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Abstract: We conducted population pharmacokinetic (PPK) analysis and Monte Carlo simulations
to determine the appropriate prophylactic dose of fluconazole to prevent invasive candidiasis in
patients with hematological malignancies. Patients receiving chemotherapy or hematopoietic stem
cell transplantation at Yokohama City University Hospital between November 2018 and March 2020
were included. Additionally, patients receiving oral fluconazole for prophylaxis were recruited.
We set the free area under the curve/minimum inhibitory concentration (MIC) = 50 as the target
and determined the largest MIC (breakpoint MIC) that could achieve more than 90% probability of
target attainment. The blood fluconazole concentration of 54 patients (119 points) was used for PPK
analysis. The optimal model was the one-compartment model with first-order administration and
first-order elimination incorporating creatinine clearance (CLcr) as a covariate of clearance and body
weight as a covariate of distribution volume. We conducted Monte Carlo simulation with fluconazole
at 200 mg/day or 400 mg/day dosing schedules and patient body weight and CLcr ranging from 40
to 70 kg and 40–140 mL/min, respectively. The breakpoint MICs on the first dosing day and at steady
state were 0.5–1.0 µg/mL and 1.0–2.0 µg/mL for 200 mg/day and 1.0–2.0 µg/mL and 2.0–4.0 µg/mL
for 400 mg/day, respectively. The recommended dose was 400–700 mg/day for the loading dose
and 200–400 mg/day for the maintenance dose. Our findings suggest that the optimal prophylactic
dose of fluconazole in hematological malignancy patients depends on CLcr and body weight, and a
sufficient loading and maintenance dose may be needed to completely prevent invasive candidiasis.

Keywords: fluconazole; prophylaxis; population pharmacokinetic analysis; hematological malignancy;
Monte Carlo simulation; probability of target attainment; dosing optimization; pharmacokinetics/
pharmacodynamics

1. Introduction

Invasive candidiasis is one of the most common fungal infections and includes can-
didemia and deep-seated candidiasis [1]. Hematological malignancy is a risk factor for
invasive candidiasis, and prophylaxis of this is a critical priority [2–4]. In a report of
autopsy cases in Japan, deep-seated candidiasis was found to be the direct cause of death
in 66.7% of patients with leukemia or myelodysplastic syndrome and concomitant deep-
seated candidiasis [5]. According to a report on post-hematopoietic stem cell transplant
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recipients in the United States, one-year survival rate was only 33.6% in these patients [6].
Therefore, prevention of invasive candidiasis is a key challenge.

In the Japanese Domestic Guidelines for Management of Deep-seated Mycosis 2014,
fluconazole, itraconazole, and micafungin are recommended for the prophylaxis of inva-
sive Candida infection in the pre-engraftment of allogeneic transplantation, autologous
transplantation, and chemotherapy-induced neutropenia [7]. Gastrointestinal absorption
of itraconazole was significantly improved by modification in formulation; however, this
formulation cannot be used routinely due to gastrointestinal toxicity [8]. Although mica-
fungin is highly efficacious [9], it is not suitable for long-term prophylaxis because only
the injection form is available [7]. Therefore, fluconazole is often used to prevent invasive
candidiasis because of its effectiveness.

Therapeutic efficacy has been reported to be correlated with fluconazole dose [10],
and hence, 400 mg/day fluconazole is recommended for patients with hematological
malignancies [3,11,12]. Although, 100–200 mg/day is often administered in Japan [13,14],
the adequacy of 100–200 mg/day, i.e., less than the recommended dose, has not yet been
validated [15].

Population pharmacokinetic (PPK) analysis can be used to obtain the pharmacokinetic
parameters required for drug dosage optimization. Several PPK analyses of fluconazole
have been reported [16–20]. However, the PPK parameters of fluconazole in patients
with hematological malignancies have not yet been clarified. Because augmented renal
clearance (ARC) increases drug clearance in hematological malignancy patients [21,22], the
pharmacokinetics of hematological malignancies may differ from those with other diseases.
Therefore, PPK analysis using blood fluconazole concentrations from hematological malig-
nancy patients is necessary to clarify the appropriate dosage in patients with hematological
malignancies.

