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A B S T R A C T   

Metabolic syndrome(MS) is a separate risk factor for the advancement of atherosclerosis(AS) 
plaque but mechanism behind this remains unclear. There may be a significant role for the im
mune system in this process. This study aims to identify potential diagnostic genes in MS patients 
at a higher risk of developing and progressing to AS. Datasets were retrevied from gene expression 
omnibus(GEO) database and differentially expressed genes were identified. Hub genes, immune 
cell dysregulation and AS subtypes were identified using a conbination of muliple bioinformatic 
analysis, machine learning and consensus clustering. Diagnostic value of hub genes was estimated 
using a nomogram and ROC analysis. Finally, enrichment analysis, competing endogenous RNA 
(ceRNA) network, single-cell RNA(scRNA) sequencing analysis and drug-protein interaction 
prediction was constructed to identify the functional roles, potential regulators and distribution 
for hub genes. Four hub genes and two macrophage-related subtypes were identified. Their strong 
diagnostic value was validated and functional process were identified. ScRNA analysis identified 
the macrophage differentiation regulation function of F13A1. CeRNA network and drug-protein 
binding modes revealed the potential therapeutic method. Four immune-correlated hub genes 
(F13A1, MMRN1, SLCO2A1 and ZNF521) were identified with their diagnostic value being 
assesed, which F13A1 was found strong correlated with macrophage differentiation and could be 
potential diagnostic and therapeutic marker for AS progression in MS patients.   

1. Introduction 

Atherosclerosis(AS) is a multi-factor derived disease that leading to the development of endothelial lesions, recruitment of leu
kocytes, deposition of oxidized lipids, accumulation of macrophages and foam cells, infiltration of smooth muscle cells, formation of 
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plaques and thickening of artery walls [1]. The subsequent stenosis of artery lumen and rupture of AS plaques could result in car
diovascular and cerebrovascular incidents [2]. Several significant risk factors, including genetic factors, hypertension, hyper
cholesterolaemia, obesity, diabetes and smoking play pivotal roles in the process of plaque formation [3]. Despite extensive research 
efforts focusing on the pathogenesis and mechanism of AS, individualized prediction and prevention of AS plaque formation and 
progression remains a challenging endeavor. 

Metabolic syndrome(MS) is a long-term non-infectious health issue characterized by abdominal obesity, hypertension, hyperlip
idemia, impaired glucose metabolism and insulin resistance, which could give rise to a spectrum of pathologies, including pro- 
inflammatory states, pro-thrombotic tendencies, and oxidative stress [4–7]. MS has become a major issue in global public health 
concern due to its escalating prevalence and the severity of its complications, leading to worrisome trend of increased AS morbidity 
among younger individuals [8]. It is well recognized that hastens the process of AS plaque formation [9,10]. The inflammatory process 
linked to MS is thought to be crucial in both plaque development and subsequent clinical events [11]. However, owing to the subtle 
symptoms during the early stages of AS plaque progression, individuals with MS tend not to take their pathological condition seriously 
until cardiovascular complications become evident. Thus, it’s imperative to explore a specific and sensitive tool for the early detection 
of AS, especially for the patients with MS who have higher risk and often possess limited awareness of their condition. 

Due to the rapid progress of detection method such as proteomics and sequencing tools, there emerges an opportunity to identify 
novel candidate markers for disease prediction and prevention. Machine learning is progressively being employed to unearth bio
markers, elucidate underlying mechanisms, and pinpoint potential therapeutic targets within the realm of disease research.Limited 
research has been dedicated to potential prediction, diagnosis and prevention candidates specifically in MS patients who have an 
elevated risk of AS progression. Three AS plaque datasets and one MS dataset were acquired from the gene expression omnibus (GEO) 
database for this research. Differential expression genes(DEGs) was analyzed using the Limma algorithm, then crucial module genes 
were identified with weighted gene co-expression network analysis(WGCNA). Candidate genes were then identified using functional 
enrichment analysis, protein to protein interaction network, machine learning analysis, nomogram and receiver operating charac
teristic(ROC) analysis. Potential mechanisms and targets for prevention were finally predicted through single gene set enrichment 
analysis (sGSEA), the establishment of competing endogenous RNA (ceRNA) network, consensus clustering, drug-protein interaction 
modes and scRNA analysis. 

2. Materials and methods 

2.1. Mircoarray data 

Raw datasets for AS advanced plaque and early intimae were obtained from patients (GSE28829, GSE97210 and GSE104140), as 
well as peripheral blood mononuclear cells(PBMCs) datasets (GSE181646) from metabolic syndrome(MS) patients via the GEO 
database (https://www.ncbi.nlm.nih.gov/geo) [12]. 

2.2. Data preprocessing and DEG screening 

The probe name in the expression matrix files of GSE28829, GSE97210, GSE104140 and GSE181646 was annotated with the 
official gene symbol name using GPL570, GPL16956, GPL18573 and GPL30209. Then, GSE28829, GSE97210 and GSE104140 matrix 
were merged using R package “sva” to remove the batch effects. Normalization and DEGs screening were performed using the R 
package “Limma”. Basically the mean and variance of each batch were estimated independently for each gene using the combat 
method, on the basis of the prior distribution of estimated parameters. Then we used counts matrix of merged datasets and converted 
the data to logs. The “Limma” R package utilized Bayesian techniques to calculate the conditional effect size of individual genes, with 
the p-value determined using a t-test.DEGs screening thresholds were set as |Log2 FC| > 1 for AS filtration or |Log2 FC| > 1 for MS 
filtration with a p-value <0.05. 

