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Abstract: The experimental and theoretical description of premelting behavior is one of the most
challenging tasks in contemporary material science. In this paper, n-octanol was studied using a multi-
method approach to investigate it at macroscopic and molecular levels. The experimental infrared
(IR) spectra were collected in the solid state and liquid phase at temperature range from −84 ◦C to
−15 ◦C to detect temperature-related indicators of pretransitional phenomena. Next, the nonlinear
dielectric effect (NDE) was measured at various temperatures (from −30 ◦C to −15 ◦C) to provide
insight into macroscopic effects of premelting. As a result, a two-step mechanism of premelting in
n-octanol was established based on experimental data. It was postulated that it consists of a rotator
state formation followed by the surface premelting. In order to shed light onto molecular-level
processes, classical molecular dynamics (MD) was performed to investigate the time evolution of the
changes in metric parameters as a function of simulation temperature. The applied protocol enabled
simulations in the solid state as well as in the liquid (the collapse of the ordered crystal structure).
The exact molecular motions contributing to the rotator state formation were obtained, revealing an
enabling of the rotational freedom of the terminal parts of the chains. The Car–Parrinello molecular
dynamics (CPMD) was applied to support and interpret experimental spectroscopic findings. The
vibrational properties of the stretching of OH within the intermolecular hydrogen bond were studied
using Fourier transformation of the autocorrelation function of both dipole moments and atomic
velocity. Finally, path integral molecular dynamics (PIMD) was carried out to analyze the quantum
effect’s influence on the bridged proton position in the hydrogen bridge. On the basis of the combined
experimental and theoretical conclusions, a novel mechanism of the bridged protons dynamics
has been postulated—the interlamellar hydrogen bonding pattern, resulting in an additional OH
stretching band, visible in the solid-state experimental IR spectra.

Keywords: n-octanol; melting; premelting; intermolecular hydrogen bond; solid state; IR; NDE;
classical MD; CPMD; PIMD

1. Introduction

Premelting, first introduced as a concept by Faraday [1,2] in the late 19th century
is a phenomenon broadly examined in contemporary science [3–8]. As a deeply non-
equilibrium, dynamical process, it is very hard to investigate—the underlying molecular
behavior, and other parameters are, by their very nature, gradually changing [9]. It is
uniform for solid-to-liquid phase transition and consists of the creation of a thin, liquid-
like film on the surface of the solid. The surface premelting has most frequently been
investigated for the ice–water transition [10–12]. It was found to take place no more than
2–4 deg. below the melting point and it is affected by surface roughness and possible
intersurface interactions [7,13]. The second type of premelting behavior is rotator state
(or phase) formation [14]. It takes place in the broader temperature range then at surface
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premelting, and it is more intricate. It is highly dependent on the type of the studied
compound, the inter- and intramolecular interactions, or even the exact composition of
molecules. Studies of rotator state in alkanes shows that the number of carbon atoms in the
hydrocarbon chain (odd/even) could determine its presence or absence [15]. Premelting as
a whole can start as a disruption in the chains of single molecules and ends with formation
of a quasi-liquid phase on the surface. So, the description needs to implement observations
from all these mechanisms [13,16,17].

In the current study, we have applied two experimental methods—infrared spec-
troscopy (IR) and the nonlinear dielectric effect (NDE)—to shed light onto the premelting
phenomenon in n-octanol.

The first method has already been used in many sources to assess the pretransitional
behavior around melting, and it is an excellent candidate for cross-examination with the
computational methods [18–20]. Among many applications, it could be used to identify
chemical compounds or functional groups in various phases. Here, IR spectroscopy was
applied for solid and liquid phase measurements of n-octanol at various temperatures.
The molecular form of n-octanol is presented in Figure 1. It is a fatty alcohol with eight
carbon atoms in the chain and OH group. In the solid state, n-octanol forms linear arrays of
hydrogen bonds (HBs) with the chains, alternating between sites (herringbone pattern) [21].
On the basis of metric parameters, the intermolecular hydrogen bond present in n-octanol
could be classified as middle strong [22–24]. This type of hydrogen bond is frequently
encountered in aliphatic alcohols, and it is similar to hydrogen bonding in water, with the
important distinction of having only one OH bond—thus, formation of such extensive HB
networks, as in liquid water or ice, is less probable. Solid n-octanol is an excellent example
of a system in which the structure and physico-chemical properties are governed by the
interplay between hydrogen bonding and hydrophobic interactions of the aliphatic chains.
Therefore, the IR spectroscopy method was used to investigate the vibrational properties of
n-octanol, with special emphasis on the OH stretching.

Figure 1. n-octanol molecule with carbon atoms numbering scheme.