In this study, we built a PPK model of fluconazole in patients with hematological
malignancies and investigated the optimal dosage using Monte Carlo simulation.

2. Materials and Methods
2.1. Ethics

This study was approved by the Yokohama City University Ethics Committee (ap-
proval number: B180906004) and the Keio University Faculty of Pharmacy (approval
number: 190704-1). Written informed consent was obtained from all participants who were
administered fluconazole at the Yokohama City University Hospital.

2.2. Patients

Among the patients admitted to the Yokohama City University Hospital in Japan
between November 2018 and March 2020 who received chemotherapy or hematopoietic
stem cell transplantation for hematological malignancy, only those who met the following
criteria were enrolled in this study: age ≥ 16 years and prophylactic fluconazole adminis-
tration. Patients aged < 16 years who could not provide consent or critically ill patients
were excluded.

2.3. Fluconazole Administration and Sample Collection

Fluconazole was administered orally at a dose of 200 mg once daily every 24 h. Blood
samples were collected at 1−4 points at indicated time (1 h before (trough levels), 2, 4, or
12 h) after fluconazole administration. Plasma was immediately extracted and stored at
−20 ◦C at the hospital. Plasma was then transported to the Keio University Faculty of
Pharmacy and stored at −80 ◦C until measurement. Clinical and patient background data
on the first day of fluconazole administration were collected. Body surface area (BSA),
creatinine clearance (CLcr), and estimated GFRcre (eGFRcre) were calculated using the
Dubois formula [23], Cockcroft-Gault formula [24], and the Japanese-recommended eGFR
equation by Matsuo et al. [25].
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2.4. Measurement of Fluconazole Concentration

Fluconazole Standard solutions (1.56, 3.12, 6.25, 12.5, 25.0, 50.0 µg/mL of fluconazole
standards (FUJIFILM Wako Pure Chemical Corp. Osaka, Japan)) or samples were mixed
with dichloromethane, and the organic phase was evaporated and then redissolved in the
mobile phase where the resulting solution was used as a sample. A calibration curve was
prepared using the standard solution, and the concentration of the sample was measured.
Fluconazole concentrations were measured using high-performance liquid chromatography
(HPLC; Shimadzu, Kyoto, Japan). The HPLC conditions were as follows: Mightysil® RP-18
GP 250–4.6 (5 µm) analytical column was used, the measurement temperature was 40 ◦C,
the mobile phase was 10 mM phosphate buffer (pH 5.70): methanol = 65:35, and the
wavelength of the ultraviolet absorption detector (SPD-20A) was set to 266 nm.

2.5. PPK Analysis

PPK analysis was performed using the Phoenix NLME™ (Certara, Princeton, NJ,
USA). First-order conditional estimation-extended least squares (FOCE-ELS) methods that
are equivalent to the NONMEM FOCE methodology with interaction (FOCE-I) were used
throughout the modeling process. First, one-, two-, and three-compartment models with
first-order administration and first-order elimination were tested to determine fluconazole
distribution. The PK models were assessed using statistical methods. Additive, multiplica-
tive, additive and multiplicative models were tested to describe the residual variability
model. The optimal base compartment model was evaluated for statistical significance
using the objective function value (OFV; −2 Log-likelihood, −2LL) and Akaike information
criterion. Subsequently, the final model was evaluated, including covariates that could
affect fluconazole PK parameters. The evaluated covariates were age, body weight, height,
BSA, body mass index, CLcr estimated using the Cockcroft-Gault formula, and eGFRcre.
The covariates were tested using a stepwise forward inclusion and backward elimination
model building process.

The suitability of the final model was verified using the visual predictive check (VPC)
and bootstrap methods (1000 bootstrap runs).