2.3. Co-expression network construction by WGCNA 

We utilized WGCNA to explore gene correlations. Firstly, the median absolute deviation(MAD) was calculated for every gene, and 
then 25 % of genes with the highest MAD were remained. Secondly, function of “goodSamplesGenes” was processed to screen the 
expression matrix, eliminating any genes and samples that did not meet the criteria. Thirdly, “soft” threshold power (β) derived by the 
similarity of co-expression was chosen to allocate the weights. Subsequently, a topological overlap measure was contrusted using 
anjacency for detecting gene module. In the fifth step, a gene dendrogram was created with a minimum gene module size set to n = 30. 
Finally, the similar modules were merged and the final modules were utilized for the further analysis. 

2.4. Functional enrichment analysis 

Genes were subjected to functional enrichment analysis using the Gene Ontology (GO) system and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database, with the employing of R package “clusterProfiler” [13,14]. The visualization of enrichment analysis 
results was conducted via Bioinformatics platform(https://www.bioinformatics.com.cn). GO and KEGG analysis were conducted on 
DEGs for advanced AS, as well as on the intersection genes between DEGs and remarkable module of MS, along with the overlap of 
DEGs for AS and MS. 
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2.5. Machine learning 

We utilized LASSO regression, RandomForest (RF), Gradient Boosting Machine (GBM), decision tree, Support Vector Machine with 
Recursive Feature Elimination (SVM-RFE), and Extreme Gradient Boosting (XGBoost) to pinpoint central genes linked to the 
advancement of AS plaques [15,16]. For LASSO regression, we utilized the R package “glmnet” and determined the optimal lambda, 
considering minimal lambda, with nlambda = 100 and alpha = 1. RandomForest analysis was processed using the “randomForest” R 
package. The datasets were split into training and validation sets using a 7:3 ratio, 5 nodesize and 500 decision ntrees were employed 
in the analysis with mtry = 3. We choose 10 fold for cross-validation with step = 0.9. In XGBoost analysis, we used the R package 
“xgboost” with the “xgbTree” method with max depth = 6, gamma = 0, subsample = 1 and eta = 0.3. SVM-RFE was executed using R 
packages “e1071” and “kernlab” and optimization parameters were selected through 10-fold cross-validation and halve.above = 30. 
We applied the GBM model with the R package “gbm” with shrinkage = 0.001, n.trees = 100 and interaction.depth = 1. Additionally, 
for decision tree analysis, the R package “rattle” was used with default parameter settings. The hub genes was identified through 
intersection results of all machine learning analysis. 

2.6. Protein-protein interaction network construction 

The protein-protein interaction (PPI) network was built using the STRING database (version 11.5; www.string-db.org). The 
minimal interaction score was set at 0.400 and the maximum first shell interactors was set at 10 [17]. The mediators of each hub gene 
were identified through PPI network. 

2.7. Nomogram and receiver operating characteristic analysis 

A nomogram was constructed to facilitate clinical diagnosis of the AS plaque process based on the candidate genes. The expression 
matrix counts data of GSE104140, GSE28829 and GSE97210 were converted to log and then were converted into risk scores based on 
multivariate Cox regression method. Scores were added to the total score, which was then converted into linear predictor. The larger 
the positive number, the higher the value of risk to AS process it presents. The nomogram construction was carried out using the R 
package “rms”. ROC curves were then constructed to evaluate the diagnostic capability of each potential gene in the development of AS 
plaques. The quantitative measure of the area under the curve (AUC) was calculated, with values greater than 0.7 considered 
significant. 

2.8. Gene set enrichment analysis 

Single-gene GSEA was conducted to investigate the possible roles of each candidate genes based on GO(c5.bp.v2023.2.HS.symbols. 
gmt, c5.cc.v2023.2.HS.symbols.gmt and c5.mf.v2023.2.HS.symbols.gmt) and KEGG term(c2.cp.kegg.v2023.2.HS.symbols.gmt) for 
each candidate genes. The version of GSEA software we utilized in our study was v4.3.1. Within the AS advanced plaque group, 
stratification into two subgroups was carried out on the basis of expression levels of each hub gene, using the median value of gene 
expression as the dividing criterion. 

2.9. Immune infiltration analysis 

CIBERSORT was employed to determine the relative proportion of immune cells within AS advanced plaque and control samples 
using tissue gene expression profiles. The analysis process was performed via “Cibersort” R package [18]. Subsequently, the proportion 
of distinct immune cell types and the comparison between the AS and control groups were visualized through bar plots and violin plots. 
Furthermore, the correlation between intersection genes and immune cell profiles were visualized. 

2.10. Detection of hub genes and mediators associated subsets 

Unsupervised consensus clustering method (K-means) was utilized to identify hub genes and mediators related subtypes in AS 
patients of GSE28829. The clustering methods “Pam” and “Ward’s linkage” were implemented using the R package “Con
sensuClusterPlus” and iterated 1000 times for reliable classification [19]. Then, “Cibersort” was utilized to examine the relationship 
between immune cells and genes. Finally, GSVA score between each subtypes was analysised with “Limma” package and “GSVA” 
package, with remarkable pathways displayed in heatmap. 

