
severely restrict the targeting of specific molecules of interest within the brain via peripheral antibody
administration because the efficacy of neuroprotective agents is strictly dependent on their ability to
cross the BBB.

Intravenous infusions of neutralizing anti-IL-1β mAb (approximately 5 mg/kg; two infusions
over 2 h beginning 15 min and 4 h after 30 min of bilateral carotid artery occlusion) were administered
over a 6-h interval after brain ischemia insult in fetal sheep. The mAb infusions were planned to
accomplish early-sustained increases in systemic mAb concentrations in order to expose the cerebral
microvasculature to mAb for an extended interval after ischemia. The mAbs were administered
as systemic intravenous infusions because this is a clinically relevant route of administration and
directly exposes the fetus to the mAb over an extended interval of time. Other routes of administration
have previously been used to deliver antibodies directly into the brain via intracerebral injections in
experimental studies of adult rodents [89,93]. Intracerebral injections of drugs facilitate the direct entry
of drugs into the brain by circumventing the BBB. However, these routes of administration have much
less relevance in the preclinical translational fetal sheep model and for the potential future treatment
of human neonates.

The mAb infusions resulted in sustained elevations in systemic mAb during the studies [50,94,95].
The infusions also resulted in significant anti-IL-1β mAb uptake into the fetal brain parenchyma
and in the cerebrospinal fluid 24 h after the insult [50]. Therefore, the I/R insult facilitated mAb
penetration into the fetal brain. The mAb may enter the fetal brain by crossing the injured fetal BBB
after brain ischemia. A low rate of therapeutic mAb passage across the BBB is consistent with several
studies that showed small amounts of brain uptake of antibodies against Aβ protein that was used to
treat Alzheimer disease [96,97]. The uptake could have been enhanced because of ischemia-related
damage to the cerebral vasculature [51]. Endothelial damage can facilitate diffusion into the brain by
extracellular pathways but can also reduce the efflux from the brain to blood by receptor-mediated
transcytosis. Efflux from the brain tissue via reverse transcytosis across the BBB has been previously
reported to occur for immunoglobulins [98,99].

3.3. Neuroprotective Effects

The infusions of the neutralizing anti-IL-1β mAb after ischemia reduced the I/R related increases
of IL-1β proteins within the brain parenchyma [50]. In addition, the mAb infusions were accompanied
by small increases in TNF-α protein expression. This finding emphasizes the potential interactions
among pro-inflammatory cytokines and suggests that by acting on IL-1β signaling, the systemically
infused anti-IL-1β mAb could also have affected multiple neuro-immune responses within the ischemic
brain [50]. More recently, we have shown that systemically infused anti-IL-1β mAb also decreases the
transport of the IL-1β cytokine protein across the BBB after ischemia, at least in part by complexing
with free IL-1β in the systemic circulation in fetal sheep [95]. Altogether, anti-IL-1β mAb infusions
decrease IL-1β bioavailability in the fetal brain after I/R by (1) preventing IL-1β up-regulation in the
brain parenchyma and (2) reducing the uptake of IL-1β across the BBB.
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The most important finding was that systemic administration of the anti-IL-1β mAb attenuated
I/R-related increases in BBB permeability across the brain regions measured by an inert non-specific
molecule [50]. In addition, the BBB permeability showed an inverse linear correlation with
concentration of the anti-interleukin-1β mAb in the parietal cortex. In summary, systemic infusions
of anti-IL-1β mAb after ischemia result in anti-IL-1β mAb uptake into the brain, reduce I/R-related
increases in the IL-1β protein, and promote increases in non-specific BBB permeability across brain
regions in the fetus.

Therefore, this therapeutic strategy has the potential to attenuate ischemia-induced
neuro-inflammation and BBB disruption. This treatment could represent an important
anti-inflammatory neuroprotective strategy to attenuate parenchymal brain injury after ischemia
because both damage to the BBB and neuro-inflammation represent fundamental mechanisms of brain
injury after ischemia. In addition, we have recently demonstrated that the anti-IL-1β mAb attenuates
short-term histopathological I/R-related tissue injury, reduces ischemia-related increases in apoptosis,
and reduces I/R-related increases in caspase-3 activity in the fetal brain [94]. The ischemia-related
increases in apoptosis were predominately diminished in non-neuronal cells after treatment with
anti-IL-1β mAb, suggesting that the mAb exerted its effects mainly on glial cells. Consequently,
systemic infusions of anti-IL-1β mAb also attenuate short-term I/R-related parenchymal brain injury
after ischemia in the fetus. The precise molecular mechanisms of action are complex, involving multiple
cell types, and require further investigation.

Similar to the studies described above, we have also shown that systemic infusions of anti-IL-6
mAb resulted in increases in mAb in plasma, brain parenchyma, and cerebrospinal fluid, and decreased
IL-6 protein expression in the brain of a fetal sheep after ischemia [49]. The anti-IL-6 mAb infusions also
diminished the ischemia-related increases in BBB permeability 24 h after ischemic injury, modifying
tight junction and plasmalemma vesicle protein expression in the fetal brain. Therefore, inhibiting the
effects of the IL-6 protein with systemic infusions of neutralizing antibodies attenuated ischemia-related
increases in BBB permeability by inhibiting IL-6 after ischemia [49]. The results of these studies suggest
that the pro-inflammatory cytokine, IL-6, also contributes to impaired BBB function after ischemic
injury in fetus, and that treatment with an anti-IL-6 antibody could protect the developing fetal brain
and provide a preventive and/or therapeutic strategy for ischemic brain injury in the perinatal period.