2.6. Probability of Target Attainment (PTA) Analysis

In the PTA analysis, we randomly generated data for 10,000 simulated patients by
CLcr and body weight using Monte Carlo simulations and calculated the area under the
curve (AUC). Phoenix ® NLME™ (Certara, Princeton, NJ, USA) and Phoenix WinNonlin™
(Certara, Princeton, NJ, USA) were used. Following previous reports, the f AUC/minimum
inhibitory concentration (MIC) and the protein binding rate were set at 50 [16,26] and
12%, respectively. The largest MIC that achieved a PTA ≥ 90% was defined as the break-
point MIC.

Twenty-four patient backgrounds were assumed: four weights (40, 50, 60, and 70 kg)
and six CLcr (40, 60, 80, 100, 120, and 140 mL/min). Fluconazole (200 mg and 400 mg, once
daily) was simulated.

2.7. Verification of the Optimal Dose of Fluconazole

To determine the prophylactic dose, the target MIC was set at 2.0 µg/mL with refer-
ence to the sensitive norm of Candida albicans in CLSI M60 1st Edition [27] and previous
epidemiological reports [28,29]. The loading and maintenance doses were determined
for every 100 mg change. The dose in relation to body weight and CLcr, which ensured
PTA ≥ 90% for f AUC/MIC = 50, was determined by performing Monte Carlo simulations.
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3. Results
3.1. Patient Characteristics

The characteristics of the 54 patients are listed in Table 1. The median age was
53 (20–77) years, and 31 of among these were male. Median body weight, BSA, CLcr,
and eGFRcre were 57.6 (39.8–99.1) kg, 1.62 (1.31–2.23) m2, 87.1 (31.1–193.6) mL/min,
and 71.2 (25.9–148.5) mL/min, respectively. Patients with many types of hematological
malignancies were included, and post-transplantation cases were included in this analysis.
The fluconazole dose was 200 mg/day in all patients.

Table 1. Demographic and clinical characteristics of the population.

Characteristic Median or Number Range

Number of patients (male/female) 31/23 –
Body weight (kg) 57.6 39.8–99.1
Height (cm) 162.6 143.6–187.7
Age (years) 53 20–77
BMI (kg/m2) 21.7 15.8–29.1
BSA (m2) 1.62 1.31–2.23
CG-CLcr (mL/min) 87.1 31.1–193.6
eGFRcre (mL/min) 71.2 25.9–148.5
eGFRcre (mL/min/1.73 m2) 69.2 31.6–157.5
Disease

Acute myeloid leukemia (AML)/Myelodysplastic
syndromes (MDS) 10 –

Acute lymphoid leukemia (ALL) 6 –
non-Hodgkin lymphoma (NHL) 28 –
Hodgkin lymphoma (HL) 2 –
Multiple myeloma (MM) 3 –
Others 5 –

Treatment
Chemotherapy 38 –
Autologous peripheral blood stem cell transplantation 9 –
Bone marrow transplantation 2 –
Cord blood transplantation 2 –
Allogeneic peripheral blood stem cell transplantation 1 –
Others 2 –

BSA, body surface area using the Dubois equation; CG-CLcr, estimated CLcr using the Cockcroft-Gault equation;
eGFRcre, estimated GFR using the equation reported by Matsuo S et al.

3.2. Validation of Fluconazole Measurement

The correlation coefficient of the calibration curve was 1.0. The accuracy of the assay
ranged from 86.9% to 100.7%. The %CVs of the intraday and inter-day assays using the
four test samples were <5.3% and <7.5%, respectively.

3.3. Pharmacokinetic Model Buiding

A total of 125 blood samples were collected from patients, and 119 were used for
analysis, excluding six points for which renal function changed substantially during ad-
ministration. The results of the final model and bootstrap method performed using PPK
model of fluconazole are shown in Table 2. The model goodness of fit was improved
by inclusion of the covariates measured CLcr (normalized to the population median of
5.2 L/h) for fluconazole clearance and body weight (normalized to 57.6 kg) for fluconazole
V/F. Furthermore, the addition of both resulted in a statistically significant improvement
in the Log-likelihood from the previous model (p < 0.05). The median pharmacokinetic
estimates of the final multivariate model were CL/F = 1.2 L/h and V/F = 62.3 L.
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The diagnostic plots and VPC confirmed the appropriateness of the model, as shown
in Figures 1 and 2, respectively. The individual-predicted concentrations and population-
predicted concentrations based on the final model corresponded well with the observed
concentrations. The typical value and standard error of the final model, CV, 95% confidence
interval, and results of the bootstrap method were similar (Table 2). The VPC shows that
most of the observed plots were between the 5th and 95th percentiles (Figure 2).