2.11. Single-cell RNA sequence analysis 

ScRNA datasets of AS plaque(GSE159677) was obtained from GEO database. The “Seurat” package was utilized for reading and 
analyzing of scRNA sequence [20,21]. To ensure data quality, the cells with the number of genes(nFeature RNA) < 200 or >4000, in 
addition to cells with >10 % mitochondrial mRNA were filtered out. Following data preprocessing, 2000 hypervariable genes were 
selected after performing Principal Components Analysis(PCA) dimensionality reduction and clustering. After analyzing JackStraw
Plot and ElbowPlot, we chose the first 13 dimensions for subsequent analysis. Cell types were manually annotated based on 3 typical 
markers for each cell type with a mean expression count >2 in each cluster and expressed in more than 80 % of cells. DimPlot and 
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VlnPlot functions were utilized to visualize the cellular clusters and hub genes expression location after UMAP dimensionality 
reduction. “Monocle” R package was utilized for the pseudotime analysis of macrophage subtypes and the distribution of each hub 
genes. 

2.12. CeRNA network construction 

The Diana-microT 2023(interaction score>0.7), miRDB(score>50), miRWalk(score>0.9) and Targetscan were employed to obtain 
the prediction of potential miRNAs bindind to each candidate genes. Then, starBase was utilized to forecast the lncRNAs that target 
these miRNAs [22] The visualization of CeRNA network was then constructed via Bioinformatics platform. 

2.13. Drug-protein interaction prediction 

The drugs and molecules were predicted through CTD database. AutodockVina 1.2.5 was used to analyze the binding affinities and 
interaction modes of four identified candidate drugs [23]. Obtained from the Uniprot database was the 3D coordinates of the F13A 
protein with PDB ID 4kty and a resolution of 2.5 Å. The protein and molecular component files were transformed into PDBQT format, 
removing water molecules and introducing polar hydrogen atoms. 

2.14. Statistical analysis 

R version 4.3.0 was utilized to conduct WGCNA, GO enrichment, KEGG, and GSVA analyses. The ROC curve was using R package 
“pROC” and AUC calculation, along with the 95 % CI, was performed with SPSS Version 26.0. 

3. Results 

3.1. Identification of differentially expressed genes and enrichment analysis of atherosclerosis 

In the combined AS plaque datasets, we identified 555 DEGs in total, with 453 genes showing up-regulation and 102 genes showing 
down-regulation in advanced plaques (see Fig. 1). Heatmap and volcano plot illustrate the DEGs in AS combined datasets(Fig. 2A and 
B). GO analysis showed that the biological processes(BP) of DEGs between AS and control were primarily involved in immune response 
include immune cells activation, migration, degraualation and chemotaxis process(Fig. 2C). GO analysis of cellular components(CC) 

Fig. 1. Study flow chart.  
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exhibited that the DEGs were predominantly enriched in granule, membrane, lumen and chemokine activity(Fig. 2C). The GO analysis 
also emphasized the molecular functions(MF), showing enrichment in the function of chemokine, cytokine, Toll-like receptor binding, 
G-protein and intergrin(Fig. 2C). Regarding the KEGG enrichment analysis, the DEGs showed significant enrichment in pathways such 

Fig. 2. DEGs identified form the integrated datasets of AS. (A) Heatmap for DEGs. DEGs are represented in each row, with each column corre
sponding to a sample of plaque from patients with AS or intima from the control group. The red represents up-regulated and blue represents down- 
regulated expression genes. (B) Volcano plot for DEGs. The red plots represents up-regulated and green plots represents down-regulated expression 
genes. (C) GO analysis of DEGs in AS. Enrichment score enriched in relative terms is represented on the x-axis, while different GO terms are 
represented on the y-axis. The circles’ size indicates the number of genes, and the color indicates the p-value. (D) KEGG pathway analysis of DEGs in 
AS. On the x-axis, gene ratio enriched in various KEGG pathways is depicted, while the y-axis shows different KEGG pathways. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. DEGs were filtered and module genes were identified in MS. (A) Heatmap exhibits the DEGs identified in metabolic syndrome, while each 
row represents a DEG and each column represents a sample from either MS patients group or controls. The red area represents up-regulated and blue 
area represents down-regulated expression genes. (B) Volcano plot for DEGs. Each red plot represents up-regulated and each green plot represents 
down-regulated expression genes. (C) By analyzing both scale independence and average connectivity together, a soft threshold of β = 8 was chosen. 
(D) A dendrogram and heatmap displaying traits of both MS and control samples, with MS samples highlighted in red. (E) Different colors were 
vested as symbol of different gene co-expression modules identified in the clustering dendrogram. (F) Network heatmap plot of eigengene adjacency. 
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as “Staphylococcus aureus infection”, “Phagosome”, “Rheumatoid arthritis”, “Complement and coagulation cascades”, “Viral protein 
interaction with cytokine and cytokine receptor” and et al.(Fig. 2D). Detailed enrichment genes, pathways, biological process, cellular 
components and molecular functions genes are listed in Supplemental Table 1. Fig. 3A and B displays the DEGs in PBMCs of MS 
patients and healthy individuals using a heatmap and volcano plot. Among these, there was an increase in expression of 215 genes and 
a decrease in expression of 36 genes. 