The second experimental method, nonlinear dielectric effect (NDE), provides addi-
tional information on the premelting phenomena, especially as a macroscale processes, and
has been proven by our previous findings to yield significant impact on the premelting
analysis [25,26]. The main idea of this method is centered around the difference between
low- and high-field dielectric permittivity, according to the following equation:

εE = εE→0 + ε2E2 + . . . (1)

where εE is the dielectric permittivity in high fields, εE→0 is the low-field dielectric per-
mittivity, and ε2E2 is the high-field increment. The typical parameter describing the NDE
changes is the Piekara factor, defined as ∆ε/E2 (equivalent to ε2), where ∆ε is the difference
between dielectric permittivity in low and high fields. The nonlinear dielectric effect should
be negative (for most typical dielectric liquids) [27,28] but can also be positive, also called
anomalous. The second instance can be the result of system having possible states of high
and low dipole moments, in equilibrium between each other [29]. It can also originate
in coexistence with different phases (or quasi-phases), resulting in the Maxwell–Wagner
effect [25,30], or near-critical phenomena [31–33].

Diverse quantum chemistry approaches have been applied to support and explain
observed processes at the molecular level. We have focused on time evolution methods:
(i) classical molecular dynamics (MD); (ii) Car–Parrinello molecular dynamics (CPMD) [34];
(iii) path integral molecular dynamics (PIMD) [35,36]. Classical molecular dynamics (MD)
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was applied to reproduce the precise molecular mechanisms leading to the observed
macroscopic properties related to premelting. On the basis of the CPMD method, the
intermolecular hydrogen bonds dynamics, as well as spectroscopic properties, were in-
vestigated. Finally, the PIMD technique was applied to demonstrate the quantum effect’s
influence on the bridged proton position in the intermolecular hydrogen bond of n-octanol.

In this work, we aim to relate and cross-examine the macroscopic effects of premelting,
observed in the experimental methods, to the dynamical molecular behavior examined
via high-level computational studies. The use of non-standard experimental and theoret-
ical approaches provided a comprehensive knowledge compendium of the premelting
phenomenon in n-octanol.

2. Experimental and Theoretical Methods
2.1. Experimental Procedures: Infrared Spectroscopy (IR) and the Nonlinear Dielectric
Effect (NDE)

The n-octanol of >99% purity was dried over A3 molecular sieves to eliminate any
residual water. The melting temperature from both experiments was estimated at −15.0 ◦C
(258 K), standing in good agreement with the literature data [37]. The temperature ranges
of the experiments were from −84 to −12 ◦C (189 to 258 K) for IR and from −30 to −10 ◦C
(243 to 258 K) for NDE. All of the temperatures in computational methods are provided in
Kelvins, and the experimental ones are provided both in ◦C and Kelvins. This is due to
the nature of raw data collected in the experiment—thermometers are mostly based in the
Celsius scale.

The infrared (IR) spectra measurements were performed using the Nicolet Magma
860 FTIR (Fourier-transform-based spectra acquisition) spectrometer equipped with a
custom temperature control accessory. The sample was prepared by squeezing a small
amount of n-octanol between two KBr windows. The spectra were registered in the
3800–600 cm−1 range with the resolution of 1 cm−1, and the results were averaging of
12 scans. The experiment was conducted in the nitrogen atmosphere. The temperature
was recorded using resistance thermometer located very close to the sample, with 0.5 deg.
resolution of the readings, and an absolute error of 1 deg. The νOH region was convoluted
into 3 bands using mixed Gaussian–Lorentzian distribution. Two sharp bands located on
the higher wavenumber part of the approximated region were used to carry out a detailed
analysis of the premelting processes. The wider bands nature is discussed later in the text.

The nonlinear dielectric effect was measured using a double-field method. The low-
amplitude (1V pp), high-frequency measuring field (approx 4 MHz) was combined with a
high-amplitude, quasi-rectangular polarizing field (HV), with a duration time of HV pulses
at 4 ms and an amplitude of 6.25 × 105 V/m. The investigated sample was poured into
the parallel-plate capacitor, made of circular stainless steel electrodes of 19 mm diameter,
separated by 0.35 mm. The capacitor was filled with liquid alcohol at room temperature
and placed in the dry air chamber, which was submerged in a liquid bath thermostat. In the
course of the NDE experiment, the temperature was measured by a calibrated resistance
thermometer located close to the sample. Resolution of temperature readings was of
0.01 deg., with an absolute error of 0.2 deg. At the beginning of the experiment, the sample
was thermostated for at least 3 h at −40 ◦C and then the temperature was slowly increased
by 0.2 deg/min. Details of NDE equipment are presented elsewhere [38].