Table 2. Parameter estimates of fluconazole for the final covariate one-compartment model with first order input for
oral administration.

Parameter
Final Model Bootstrap Method

n = 1000

Estimate SE CV (%) 95% CI Median 95% CI

CL/F (L/h) = θ1 × (CLcr/5.2)θ2 × e0.16

θ1 (L/h) 1.03 0.08 7.38 0.88–1.18 1.03 0.86–1.19
θ2 (L/h) 1.05 0.14 13.7 0.77–1.33 1.07 0.81–1.37

Vd/F (L) = θ3 × (BW/57.6)θ4
θ3 (L) 62.3 8.87 14.2 44.7–79.9 64.3 47.5–87.9
θ4 (L) 1.06 0.36 34.4 0.34–1.78 1.08 0.08–2.24

ka (/h) 0.34 0.12 35.1 0.10–0.58 0.41 0.15–0.77

CLcr, estimated CLcr using the Cockcroft-Gault equation (L/h); BW, body weight (kg).
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observed and predicted concentrations.
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3.4. PTA Analysis

Monte Carlo simulations assuming a fixed dose of 200 mg or 400 mg/day were
performed to indicate the breakpoint MIC in each scenario (Table 3). On the first dosing
day (Day 1), the breakpoint MICs were 0.5–1 µg/mL for 200 mg/day and 1–2 µg/mL for
400 mg/day. On Days 8 and 15, breakpoint MICs were 1–2 µg/mL at 200 mg/day and
2–4 µg/mL at 400 mg/day. The breakpoint MICs changed by body weight and CLcr on
Day 1. These changes were only caused by CLcr and not by bodyweight on Days 8 and 15.

Table 3. Fluconazole probability of target attainment (PTA) at different BW, CLcr, and loading dose regimen on Day 1, 8,
and 15.

PTA by MIC (µg/mL) and f AUC/MIC of 50

Day 1 (0–24 h) Day 8 (168–192 h) Day 15 (336–360 h)

Dose
(mg/day)

BW
(kg)

CLcr
(mL/min) 0.125 0.25 0.5 1 2 4 8 16 0.125 0.25 0.5 1 2 4 8 16 0.125 0.25 0.5 1 2 4 8 16

200 40

40 + + + + - - - - + + + + + - - - + + + + + - - -

60 + + + + - - - - + + + + + - - - + + + + + - - -

80 + + + + - - - - + + + + - - - - + + + + - - - -

100 + + + + - - - - + + + + - - - - + + + + - - - -

120 + + + - - - - - + + + + - - - - + + + + - - - -

140 + + + - - - - - + + + + - - - - + + + + - - - -

50

40 + + + + - - - - + + + + + - - - + + + + + - - -

60 + + + + - - - - + + + + + - - - + + + + + - - -

80 + + + - - - - - + + + + - - - - + + + + - - - -

100 + + + - - - - - + + + + - - - - + + + + - - - -

120 + + + - - - - - + + + + - - - - + + + + - - - -

140 + + + - - - - - + + + + - - - - + + + + - - - -
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Table 3. Cont.