3.2. Key module identification in metabolic syndrome 

WGCNA was processed to discover the significant and related gene module expressed in MS. We chose β = 8 (scale-free R2 = 0.9) as 
threshold power, on the basis of scale independence and mean connectivity(Fig. 3C). The dendrogram and heatmap of traits for the MS 
patients group and control are displayed in Fig. 3D. Fig. 3E–G presents that there are 13 gene co-expression modules shown in the 
cluster dendrogram, network heatmap plot, and module-trait relationship heatmap. The module distinguished with turquoise color, 
consisting of 873 genes, showed the most proximal correlation with MS (correlation coefficient = 0.66, p = 0.001). Fig. 3H illustrated 
each membership and their relationship with gene significance in the turquoise module, showing a significant positive correlation(cor 
= 0.71). Consequently, the turquoise module was chosen for further examination. 

3.3. Functional enrichment analysis of metabolic syndrome 

GO and KEGG enrichment analysis were then employed to asses the pathologenesis characterist of MS datasets. 214 common genes 
were found by intersecting DEGs and significant module genes in WGCNA (Fig. 4A). Analysis of KEGG pathway showed that these 
common genes were significantly overrepresented in terms such as “Platelet activation”, “ECM-receptor interaction”, “Focal adhe
sion”, “Hypertrophic cardiomyopathy”, “Dilated cardiomyopathy”, “Gap junction”, “Regulation of actin cytoskeleton”, “Hematopoi
etic cell lineage”, “cGMP-PKG signaling pathway” and “Arrhythmogenic right ventricular cardiomyopathy”(Fig. 4B). Analysis of GO 
showed that common genes were primarily concentrated in processes related to “blood clotting”, “blood flow regulation”, “platelet 
activity”, and “cell attachment”(Fig. 4C). Function analysis from GO showed that common genes were predominantly associated with 
“actin”, “extracellular” matrix”, “sulfur compound”, and “chemokine binding functions”(Fig. 4D). CC analysis from GO revealed that 
shared genes were predominantly concentrated in “platelet granule”, “vesicle lumen” and “cytoskeleton components”(Fig. 4E). 
Detailed enrichment data are demonstrated in Supplemental Table 2. 

3.4. Identification of intersection gene and functional enrichment analysis 

To further excavate the relationship between significant genes in MS and AS, we identified 12 intersection genes between DEGs 
from AS and intersection module genes from MS(Fig. 5A). PCA analysis of the integrated gene expression matrix indicated distinct 
clustering and differentiation between AS and control groups, with samples clearly distributed on opposite sides based on these 
intersection genes(Fig. 5B). To further delve the function and mechanism of intersection genes, GO and KEGG analysis were then 
conducted. KEGG pathways showed that there was enrichment of intersection genes in categories such as “Coronavirus disease”, 
“Complement and coagulation cascades”, “Relaxin signaling pathway”, “Focal adhesion”, “PI3K-Akt signaling pathway” and et al. 
(Fig. 5C). BP of GO revealed that intersection genes were primarily enriched in “coagulation”, “hemostasis”, “BMP signaling” and 
“cellular response”(Fig. 5D). MF of GO demonstrated that intersection genes were mainly enriched in “serine-type peptidase regu
lation”, “glutamic acid ligase activity”, “cell signal binding” and “extracellular matrix structural regulation”(Fig. 5E). CC of GO showed 
that common genes were mainly enriched in “vesicle”, “granule lumen” and “collagen-containing extracellular matrix”(Fig. 5F). 
Detailed enrichment data are shown in Supplemental Table 3. 

3.5. Identification of candidate hub genes with machine learning 

Various machine learning algorithms, including LASSO regression, GBM, RF, XGboost, SVM-RFE and decision tree algorithms, were 
then utilized to pinpoint potential hub genes for creating a nomogram and assessing diagnostic value. LASSO regression identified 7 
candidate genes(Fig. 6A and B), while GBM identified 10 feature genes with importance score >0(Fig. 6C). RF algorithms ranked all of 
the genes and we chose top 10 as feature genes(Fig. 6D and E). Based on the selection of optimization parameters, SVM-RFE identified 
11 feature genes(Fig. 6G and H), which the same with XGboost(Fig. 6F). 8 feature genes were ranked through decision tree algorithms 
based on the importance score(Fig. 6I). Overall, 4 genes include F13A1, MMRN1, SLCO2A1 and ZNF521 were identified as common 
among all of the candidate genes identified by machine learning algorithms(Fig. 6J). F13A1, MMRN1, SLCO2A1 and ZNF521 could 
potentially interact directly with each other or through mediators(Fig. 6K). The relative gene expression level of each hub genes in 
across different cohorts was exhibited in Figure S3. 

(G) Heatmap exhibits the relevance between each modules and MS. The turquoise module exhibits the most significant correlationship with MS. 
Numbers in each column represent correlation coefficient at to and p-value in the brackets. (H) Correlation plot exhibits the association between 
each membership and gene significance for genes found in turquoise module. Module membership is shown on the x-axis and gene significance for 
metabolic syndrome is shown on the y-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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3.6. Diagnostic value assessment of candidate hub genes 

A nomogram was created with 4 potential hub genes, and ROC curves were then generated to assess the sensitivity and specificity of 
each gene, along with the nomogram point(Fig. 7A). All gene expression counts were transferred into log as relative levels, and then 
converted into scores. The sensitivity and specificity of F13A1(AUC 0.965, CI 0.927–1.000), SLCO2A1(AUC 0.877, CI 0.795–0.960), 
MMRN1(AUC 0.818, CI 0.716–0.919), ZNF521(AUC 0.920, CI 0.849–0.991), along with the nomogram point(AUC 0.979, CI 
0.953–1.000) were presented in Fig. 7B–F. The results demonstrated that the four candidate genes and the constructed nomogram 
collectively exhibited a high diagnostic value for AS of MS patients. 