2.2. Computational Methodology
2.2.1. Classical Molecular Dynamics (MD)

Molecular dynamics (MD) with classical force fields was used to study the confor-
mational behavior of the n-octanol molecules in the crystalline phase. The numbering
of carbon atoms within a molecule, which follows the systematic chemical notation, is
depicted in Figure 1. This numbering is used throughout this study, especially in the
context of dihedral angles.
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The models for classical MD studies were prepared on the basis of crystal structure
deposit CCDC code 263655 [21]. For the classical molecular dynamics, 8 × 7 × 1 supercells,
containing 224 molecules, were prepared on the basis of crystalline structure using the
Mercury 2020.1 program [39], so that the supercell dimensions were as close to cubic as
feasible within the assumed system size (initial values, further subject to change by the use
of barostat scheme: 33.65 × 36.29 × 38.94 Å). An exact spatial composition for this system
is depicted in Figure 2.

Figure 2. n-octanol molecules cluster used in classical dynamics experiment, as visible along different
axes—on-plane (left), in-plane (center), and cross-plane axes (right).

Further setup for the classical MD simulations was as follows: the general organic
GAFF force field [40] was used, and the real space non-bonded interaction cutoff was set
to 10 Å. The reciprocal space summation was performed with the particle mesh Ewald
(PME) scheme [41,42]. An initial energy minimization with steepest descent method was
carried out for 1000 steps. The usual equilibration phase was not included, because our
idea was a reproduction of crystalline phase behavior under thermal impulse. Therefore,
the minimization was followed by production dynamics runs in NPT ensemble for 50 ns.
The variable pressure approach is meant to allow the crystalline system to melt, which
happened only at the highest considered temperature. The time step of 1 fs was used for
equations of motion, and temperature was controlled via the periodic rescaling scheme of
Andersen [43]. The isotropic scaling Berendsen barostat [44] with target value of 1 atm was
used. The simulation of the heat impulse was studied by running the NPT computations
in the temperatures spanning from 237 K to 417 K with 10 K increment—in total, 22 runs.
The preparation of the topology and parameter files, as well as the MD runs, were carried
out using programs from the AmberTools2021 and the Amber20 suite [45]. The VMD 1.9.3
visualization system [46] was applied for post-processing of the classical MD trajectories.

2.2.2. Car–Parrinello Molecular Dynamics (CPMD) in the Crystalline Phase

Car–Parrinello molecular dynamics (CPMD) [34] were carried out in the crystalline
phase for n-octanol. The models were constructed on the basis of X-ray experimental
data [21] with unit cell dimensions a = 4.206 Å, b = 5.184 Å and c = 38.937 Å with α = 90◦,
β = 91.72◦, and γ = 90◦. The calculations were carried out at various temperatures: 150 K,
190 K, 230 K, 257 K, 270 K, 300 K, and 350 K. The geometry optimization was performed
with the Γ-point approximation (i.e., using only Bloch eigenfunctions with zero reciprocal
vector k to represent the periodic states in the crystal) [47]. Furthermore, the computations
were performed with periodic boundary conditions (PBC) and with real-space electrostatic
summations for the eight nearest neighbors in each direction (TESR = 8). The energy
minimization was performed using the Hessian matrix of Schlegel [48] with the Perdew,
Burke, and Ernzerhof (PBE) functional [49] and the norm-conserving Troullier–Martins
pseudopotentials [50]. The plane–wave kinetic energy cutoff was set to 100 Ry. In the next
step, the Car–Parrinello molecular dynamics (CPMD) [34] simulations were performed. The
time step was set to 3 a.u. and the fictitious electron mass parameter was equal to 400 a.u.
The temperature was controlled by the Nosé–Hoover thermostat [51,52]. The empirical van
der Waals corrections by Grimme [53] were added to reproduce the intermolecular weak
forces, and the dispersion corrections were considered within the unit cell and its nearest
neighbors in each direction (3 × 3 × 3 van der Waals summation). The initial parts of the



Int. J. Mol. Sci. 2022, 23, 2138 5 of 16

CPMD runs were taken as an equilibration (30,000 steps for the solid state) and were not
considered during the data analysis. The trajectories with the data used in post-processing
were collected for ca. 70 ps. On the basis of the CPMD results the metric (dihedral angles and
distances), as well as spectroscopic parameters, were discussed. The Fourier transformation
of the autocorrelation function of dipole moments and atomic velocity was applied for
the theoretical infrared spectra. The power spectra of atomic velocity were decomposed
and the OH stretching was plotted (and analyzed separately to give deeper insight into
spectroscopic signatures related to the presence of the intermolecular hydrogen bonds). The
CPMD simulations were carried out using the CPMD ver. 4.3–4610 program [54].