PTA by MIC (µg/mL) and f AUC/MIC of 50

Day 1 (0–24 h) Day 8 (168–192 h) Day 15 (336–360 h)

Dose
(mg/day)

BW
(kg)

CLcr
(mL/min) 0.125 0.25 0.5 1 2 4 8 16 0.125 0.25 0.5 1 2 4 8 16 0.125 0.25 0.5 1 2 4 8 16

60

40 + + + - - - - - + + + + + - - - + + + + + - - -

60 + + + - - - - - + + + + + - - - + + + + + - - -

80 + + + - - - - - + + + + - - - - + + + + - - - -

100 + + + - - - - - + + + + - - - - + + + + - - - -

120 + + + - - - - - + + + + - - - - + + + + - - - -

140 + + + - - - - - + + + + - - - - + + + + - - - -

70

40 + + + - - - - - + + + + + - - - + + + + + - - -

60 + + + - - - - - + + + + + - - - + + + + + - - -

80 + + + - - - - - + + + + - - - - + + + + - - - -

100 + + + - - - - - + + + + - - - - + + + + - - - -

120 + + + - - - - - + + + + - - - - + + + + - - - -

140 + + + - - - - - + + + + - - - - + + + + - - - -

400 40

40 + + + + + - - - + + + + + + - - + + + + + + - -

60 + + + + + - - - + + + + + + - - + + + + + + - -

80 + + + + + - - - + + + + + - - - + + + + + - - -

100 + + + + + - - - + + + + + - - - + + + + + - - -

120 + + + + - - - - + + + + + - - - + + + + + - - -

140 + + + + - - - - + + + + + - - - + + + + + - - -

50

40 + + + + + - - - + + + + + + - - + + + + + + - -

60 + + + + + - - - + + + + + + - - + + + + + + - -

80 + + + + - - - - + + + + + - - - + + + + + - - -

100 + + + + - - - - + + + + + - - - + + + + + - - -

120 + + + + - - - - + + + + + - - - + + + + + - - -

140 + + + + - - - - + + + + + - - - + + + + + - - -

60

40 + + + + - - - - + + + + + + - - + + + + + + - -

60 + + + + - - - - + + + + + + - - + + + + + + - -

80 + + + + - - - - + + + + + - - - + + + + + - - -

100 + + + + - - - - + + + + + - - - + + + + + - - -

120 + + + + - - - - + + + + + - - - + + + + + - - -

140 + + + + - - - - + + + + + - - - + + + + + - - -

70

40 + + + + - - - - + + + + + + - - + + + + + + - -

60 + + + + - - - - + + + + + + - - + + + + + + - -

80 + + + + - - - - + + + + + - - - + + + + + - - -

100 + + + + - - - - + + + + + - - - + + + + + - - -

120 + + + + - - - - + + + + + - - - + + + + + - - -

140 + + + + - - - - + + + + + - - - + + + + + - - -

CLcr, estimated CLcr using the Cockcroft-Gault equation; BW, body weight (kg). A plus sign indicates that at least 90% of fluconazole PTA
is achieved; a minus sign (shaded) indicates that fluconazole PTA attainment failed to achieve 90%.

To clarify the required doses satisfying f AUC/MIC = 50 for a target MIC = 2.0 µg/mL,
additional Monte Carlo simulations were performed at 300, 400, 500, and 600 mg/day in
each scenario. On Day 1, the required doses were proportional to body weight when CLcr
was the same (Figure 3 and Supplementary Figure S1). On Day 15, the required doses were
proportional to CLcr when the body weight was the same (Figure 4 and Supplementary
Figure S2).
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Figure 3. Probability of target attainment (PTA) of f AUC/MIC ratio ≥ 50 after fluconazole loading
doses of 200 mg, 300 mg, 400 mg, 500 mg, and 600 mg administered on Day 1 (0–24 h). The target
MIC was 2 µg/mL, and the CLcr (Cockcroft-Gault equation) was 80 mL/min. The other CLcr is
shown in Figure S1.

3.5. Verification of the Optimal Dose of Fluconazole

To determine the recommended fluconazole dose based on body weight and CLcr,
Monte Carlo simulation was performed assuming a single loading dose on Day 1 and once
daily maintenance doses after Day 2. The recommended doses by body weight and CLcr
were 400–700 mg/day for the loading dose and 200–400 mg/day for the maintenance dose
(Table 4). The maximum fluconazole concentration in blood did not exceed 80 µg/mL (data
not shown).
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Table 4. Nomogram of fluconazole dose for prophylaxis.