3.7. Gene set enrichment analysis for candidate hub genes 

The pathways and functions associated with the 4 candidate genes were excavated through a Single-gene GSEA analysis. Genes that 
showed differencially expression between high and low level of each hub genes were highly enriched in pathways of “chemokine 
signaling”, “cytokine interaction”, “lyososome”, and “activation of immune response process”(Fig. 8A–H and Supplemental Fig. 1A-H). 
These findings provide strong evidence that the 4 hub genes are closely associated with immune and inflammation responses in the 
context of AS. Detailed enrichment data are illustrated in Supplemental Table 4. 

3.8. Immune cell infiltration analysis 

After observing that the genes common to both AS and MS were primarily linked to immune and inflammation process, we then 
proceeded to conduct an analysis of immune cell infiltration to pinpoint the specific cell types of immune infiltration in the plaque. 
Fig. 9A displayed the distribution of 22 different immune cell types in each samples within AS advanced plaque and control groups 
(Fig. 9A). A comparison revealed lower levels of immune cells, including plasma cells, resting CD4+ T cells, monocytes, activated 
dendritic cells, and resting mast cells, and higher levels of cells, such as B memory cells, activated memory CD4+ T cells, M0 mac
rophages, and M2 macrophages, in AS advanced plaque samples(Fig. 9B). Furthermore, the connection between 4 hub genes and 
different type of infiltrarion immune cells were exhibited. Although 4 hub genes showed different correlation with immune cells, all of 
them seem highly correlated with macrophages(Fig. 9C). 

3.9. Association between infiltrating immune cells and AS subtypes 

To further investigate the correlation between immune infiltration and hub genes, we identified the hub genes and mediators 
related subtypes in AS with the using of consensus clustering analysis(Fig. 10A–B). Two clusters were identified in AS patients after 
comparing the level of hub genes and mediators related with immune infiltration. Cluster2 showed higher infiltration of M2 mac
rophages(Fig. 10C–E). GSVA analysis indicated that cluster1 showed higher enrichment in “primary immunodeficiency”, “porphyrin 
and chlorophyll metabolism”, “alanine aspartate and glutamate metabolism” and “ribosome”. Cluster2 showed higher enrichment in 
“focal adhesion”, “ECM receptor interaction”, “gap junction”, “inositol phosphate metabolism”, “NOTCH pathway” and so on, which 
mainly correlated with immune infiltration and migration and indicated its immune correlation role(Fig. 10F). 

3.10. ScRNA sequencing analysis 

We proceeded with single-cell RNA sequencing analysis to validate the high expression of each hub gene in AS plaque and 
determine their specific locations. After dimension reduction and clustering, the visualization of UMAP revealed that F13A1 exhibited 
high expression primarily in monocytes and macrophages within the AS plaque, while MMRN1, SLCO2A1 and ZNF521 were found to 
be highly expressed in endothelial cells(Fig. 11A–E, Figure S2A). Macrophages were then divided into 4 subtypes which identified as 
C1q + macrophages(with high expression of C1QA, C1QB, C1QC and F13A1), SPP1+ macrophages(with high expression of SPP1, 
CSTB and CD36), S100A + macrophages(with high expression of S100A8, S100A9 and FCN1) and S100B + macrophages(with high 
expression of S100B, DNASE1L3 and IDO1) (Fig. 11F, Figure S2B). Pseudotime analysis identified the differentiation locus of 4 
macrophage subtypes and F13A1 showed the centralization in the differentiation of C1q + macrophages(Fig. 11G–H), which indicates 
the regulation mechanism of the macrophages differentiation in AS plaque processing. No significant differentially expression was 
found in differentiation locus of macrophages for ZNF521, SLCO2A1 and MMRN1. 

3.11. Construction of ceRNA network 

We constructed ceRNA network on the basis of competitive endogenous RNA theory, aiming to uncover the lncRNAs that act as 

Fig. 4. Analysis of overlap genes between DEGs and WGCNA analysis in MS datasets. (A) Venn diagram indicates the overlap of 214 genes between 
DEGs and module genes. (B) Conducting KEGG pathway analysis on overlap genes. Various hues symbolize the top 10 important pathways and their 
associated enriched genes. (C–E) Analysis of GO. Enrichment score in relative terms is represented on the x-axis, while different GO terms of BP, CC, 
and MF are represented on the y-axis. The circles’s size indicates the number of genes, and the color indicates the p-value. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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miRNA sponges in AS plaque progress with MS. This network amalgamates F13A1 along with predicted miRNAs and lncRNAs. Totally 
6 miRNA nodes and 164 lncRNA nodes were contained in the ceRNA network(Fig. 12A), which exhibits the potential regulation 
mechanisms of F13A1. 