2.2.3. Path Integral Molecular Dynamics in the Crystalline Phase

Path integral molecular dynamics (PIMD) [35,36] simulations were performed in the
crystalline phase for n-octanol molecular crystal [21]. For the computations, a similar setup
to the one applied for the CPMD was used. The experimental unit cell with a = 4.206 Å,
b = 5.184 Å and c = 38.937 Å with α = 90◦, β = 91.72◦, and γ = 90◦ [21] was used during the
PIMD simulations. The calculations were carried out at 190 K. For imaginary time path
integration, 8 Trotter replicas (P = 8) were applied. The data were collected for 70 ps after
the initial equilibration of 30,000 steps. The obtained results served to indicate the hydrogen
position in the intermolecular hydrogen bridge, in particular, through preparation of a
potential of mean force (pmf) profile. The PIMD simulations were performed as well using
the CPMD ver. 4.3–4610 program [54].

2.2.4. Post-Processing of the Car–Parrinello and Path Integral MD

The post-processing of the obtained results was carried out with the following ap-
proaches: the intermolecular hydrogen bonds dynamics was analyzed using scripts avail-
able in the VMD 1.9.3 suite of programs [46]. The Fourier transform power spectra of atomic
velocity were computed using homemade scripts. The predicted spectra were computed
using a script developed by H. Forbert and obtained from the CPMD website [55]. The
potential of mean force (pmf) profiles for both CPMD and PIMD were calculated using
homemade programs on the basis of the OH bond length distributions. Direct logarithmic
approach, i.e., pmf(r) = −kT ln(ρ(r)), was assumed (where ρ(r) is the probability density
for the OH distance). The VMD 1.9.3. [46], Gnuplot [56], and Mercury [39] programs were
used for visualization, models preparation, and graphical presentation of the obtained data.

3. Results and Discussion

In the following paragraph, the experimental (IR and NDE) and computational (based
on various MD schemes) results for n-octanol are analyzed and discussed. As the last part
of the paragraph, a cross-examination of the obtained data is presented.

3.1. Experimental Data Analysis

Fifteen infrared spectra were registered in the temperature range from −83 ◦C (190 K)
to−15 ◦C (258 K). The lowest temperature was chosen to match the temperature of the crys-
tal data of n-octanol, deposited in the Cambridge Crystallographic Data Centre (CCDC) [57].
In Figure 3, the IR spectra measured at various temperatures are presented. The range from
2750 cm−1 to 1650 cm−1 was omitted due to the lack of significant bands. The complete set
of spectra is collected in the Supplementary Materials (Figures S1–S4).
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Figure 3. IR spectra of n-octanol measured at various temperatures. The range from 2750 to 1650 cm−1

was omitted for clarity due to the lack of significant bands. Liquid state spectrum: −15 ◦C (258 K),
solid state spectra: −19 ◦C (254 K), −45 ◦C (228 K), and −83 ◦C (190 K).

Predictably, the most notable differences occurred between the liquid-state spectrum
and its solid-state counterparts. Herein, we will discuss the regions important for further
experimental and theoretical analyses. The νOH region located between 3500 cm−1 and
3100 cm−1 in the liquid phase consists of one, broad band, while in the solid state, it is
visibly split into two sharp peaks and an underlying, broader, slightly asymmetrical band.
This discrepancy between number of bands between solid and liquid samples can be the
result of freezing of rotational freedom in the solid state. It is also visible in other parts of
the spectrum. In the solid state spectra, the CH2 rocking vibrations region, located between
750 cm−1 and 710 cm−1, consists of two distinct bands, while in liquid phase, only one
broad band is visible. In order to assess the exact extent, magnitude and type of premelting
behavior, a detailed analysis of temperature evolution for both CH2 rocking vibrations
region and νOH region was necessary. The results of the analysis are presented in Figure 4
and the methodology of the spectra deconvolution is explained in Section 2.

Figure 4. (a) Temperature evolution of integrated intensity of the CH2 rocking vibrations region
(750–710 cm−1), (b) deconvolution of stretching OH (νOH) region and (c) temperature dependence
of the area of deconvoluted νOH bands.
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The CH2 rocking vibrations region is an established marker sensitive to the rotator
state formation [13,16]. The temperature evolution of its integrated intensity shows a
double change—the first change occurs around 6 deg. before the melting, and it is visible
as a shelf-like dip. It is followed by the more pronounced drop around 2 deg. before
melting. The first change can be attributed to the onset of rotator state formation, while the
second one is consistent with the surface premelting process. The auxiliary analysis of the
changes in the νOH region follows the same pattern—the two-fold change pronounces the
observations from the CH2 rocking vibrations region analysis.