In the studies summarized above, the fetal sheep was exposed to 30 min of carotid occlusion
followed by mAb infusions over 6 h after brain ischemia [49,50,94,95]. The goal of this
schema of administration was to produce prompt and sustained increases in circulating mAb to
facilitate continued mAb availability to the cerebral vasculature and brain parenchyma. However,
the precise timing of events resulting in perinatal brain injury can rarely be determined. Hence,
mAb administration shortly after an adverse perinatal event would rarely be feasible. Consequently,
additional research is required to calculate an accurate half-life of anti-cytokines mAbs and to determine
the potential effects of more delayed treatment on perinatal brain injury before anti-cytokine mAbs
can be considered as prevention or treatment strategies for perinatal ischemic brain injury.

Furthermore, we have mostly focused on short-term outcomes of the anti-cytokine treatment
strategies. Therefore, it is critical to investigate the neuro-protective efficacy of anti-cytokine therapies
on long term outcomes after brain injury because persistent inflammation has been proposed to
represent a tertiary phase of HI injury, which may further exacerbate injury and result in adverse
outcomes later in life [100]. In addition to the potential long-term beneficial effects of anti-cytokine
therapy, the potential adverse effects on the systemic immune system need to be considered.
The neuro-immune response is a complex balance between pro-inflammatory and anti-inflammatory
mediators, damaging effects, and repair processes. Even though pro-inflammatory cytokines are
involved in the pathophysiological pathways resulting in neonatal brain damage and treatment with
anti-cytokine antibodies exhibits anti-inflammatory effects, the expression of IL-1β is physiologically
expressed during normal brain development and in vitro evidence suggests that the upregulation
of IL-1β after an ischemic insult could be part of a protective response [101–103]. In addition, IL-1
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signaling mediates the ability of oligodendrocytes to produce pro-angiogenic MMP-9 in vitro and
in vivo, which facilitates angiogenic recovery after focal brain injury [104]. Likewise, IL-6 could act as a
pro-inflammatory mediator during the acute phase of brain injury but also has neurotrophic properties
during recovery from brain injury [105]. Therefore, the timing and duration of any anti-cytokine
treatment needs to be carefully considered with respect to the timing of the initial brain injury.
Nonetheless, most in vivo experiments have reported neurotoxic rather than neuroprotective effects of
IL-1β and IL-6 in the developing brain in most instances during the acute phase of HI injury [13–16].

The brain ischemia was studied in an ovine fetus at 85% of gestation in our studies [49,50,94,95].
It is important to emphasize that the sheep brain at this time in gestation is generally considered to
be similar to the brain of a near term human infant [32,39]. Therefore, it would also be important
to examine the neuroprotective effects of the anti-cytokines mAbs in fetal sheep earlier in gestation
to examine the potential beneficial effects and safety of this therapy in the premature brain after HI
brain injury.

Sexual dimorphism in response to neonatal HI is an important question that needs to be
considered. In the human infant, male neonates exhibit more severe brain lesions after HI, resulting in
more severe cognitive and motor outcomes than in their female counterparts [106]. Sex differences
have been confirmed in rodent models of HI and in in vitro models of hypoxic cell death [107–111].
Although the molecular mechanisms of this sexual dimorphism remain largely unexplained, growing
evidence suggests that inflammatory pathways may be one of the key players [111,112]. Therefore, this
sexual dimorphism could be assessed in the fetal sheep model of I/R, as well as a potential sex-depend
response to treatment with anti-cytokines mAbs.

Hypothermia is the only approved FDA therapeutic strategy to attenuate HIE in full term
infants. However, this treatment is only partially effective, resulting in a rate of death or disability
after treatment with hypothermia that from ranges from 31% to 55% in the reported trials [6,7,113].
Therefore, adjuvant therapeutic strategies are urgently needed [6–9]. In this regard, the addition of an
anti-cytokine therapeutic treatment strategy could potentially augment the neuroprotection provided
by hypothermia alone and further improve outcomes in infants exposed to HIE. However, future
preclinical studies would be needed to evaluate the neuroprotective potential of hypothermia combined
with a potential anti-cytokine therapy such as intravenous treatment with anti-cytokine mAb.

4. Conclusions

Hypoxic-ischemic events in the preterm brain can initiate extensive inflammatory responses over
a few hours that continue for days to weeks after the initial insult. The inflammatory response is
characterized by the systemic and local release of pro-inflammatory cytokines that trigger alterations
in BBB function and accentuate parenchymal injury. The results of our recent work in the fetal sheep
brain strongly support the concept that neuro-inflammation represents a major mechanism in the
brain injury and BBB disruption after I/R and, consequently, an important potential therapeutic
target. In an effort to develop new therapeutic strategies to attenuate brain damage in neonates,
we generated several anti-cytokines mAbs. After systemic infusions of the mAbs into fetal sheep with
I/R brain damage, we reported that attenuated brain injury was associated with modulation of the
neuro-immune response and improvement in BBB function. The results of our studies after I/R brain
injury and systemic treatment with anti-cytokines mAbs are summarized schematically in Figure 2.
We conclude that treatment with anti-cytokines mAbs protects the developing fetal brain and may
provide an effective prevention/treatment strategy for perinatal ischemic brain injury.
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