3.12. Prediction of candidate drugs and the binding modes for F13A1 

Molecular docking analysis was conducted to determine the candidate drugs’ attraction to F13A1. Four candidate drugs(Carfen
tanil, with the binding energy of − 7.906 kca/mol; Iodoacetamide, with − 3.556 kca/mol binding energy; Senecionine, with − 7.836 
kca/mol binding energy and Valproic Acid, with − 4.795 kca/mol binding energy) were identified and each of them could bind to 
F13A1 through hydrogen binds and strong electrostatic interactions(Fig. 12B–E). The low binding energy indicates the highly stable 
binding for each drugs to F13A1. 

4. Discussion 

AS stands as a major global public health concern, driving the leading cause of death. Notably, metabolic syndrome emerges as an 
independent rick factor amplifying AS progression. Although previous research has delved into some biomarkers that tied to the 
mechanism of chronic inflammation, oxidative stress, dyslipidemia, endothelial dysfunction and marrow dysregulation [24–28], the 
potential genomic diagnostic and therapy biomarkers within MS patients that may underlie the formation and advancement of AS 
plaque remain uncovered yet. Furthermore, the potential of integrating machine learning and nomogram analysis for diagnosing AS 
plaque progression in MS patients population was untapped. After comprehensive exploration encompassing bioinformatics and 
machine learning analysis, nomogram and ROC curve were established and the diagnostic value for AS plaque progress in MS patients 
was evaluated. Four immune-correlated hub genes were identified include F13A1, MMRN1, SLCO2A1 and ZNF521 and evaluation of 
their diagnostic potential was conducted both collectively and individually. 

Samples in MS datasets comprised peripheral blood mononuclear cells, which could be easily obtained from blood, ensuring the 
convenience and acceptance of patients. It facilitates the assessment of gene expression for the 4 hub genes, enabling the utilization of a 
diagnostic method based on peripheral blood samples to gauge the likelihood of AS plaque progression [29]. Although each of the 4 
hub genes exhibits potential as independent diagnostic marker, we further constructed a comprehensive diagnosis model by combining 
all 4 hub genes. Each gene’s expression level was quantified and converted into a corresponding score, which collectively contributed 
to the linear predictor. Elevated risk of AS plaque formation and advancement would be effectively predicted with the linear predictor 
and early intervention strategies could be implemented. 

In atherosclerosis, the damage of the endothelial lining and the adhesion of platelet to endothelium were the early stage of 
atherosclerosis plaque formation. Enrichment of hub genes were mainly concentrated in platelet activation, ECM-receptor interaction 
and focal adhesion, which are the early stage of endothelium dysfunction and these process promote aggregation of platelet and 
inflammation cells. Multimerin 1 (MMRN1) belongs to the EMILIN/multimerin family and is primarily expressed in endothelial cells, 
platelets, megakaryocytes, and the extracellular matrix. In vivo, MMRN1 has a crucial function in platelet attachment and controlling 
coagulation factor V [30–33]. In situations of intense shear stress, MMRN1 has been observed to interact with von Willebrand factor 
(VWF), enhancing platelet adhesion to the endothelium [32], while high shear stress is also linked to dysregulation of endothelial 
function and early formation of AS plaque [34,35]. Our study verified the high expression in endothelium of MMRN1, which indicated 
that MMRN1 may promote the adhesion of platelet to endothelium and formation of early AS plaque. Besides, GSEA analysis also 
indicated that MMRN1 promote the activation of immune response. 

Both innate and adapted immune systems play integral roles in the process of AS plaque formation [36]. Elevated cholesterol levels 
stimulate monocyte proliferation, and the chemokine CCL2 facilitates monocyte recruitment to the plaque [37–39]. Monocyte-derived 
macrophages contribute to the absorbing of lipoproteins and creating of foam cells, ultimately contributing to the development of early 
atherosclerotic plaque [40]. As we observed in our study, M0 and M2 macrophages are increased in AS plaque without M1 macro
phages, of which M1 macrophages are known as pro-inflammatory cells [41], which needs further investigation to validate. F13A1 was 
found to be a co-expression gene with M2 macrophages infiltration and may play critical role in immune response of AS progress [42]. 
Within the adaptive immune system, T helper-1 (Th1) T cells, as well as Th17 and Th2 T cells involves in inflammatory adaptive 
immune response in AS plaque formation [43]. The research we conducted revealed a connection between SLCO2A1 and CD4+ and 
CD8+ T cells, which indicates that it may affect the adaptive immune system. As SLCO2A1 regulates the distribution of PGs, PG 
signaling and inflammatory response in vivo and vitro [44,45], it mainly inhibits the endothelial cell migration, angiogenesis and 
wound healing, which induces the hypertrophic osteoarthropathy, chronic enteropathy and hypertension [46–48]. There is no evi
dence illustrating its role in the development of AS. The regulatory functions of SLCO2A1 in angiogenesis, endothelial migration, 
correlation with T cells and its possible involvement in early AS plaque formation are significant considerations. 