The nonlinear dielectric effect (NDE), as mentioned before, is a method sensitive to
any phase inhomogeneity. Thus, surface premelting should be visible in NDE measure-
ments due to the Maxwell–Wagner effect [30]. The results of the NDE experiment and the
comparison with data from the CH2 rocking vibrations region analysis are presented in
Figure 5.

Figure 5. Comparison between temperature evolution of integrated intensity of the CH2 rocking
vibrations region (black) and the NDE results, given as Piekara factor (blue).

In the NDE experiment, the first change (in the heating run) is visible as a small
increase in the Piekara factor around −23 ◦C (250 K). The temperature range where the
change starts to be visible corresponds with the formation of rotator state, suggested in the
IR experiments. The second change starts just below −18 ◦C (255 K) and is much bigger
in magnitude, as expected for the surface premelting [25]. A large increase in the Piekara
factor in close vicinity of the melting point was already observed [25,26] and was explained
as a result of the Maxwell–Wagner effect, related to the formation of a liquid layer on
the surface of solids [30]. The positive NDE effect, observed in larger distance from the
melting point, needs more explanation. Positive effect means that the electric permittivity,
measured at high electric field strength, is larger than that at low electric field strength. In
our opinion, the effect is correlated with the appearance of the rotator phase. However,
according to the IR measurements in the first step of premelting, only some hydrocarbon
fragments of octanol gain a certain freedom of movement. This movement should not
result in a positive NDE effect. We propose to consider a possible effect of ions being a
result of auto-dissociation of alcohol or because of impurities. In ideal crystalline state
migration of ions under the influence of a strong electric field is very difficult. Appearance
of the rotator state and freeing of rotational freedom in parts of the chains should allow
the ions to move. The movement could result in a formation of polarized domains, which,
consequently, should be visible as a positive NDE effect. It seems that both methods yielded
similar results and lead us to the conclusion that n-octanol exhibits two types of premelting
behavior—rotator state formation and surface premelting.
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3.2. Classical Molecular Dynamics (MD) Results

The root mean square deviation (RMSD) parameter, the simplest yet very important
estimator of structural stability, was calculated for a series of classical MD trajectories in
diverse temperatures. The results, shown in Figure S5 of the Supplementary Materials,
show that all the simulations (with exception of the highest temperature, 417 K) are stable
within the 50 ns time range. The RMSD oscillates around 1 Å with respect to the initial
structure, corresponding to the experimental X-ray data [21]. Only in 1 case (367 K) is the
equilibrium structure ca. 1.6 Å from the reference. The exception is the 417 K simulation,
where the RMSD grows very quickly to hundreds of Å, indicating the transition to the
liquid phase. This will be elaborated further in the description of the radial distribution
functions (RDFs). The large difference between the experimental melting point (257 K) [37]
and the conditions at which the simulation yields liquid phase is explained by the relatively
short time scale of the classical MD (50 ns), in which the system must leave the free
energy minima and change its density, which results in the collapse of ordering. In our
case, we believe that the additional kinetic energy of the heat impulse was necessary to
overcome the entropic factor, i.e., enough molecules were agitated to ensure the structural
ordering collapse.

The dihedral angles C8-C7-C6-C5, C7-C6-C5-C4, and C6-C5-C4-C3 (for details see
Figure 1) indicate, in the best way, whether the chains are subjected to any conformational
perturbations. We use the dihedral angle range from 0 to 360◦ instead of the custom-
ary −180–+180◦ range throughout the study, so that the discontinuities of the studied
parameters are avoided. In Figure 6, are shown the time evolutions of dihedral angles
in different temperatures for a selected molecule within the simulated ensemble; while
the low-temperature simulation shows virtually no changes outside the all-trans confor-
mational minimum, the high-temperature simulation exhibits frequent, but short-lived
changes to other conformational minima. It is also evident that the outermost dihedral
angle is also the most active, which might be related both to the steric effect of the presence
of neighbors preventing large conformational changes, and to the larger mass of groups
which are being moved when the C6-C5-C4-C3 dihedral angle is changed.

Table 1 denotes the trajectory count of rotated angles. It is clearly visible that while in
the 237 K–327 K range the dihedral angles are within the baseline boundaries corresponding
to the all-trans conformation, starting with the 337 K, the apparent instances in dihedral
rotations occur. It is also evident that the probability of those rotations rises with the
temperature. As already indicated above, the comparison between C6-C5-C4-C3, C7-C6-C5-
C4, and C8-C7-C6-C5 reveals that more of the perturbations happen closer to the terminal
parts of the chains—even just before melting, the rotations are almost 10 times more likely
to occur within C8-C7-C6-C5 than C6-C5-C4-C3. It is also worth noting that after melting
(417 K), the rotations are almost uniformly spread along the chains, with no more than
10% difference in counts. This means that the rotational freedom in the rotator state acts
differently than in liquid phase. Comparing terminal (C8-C7-C6-C5) perturbations between
just before and just after the melting (407 K and 417 K, respectively) reveals that the
magnitude of rotator state perturbations is around 10%, which is similar to the literature
data [15].