CLcr (Cockcroft-Gault Equation)
40–60 mL/min 60–80 mL/min 80–100 mL/min 100–120 mL/min 120–140 mL/min

Loading dose (Required in the situation neutropenia is predicted within a week)
Body 40–50 kg 400 mg/day 500 mg/day 500 mg/day 500 mg/day 600 mg/day

Weight 50–60 kg 500 mg/day 500 mg/day 500 mg/day 600 mg/day 600 mg/day
60–70 kg 500 mg/day 600 mg/day 600 mg/day 600 mg/day 700 mg/day

Maintenance dose
Body 40–50 kg 200 mg/day 300 mg/day 300 mg/day 400 mg/day 400 mg/day

Weight 50–60 kg 200 mg/day 300 mg/day 300 mg/day 400 mg/day 400 mg/day
60–70 kg 200 mg/day 300 mg/day 300 mg/day 400 mg/day 400 mg/day

4. Discussion

For the first time, we performed PPK analysis of fluconazole and built a PPK model
in patients with hematological malignancy. Consequently, the Cockcroft-Gault equation–
based CLcr was selected as a covariate for fluconazole clearance, and body weight was
selected as the distribution volume. Based on the fact that 80% of administrated fluconazole
is excreted from the kidneys as unchanged [30], it is reasonable that CLcr was selected as a
covariate of CL/F. Previous reports have also shown that CLcr is a covariate of fluconazole
clearance [18]. The distribution volume has been reported to be proportional to BMI
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in obese individuals [18]. In patients with liver cirrhosis, the distribution volume has
been reported to decrease as expanded plasma and blood volume improve after liver
transplantation [16]. The fluconazole distribution volume has also been reported to be
identical to the whole-body water content [31], and it is reasonable to select body weight as
a covariate of Vd/F. Because the protein binding rate of fluconazole was only 12%, albumin
level was assumed to exert no effect on fluconazole concentration. Since gender was not
considered as a covariate in previous reports [16–20], it was not used in this case also.

Vd/F and CL/F in this study were 62.3 L and 1.2 L/h, respectively. Several studies
on the PPK analysis of fluconazole have been reported. According to the previous PPK
analysis in healthy volunteers, Vd/F was reported as 55.4–59.4 L [32], which was slightly
lower than our result. Cojutti et al. reported that Vd/F was 27.0 L in post-liver transplant
patients and lower than other reports [16]. However, the reason for this finding has not
been revealed. CL/F was reported as 0.55–0.79 L/h [16,19], which was lower than our
result. Therefore, we showed for the first time that the CL/F of fluconazole is increased in
hematological malignancies. The clearance of vancomycin and amikacin, which are excreted
by the kidney, has been reported to be increased by ARC in patients with hematological
malignancies [33,34]. Because vancomycin and amikacin are routinely recommended for
therapeutic drug monitoring (TDM) [35,36], we usually monitor blood concentrations and
modify their doses; In contrast, fluconazole is not recommended [37]. Therefore, monitoring
of blood concentrations and modifying fluconazole doses are difficult in clinical settings. In
addition, the prophylactic dose is often lower than the therapeutic dose [13,14]; however, a
lower dose may not be sufficient for hematological malignancy whose CL/F increases.