Fig. 5. Analysis of intersection genes form AS with MS. (A) A Venn diagram exhibits that 12 common genes were found among differentially 
expressed genes in AS and significant genes in MS. (B) The sample distribution patterns were analyzed using PCA results in combined AS datasets. 
(C) KEGG pathway analysis of 12 intersection genes. Various hues symbolize the top 10 important pathways and their associated enriched genes. 
(D–F) Analysis of the intersection genes using GO. Enrichment score in relative terms is represented on the x-axis, while different GO terms of BP, 
CC, and MF are represented on the y-axis. The size of the circles indicates the number of genes, and the color indicates the p-value. (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Machine learning in identificating candidate genes for AS with MS. (A, B) LASSO model. The 7 genes that align with the lowest point of the 
curve were the most appropriate for diagnosing AS with MS. (C) Barplot indicates the rank of importance among 12 genes with the utilize of 
Gradient Boosting Machine(GBM) algorithm. 10 genes with importance score >0 was selected as feature genes. (D, E) The error tree and gene 
ranking based on importance scores were displayed by the random forest algorithm. (F) XGBoost algorithm was used to screen candidate genes and 
rank them according to their importance scores. 10 genes with importance score >0 was selected as feature genes. (G, H) Line charts show that 11 
genes with the highest point of accuracy curve and lowest point of error curve were selected as feature genes with the utilize of SVM algorithm. (I) 
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B lymphocytes have a dual function in the immune system, releasing both anti-inflammatory and pro-inflammatory signaling 
molecules, along with antibodies [49]. B1 cells contribute to the innate immune system, while B2 cells rely on T follicular helper cell 
activation. IRA-B cells are implicated as pro-atherogenic and could drive myeloid cell activation and pro-atherogenic TH1 immunity, 
while conversely, B-regulatory cells secrete anti-inflammatory cytokines and activate T-regulatory cells [50–52]. ZNF521, a zinc finger 
protein, acts as a crucial co-transcription factor in the regulation of hematopoietic, neural, and mesenchymal stem cells, as well as 
holds significant importance in tumor formation and development [53]. ZNF521 was found to be correlated with cell differentiation of 
B cells in our study, which indicates that it may participate in innate immune regulation. Notably, ZNF521 could up-regulate the 
c-myc, c-jun and Ccnd3, which encodes cyclin D3 and subsequently induces the growth of pre-B cells and immature B cells [54]. As we 
conjectured, ZNF521 stimulated the generation of immature B cells, which further differentiate into follicular dendritic cells. With the 
help of T helper cell, it transfer to follicular B cells, which secret IgG, activate inflammatory T cells and further induces the inflam
mation and immune infiltration in AS plaque [55]. It may be a targets for inhibits the early immune activation and potential 

Candidate genes screening in decision tree model. 8 genes with importance score >0 was selected as feature genes. (J) Venn diagram indicates that 4 
candidate hub genes for AS with MS diagnosis are identified from intersection with LASSO model, GBM algorithm, random forest algorithm, 
XGBoost algorithm, SVM algorithm and decision tree model. (F) PPI network shows the interaction of 4 hub genes and the mediator molecules. Red 
frames indicate the 4 hub genes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 7. Nomogram construction and the evaluation value of diagnose. (A) Visualized nomogram was created to predict AS in individuals with MS. 
(B–F) The ROC curve of F13A1, MMRN1, SLCO2A1, and ZNF521, along with the total nomogram score, demonstrated the considerable diagnostic 
accuracy of atherosclerosis in individuals with metabolic syndrome. 
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therapeutic and prevention targets of AS in MS patients. Our investigation revealed that the AS patients’ plaque could be categorized 
into two subtypes using hub genes and mediators expression profiles, which exhibited varying levels of M2 macrophage infiltration. 
These finds indicate that 4 hub genes and their interaction-relative genes may regulate the function and polarization of macrophages 
synergistically. 

Factor XIII-A transglutaminase, encoded by F13A1, functions as a pivotal enzyme within coagulation cascade and exerts the ability 
to cross-link fibrin fibers and platelet with endothelium, thereby ensuring the stablization of neo-formed coagulation clot [56]. Beyond 
its role in coagulation, Factor XIII-A exhibits significance in wound healing, alleviating skin sclerosis, arthralgia, and enhancing 
microcirculation function in systemic sclerosis [57–59]. It greatly reduces the production of thrombospondin-1 (TSP-1), a factor that 
inhibits blood vessel formation and increases the protein Bax, which promotes cell death, while decreasing the protein Bcl-2 [60]. 
F13A1 was also found as a marker in M2 macrophages in the activation of inflammation and immunity [61]. The FXIII-A activation 
could increase the adhesion of monocyte to endothelium, mediate the phagocytosis of monocytes, promote the remodeling of small 
arteries and stimulate vascular smooth muscle cell migratio [62–65]. Given the elevated presence of M2 macrophages in athero
sclerosis plaques and high expression in macrophages via scRNA analysis observed in our study, F13A1 holds potential as a biomarker 
in the infiltration of alternative macrophages and the formation of advanced plaque. The pro-phagocytosis and pro-adhesion function 
of F13A1 healing function of Factor XIII-A may another reason for the differential expression of FXIII-A in monocytes may induces the 
aggregation of macrophages and formation of foam cells, which was the main components of AS plaque. But the mechanism needs 
further study to investigate. 

In single-cell RNA sequence analysis, no significant high expression was found in macrophages for these 3 hub gene. However, the 
high expression of MMRN1, SLCO2A1, and ZNF521 in endothelial cells and the pathways showed in enrichment analysis of cluster2 
subtypes also suggest that these genes may participate in immune adhesion and migration of endothelium in early stage of AS plaque 

Fig. 8. Single gene GSEA for 4 candidate genes. (A–D) Top 3 co-enriched KEGG terms of pathway enrichment for each candidate gene via single 
gene GSEA. (E–H) Top 3 co-enriched GO-BP terms of biological process for each candidate gene via single gene GSEA. 
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formation. These genes may stimulate immune infiltration and inflammatory adhesion, as they all exhibit some level of activity as 
stimulators of immune adhesion and inflammation activation. Nevertheless, the specific functions and mechanisms of each gene in 
endothelial cells require further study for validation. 