The intermolecular distances distribution along the whole trajectory has also been
analyzed as the radial distribution function (RDF), portrayed in Figure 7. It is worth noting
that each peak in RDF is synonymous with different order of distances—first there will be
closest in-line neighbors within a single plane, then interlamellar closest neighbors, then
the one-removed, in-line neighbors, in-plane but cross-line neighbors, etc. This is especially
complicated in C8–C8 distances, where in a single line of hydrogen bonds, the chains are
on alternating sides of this line (Figure 2).
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Figure 6. Time evolution of three dihedral angles relevant to the aliphatic chain conformation in
selected molecule: (a) C8-C7-C6-C5, (b) C7-C6-C5-C4, and (c) C6-C5-C4-C3 angle. Results of classical
MD at 237 K (blue line) and 407 K (red line).

Table 1. Number of instances of the indicated dihedral angles being outside the 120◦–240◦ range that
the region of the native all-trans conformer. Three selected molecules were chosen, and the maximum
count is 30,000 frames. Results of classical MD simulations.

Temp. (K)
Dihedral Angle

C8-C7-C6-C5 C7-C6-C5-C4 C6-C5-C4-C3

237 3 1 0
247 3 0 0
257 4 1 0
267 13 1 0
277 12 1 0
287 17 3 0
297 21 8 0
307 49 6 0
317 81 12 4
327 65 13 1
337 122 23 5
347 139 38 2
357 206 58 3
367 360 97 20
377 655 641 142
387 459 175 43
397 626 194 79
407 846 311 93
417 11,799 10,093 9972

From this analysis, it is clearly visible that the intermolecular distances are not altered
in any major way. Both the O–O and C8–C8 distances distributions are broadening, but this
effect can be attributed to the rotational freedom of the terminal parts of the chains, already
mentioned before. If the molecules were to lose their ordering, those parameters would
be greatly altered, especially in the C8–C8 distances—which is happening at 417 K. The
collapse of the solid structure is visible as the disappearance of the clearly defined, sharp
peaks in the C8–C8 distances, as well as the second and further orders in the O–O distances.
This behavior means that the molecules remain well ordered all the way until melting, with
only rotational freedom of the chains emerging while approaching Tm. Beyond melting,
the only ordering is due to the association formed by the hydroxyl groups and visible as
the first order, single peak with maximum at 2.8 Å (slightly larger than in the crystal), and
a barely visible, very flat and broad secondary feature between 4.2 and 5.4 Å. The RDF
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profile at 417 K is in very good agreement with an earlier study on neat and hydrated liquid
n-octanol [58].

Figure 7. Temperature dependence of radial distribution functions (RDF) for (a) O–O and (b) C8–C8
atom pairs. Results of classical MD simulations of n-octanol in five selected temperatures.

3.3. Car–Parrinello Molecular Dynamics (CPMD)

Car–Parrinello molecular dynamics was used to study the metric and spectroscopic
features of n-octanol in diverse temperatures, with emphasis on the hydrogen-bonded
hydroxyl groups. It should be noted, however, that the samples did not melt in any of the
applied temperatures. This is mostly due to the far shorter (when compared with classical
simulations) time spans of the runs, measured in picoseconds—not nanoseconds. The
conformational changes from the all-trans native conformation of the crystal were also not
recorded in the CPMD runs. On the other hand, Table 2 indicates growing amplitudes of
torsional motions, represented as standard deviations from the average values.

Table 2. Temperature dependence of the indicated dihedral angles: arithmetic mean ± standard
deviation along the trajectory. Results of Car–Parrinello MD simulations.

Temp. (K)
Dihedral Angle (◦)

C8-C7-C6-C5 C7-C6-C5-C4 C6-C5-C4-C3

150 178.77 ± 4.29 180.70 ± 3.48 180.05 ± 3.70
190 178.62 ± 4.80 180.85 ± 3.85 179.79 ± 4.22
230 179.00 ± 5.35 180.69 ± 4.16 179.98 ± 4.54
257 178.79 ± 5.69 180.87 ± 4.46 179.79 ± 4.90
270 178.51 ± 5.74 180.92 ± 4.58 179.93 ± 5.04
300 178.92 ± 6.07 180.65 ± 4.78 179.86 ± 5.13
350 178.89 ± 6.64 180.47 ± 5.21 180.32 ± 5.71