We showed that fluconazole 400 mg/day achieved f AUC/MIC = 50 for up to
MIC = 2 µg/mL at steady state; however, 200 mg/day was not achieved in the case of
CLcr > 60 mL/min. Since the PK/pharmacodynamics (PD) parameter of fluconazole has
been reported to be AUC/MIC [38], we adopted f AUC/MIC = 50, which Cojutti et al. [16]
and Pai et al. [26] used, as our target PK/PD parameter. The target MIC was set at
2.0 µg/mL with reference to the sensitive norm of Candida albicans in CLSI M60 1st Edi-
tion [27] and previous epidemiological reports [28,29]. We simulated doses that could
achieve PTA ≥ 90% for target PK/PD parameters (f AUC/MIC = 50 and MIC = 2 µg/mL).
Fluconazole 400 mg/day prophylaxis was considered sufficiently feasible to reduce fun-
gal infections in patients with hematological malignancies. Goodman et al. reported
that fluconazole 400 mg/day was adequate to reduce fungal infections in bone mar-
row transplantation recipients [12]; our analysis would have validated their findings
based on PK/PD theories. In contrast, fluconazole prophylaxis is often administered at
100–200 mg/day in Japan [13,14]; however, its prophylactic efficacy has not been validated.
In PTA analysis, 200 mg/day administration failed to achieve target PK/PD parameters at
steady state in those with CLcr > 60 mL/min. Therefore, it is suggested that administration
of 200 mg/day may not provide adequate efficacy.

We determined the recommended dose based on body weight and CLcr and showed a
loading dose of 400–700 mg/day and maintenance dose of 200–400 mg/day. The breakpoint
MIC of fluconazole on the first day of administration was lower than the breakpoint MIC on
the steady state. This may be because it takes time for blood concentrations to reach a steady
state because the half-life of fluconazole is 31 h [39]. As the loading dose is recommended
when fluconazole is used for treatment [7,40], a loading dose is recommended if adequate
efficacy is needed from the first day. In addition, the safety of the recommended dose
of fluconazole was investigated. Fluconazole is safe, with few adverse events occurring
at 400 mg/day [3,11,12]. Previous reports have reported that convulsions occur when
the blood fluconazole level is >80 µg/mL [41]. Simulated blood concentrations based
on our nomogram did not exceed the maximum blood concentration of 80 µg/mL. The
recommended dose in the steady state was never greater than 400 mg/day. Based on these
results, our nomogram had a high safety profile. Our nomogram can provide adequate
prophylaxis from the first day of administration, and it is possible to prevent low blood
concentrations in patients with hematological malignancies, even without TDM.
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This study has several limitations. First, this was a single-center study. It only included
patients with hematological malignancies. We believe this is the first report to provide
fluconazole pharmacokinetics information in patients with hematological malignancies
whose ARC is a problem. Because the sample size and measurement points of this study
were equal to or greater than previously published PPK analysis of fluconazole [16–20],
this study has sufficient information that warrants the conduct of PPK analysis. Second,
the optimal dosing regimen established in our study was not evaluated for efficacy and
safety in clinical practice. Third, the target f AUC/MIC was 50 in this study. Although
f AUC/MIC = 50 is widely used, there is little information regarding the f AUC/MIC
of fluconazole. More research on the f AUC/MIC of fluconazole is needed. Fourth, the
epidemiology of Candida infections varies across countries. A high target MIC is required
to completely prevent breakthrough infection, which is unrealistic. Therefore, the target
MIC was set with reference to the sensitive norm of Candida albicans in the CLSI M60 1st
Edition. Even though there are several limitations, this is the first informative study to
show the optimal dosing regimen based on Monte Carlo simulation for hematological
malignancy patients. Robust evidence through prospective studies using these regimens
must be obtained.

5. Conclusions

This PPK analysis included only patients with hematological malignancies, and the
PPK model of hematological malignancy was built for the first time. Model-based Monte
Carlo simulations suggested that fixed doses of fluconazole 200 mg/day may be ineffective
with CLcr > 60 mL/min. Here, the optimal dosing regimens based on body weight and
CLcr render fluconazole prophylaxis more reliable.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/jof7110975/s1, Figure S1: Probability of target attainment (PTA) of f AUC/MIC ratio ≥ 50 after
fluconazole loading doses of 200 mg, 300 mg, 400 mg, 500 mg, and 600 mg administered on Day 1
(0–24 h), Figure S2: Probability of target attainment (PTA) of f AUC/MIC ratio ≥ 50 after fluconazole
maintenance doses of 200 mg, 300 mg, 400 mg, 500 mg, and 600 mg administered on Day 15 (336–360 h).
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