We revealed that F13A1 mainly expressed in monocytes and macrophages within AS plaque. Pseudotime analysis in single-cell 
sequence exhibited the potential differentiation direction and polarization process of macrophages in the processing of AS. Four 
type of macrophages were excavated and we defined them as C1q + macrophages, SPP1+ macrophages, S100A + macrophages and 
S100B + macrophages. The enriched expression and high correlation of F13A1 within C1q + macrophages identified its regulation 
function in cell subtypes differentiation locus. As C1q was found to modulate the differentiation of monocytes to M2 macrophages 

Fig. 9. Comparison of immune cell infiltration in individuals with AS and those in the control group. (A) Barplot indicates the distribution of 22 
types of immune cells in various AS and control specimens. (B) Vioplot illustrates the contrast in the distribution of 22 different types of immune 
cells between the AS and control groups. (*, p < 0.05, **, p < 0.01, ***, p < 0.001.) (C) Heatmap shows the correlation between 4 hub genes and 22 
kinds of immune cells. 
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[66], our observation aligns with F13A1 being a marker for M2 macrophages, indicating its involvement in the activation of 
inflammation and immunity. 

The miRNAs and lncRNAs integrated into ceRNA network were computationally predicted to unravel the potential competitive 
regulation components. Considering miRNAs’ inhibitory role in mRNA targeting, the sponge-like function of these lncRNAs may act as 
promoters to F13A1 [67–69]. These components may be potential intervention and therapeutic targets in MS patients with high risk of 
AS plaque advancement. However, rigorous investigation is essential to validate the function and mechanism of these miRNAs and 
lncRNAs. Four medications were discovered that interacted with F13A1, offering a possible approach to influencing the development 
of macrophages and the advancement of AS plaque. Carfentanil and Senecionine could increase the expression and activity of F13A 
pretein, while Iodoacetamide and Valproic Acid performed the opposed function. Carfentanil is a synthetic fentanyl analogue and no 
evidence shows its function association with AS, while Senecionine was found that could induce the mitochondria-mediated apoptosis 
in mice [70]. In previous study, Iodoacetamide was found playing antioxidant role in endothelial cells through increasing HO-1, which 
F13A1 could be another potential target for its antioxidant process [71]. Recent study also found that Valproic Acid could decrease 
SMC proliferation and could be potential treatment of atherosclerosis [72], which F13A1 may be another targets in atherosclerosis 
prevention and intervention. 

In summary, we have identified 4 immune-associated hub genes (F13A1, MMRN1, SLCO2A1 and ZNF521) that serve as novel and 

Fig. 10. Consensus clustering analysis based on GSE28829. (A–B) Consensus cumulative distribution function(CDF) for k values ranging from 2 to 7 
and changes in the relative area under the CDF curve. (C) Consensus matrix heatmap exibits AS cohorts when k = 2. (D) The dot map displays the 
distribution features of the samples using tSNE analysis. (E) Vioplot displays the contrast in the distribution of 22 different immune cell types among 
2 subcategories. (F) GSVA analysis revealed distinct pathway distributions between the 2 subtypes. 
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pivotal biomarkers for the diagnose of AS progression in peripheral blood of MS patients, as well as found F13A1 as a potential 
macrophage differentiation regulator. Our study still remains some limitations. Firstly, although we combined multiple datasets to 
reduce bias, the sample size is still limited and it may affect the accuracy of the prediction model, while further validation with a larger 
datasets and clinical cohorts study in the future is needed. Secondly, since we used datasets from public databases, we could not ensure 
the quality of samples and the integrity of clinical data, which may cause potential biases. Additionally, due to the bioinformatic 
analysis and predictions without experimental validation, the function, mechanism, diagnostic value and potential therapeutic im
plications of F13A1 and other 3 hub genes in both AS progression of MS patients and immune system need to be excaveted and verified 
in further clinical cohorts and experimental study. 

5. Conclusions 

Our study has undertaken a systematic exploration, revealing 4 immune-associated hub genes (F13A1, MMRN1, SLCO2A1 and 
ZNF521). We constructed a nomogram to facilitate the diagnosis of AS in the presence of MS, and underscored immune cell dysre
gulation within AS plaques through extensive bioinformatics analysis and machine learning algorithms. Single-cell analysis identified 
F13A1 as a potential regulator of macrophage differentiation in AS plaque processing. Furthermore, we delved into miRNA and 
lncRNA predictions and drug-protein interaction, which offering promising avenues for potential preventive measures against AS 
progression in individuals with MS. With our findings, these hub genes may emerge as potential diagnostic and therapeutic targets 

Fig. 11. Single-cell RNA sequencing analysis. (A) Dot map exhibits the main UMAP dimensionality reduction clustering and cell types of each 
clustering. (B–E) The high expression location of each hub genes in each type of cells in AS plaque. (F) Dotmap of the main UMAP dimensionality 
reduction clustering exhibits the subtypes of macrophages. (G) Dot map exhibits the pseudotime analysis result of each subtype of macrophages. (H) 
Dot map shows the main distribution and expression level of F13A1 in pseudotime analysis result. 
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within the peripheral blood context for managing AS progression in MS patients. 
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