CPMD, using first principles (DFT) approach to provide potential function for nuclear
motions, allows for more realistic description of hydrogen bonding details, as compared
with the classical force fields. We have selected a hydrogen bridge formed by one of the
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four molecules of the unit cell, and collected time evolution data of its metric parameters—
see Figure 8. A striking feature is seen in panel (b) of this Figure. Not only the motion
amplitudes are larger at an elevated temperature, but also a reorientation event happens at
38 ps of simulation time. The O-H...O contact is temporarily broken, but the O–O distance
still stays within definite bounds—the OH groups do not gain complete freedom. The
visible increase in the OH bond length after the reorientation event shows that the proton
is now engaged into another hydrogen bridge, which is explained further in the discussion
of vibrational signatures of the hydroxyl protons.

Figure 8. Time evolution of metric parameters related to a selected hydrogen bridge. Results of
CPMD simulations in two temperatures: (a) 190 K and (b) 300 K.

The method allows acquisition of vibrational spectra, feasible in cross-examination
with the IR experiment. Figure 9a,b present the spectral results of the CPMD simula-
tions (included also in SI as Figures S6 and S7, for better clarity). Figure 9a depicts the
2000–4000 cm−1 region of the dipole moment power spectrum (with correct absorption inten-
sities), while Figure 9b corresponds only to the hydroxyl proton contribution in this region,
with intensities related to the motion amplitudes, not to the observable IR parameters.

In temperatures 150 K–257 K, the OH stretching band (Figure 9b) consists of a split,
wide band at around 3400 cm−1. This band is the result of the bridged protons motions,
including the cooperative effect. Above those temperatures, a third wide band around
3100 cm−1 arises. This band is the result of the bridged proton rotation. Considering the
nature of the OH stretching vibrations, it is evident that the proton is not completely free—
“free OH” stretching vibrations band would be visible above the “H-bonded” stretching
vibrations band (at higher wavenumbers). The band emerging as a result of the proton
rotation is located below the original band (at lower wavenumbers)—this means that the
proton is still a part of some other hydrogen bridge. Considering all of the facts mentioned
above, we postulate the emergence of hydrogen bonding between two different planes,
which are referred to as “interlamellar OH band” in the text. The split OH stretching band
is visibly shrinking in intensity (Figure 9a).

3.4. Path Integral Molecular Dynamics (PIMD)

The main purpose of the PIMD study was estimation of the role of quantum effects
on the bridge proton behavior. Incorporation of nuclear quantum effects with the PIMD
approach was studied by calculating the potential of mean force (pmf) for the proton
motion in the intermolecular O-H...O bridge; the pmf profile is equivalent to the free
energy landscape, which includes statistical sampling (entropy) effects. The comparison of
classical (CPMD) and quantum (PIMD) nuclear dynamics regimes at 190 K is presented
in Figure 10. It should be stressed that the terms “classical” and “quantum” refer to the
nuclear dynamics; both CPMD and PIMD are based on quantum (DFT) description of the
molecular electronic structure.
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(a) (b)
Figure 9. Temperature dependence of (a) dipole moment power spectra corresponding to the IR
absorption, (b) vibrational signatures of the –OH proton atoms—results of Car–Parrinello molecular
dynamics simulations.

Figure 10. Potential of mean force (kcal/mol) for the proton motion in the hydrogen bridge. Results
of CPMD and PIMD simulations—CPMD corresponds to the classical nuclear dynamics, while PIMD
incorporates nuclear quantum effects.

The most important finding is that at the temperature of 190 K the role of nuclear
quantum effects is quantitative, not qualitative. The broadening of the profile with simul-
taneous general preservation of its shape indicates that the tunneling phenomena do not
play any significant role. On the other hand, penetration of the proton wavepackets into
the classically inaccessible region is quite strong and asymmetrical: the hard core region
of r(OH) < 0.9 Å is significantly less explored by the proton than the region towards the
acceptor atom. On the other hand, the classical nuclear approach of Car–Parrinello MD
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yields a very harmonic, symmetric potential. The difference between the results of CPMD
and PIMD is surprisingly alleviated by the fact that for both methods the minimum is
predicted at the same OH bond distance of 0.98 Å. This part can be concluded by stating
that nuclear quantum effects, even at such low temperature as 190 K, are not decisive in the
case of n-octanol.

3.5. Cross-Examination of Results

Due to the aforementioned computational limitations, the temperatures in the next
section will be marked by (EX) for experimental results, (MD) for molecular dynamics
results, and (CP) for CPMD, as they can not be subjected to the one-to-one comparison.

We would like to start the cross-examination with the comparison of experimental
data and classical molecular dynamics results. The main goal of the latter method was
confirmation and description of possible alterations in rotational and conformational
freedom in chains. It is evident from the description of the classical MD results that in the
237(MD) K temperature the rotational freedom of the chains is negligible, which is expected
in the solid state—the stabilizing effect of the chain–chain interactions is the dominating
factor in this system. At the temperature of 337(MD) K, the perturbations in the chains
become evident, as implied by an order of magnitude increase in the perturbed dihedral
angles count. This behavior is even more pronounced in the 407(MD) K temperature, where
the count of the perturbed angles is even bigger. At the same time, as seen in Figure 7, the O–
O and C8–C8 distances are not elongated between 257(MD) K and 407(MD) K in any major
way, meaning the intermolecular distances are not stretched. This indicates that the solid
structure, although perturbed on the single-molecule level, is still ordered in bulk, with no
increase to intra- or interlamellar distances. It is also evident that most of the instances of
rotations occur in the farther (closer to terminal) parts of the chains, as seen in the C6-C5-
C4-C3, C7-C6-C5-C4, and C8-C7-C6-C5 dihedral angles comparison. The collapse of the
solid structure results in the sharp changes of every studied parameter. The RDF analysis
reveals that the C8...C8 distances become disordered, but the first coordination sphere of
the hydroxyl O atom remains similar—this is due to the association of alcohol molecules
in the liquid, but random distribution of said associates occurs. The chains acquire full
rotational freedom, almost uniformly spread along the whole chain. This corresponds well
with the experimental results. In the analysis of the CH2 rocking vibrations region, the
initial, shelf-like change is connected to the conformational freedom of the terminal parts of
the chains. This occurs around 250(EX) K. The slight increase in the Piekara factor in NDE
suggests similar reasoning—the rotations in chains could free the minuscule amounts of
ionic impurities in the crystal structure, which in turn can contribute to additional, minor
polarization in the electric field resulting in small, positive Piekara factor. It has been
postulated in the literature that the molecules in the rotator state do not break the ordering,
but some chains obtain rotational freedom along the long axis [13,16,59]. All of those factors
are clear indicators that the MD description of the changes in chains is not only consistent
with the experimental data, but also to the proposed molecular behavior of the rotator state.

The hydrogen-bonded hydroxyl groups are best described with the cross-examination
of infrared spectroscopy and CPMD results. In both methods, the unusual shape of the
stretching OH vibrations region is evident. We have suggested that in the experimental
spectra it is split into three bands—two sharper and one broader (Figure 4). This pattern
is also repeated in CPMD, but the bands do not overlap as much as in the experiment
(Figure 9b). This is most probably the result of the so called “drag effect”, inherent to
the CPMD propagation of degrees of freedom, and we believe it is not affecting each of
the bands in the same way (the νCH bands are 200 cm−1 lower than in the experiment,
while νOH are almost in exactly the same place). However, the presence of all three bands
in both methods allows the assignment within the experimental spectral region to the
dynamical behavior of protons, while the two sharper bands are the result of the regular
hydrogen bonding between molecules (and the cooperative nature of the hydrogen bonding
network), the additional band, located in the lower wavenumbers, is the result of the OH
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bonding pattern altering—the rotation of the hydrogen bond from one of the lines. To our
knowledge, this is the first time such interlamellar hydrogen bonding has been postulated.
Additionally, the changes in intensities of the two sharper bands (Figures 5 and 9a) are
similar between experiments. Both methods showed that the intensities of those bands are
diminishing while the premelting is progressing.

It is also worth noting that the OH groups remain ordered. This is confirmed by the
CPMD simulations (Figure 9a)—the system remains ordered, even though rotator state
formation results in changes in the bridged protons dynamics.

4. Conclusions

n-octanol was the subject of combined experimental and theoretical investigation with
the ultimate aim of shedding light on the premelting phenomena. The experimental studies
in diverse temperatures have revealed that the system undergoes a two-step pretransitional
change. The first one, starting around 10 deg. below the melting point, has been interpreted
as rotator state formation. The second one, spanning 3–4 deg. below melting, has been
identified as surface premelting. The exact molecular behavior of rotator state in n-octanol
has been studied using classical molecular dynamics. Significant increase in the rotational
freedom in the terminal parts of the chains was recorded. The RMSD and RDF have been
used as indicators of crystalline ordering in the rotator state. The Car–Parrinello MD has
shown the dynamical reasons of the composition of the OH stretching vibrations region.
The interlamellar hydrogen bond has been postulated as a factor behind the presence of the
additional, unusual band. Inclusion of nuclear quantum effects using path integral MD
has revealed that the proton position in the hydrogen bridge becomes more delocalized,
without significant qualitative changes to the proton potential profile.
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Prometheus) in Kraków and Poznań Supercomputing and Networking Center (PSNC) in Poznań for
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