
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12659  | https://doi.org/10.1038/s41598-020-69590-y

www.nature.com/scientificreports

Factors controlling the spatial 
distribution of soil organic carbon 
in Daxing’anling Mountain
Junyao Li, Dongyou Zhang* & Mei Liu

Daxing’anling Mountain, in the northeastern part of China, contains a large amount of soil organic 
carbon (SOC). Using data including topography, climate, and vegetation, the spatial distribution of 
SOC content was modeled using classical and geography-based statistics, as well as a geographically 
weighted kriging model. The study findings include: (1) SOC content generally ranges 40–70 g/
kg, with high SOC content in the southwest and low SOC content in the southeast; (2) Results of 
principal component analysis suggested the normalized difference vegetation index is the best 
predictor of patterns in SOC; and (3) The geo-weighted regression Kriging model well reflects factors 
influencing spatial distribution of SOC content. This study provides important baseline information 
for environmental protection in the Daxing’anling Mountain area, as well as general information as to 
important factors that mediate this important reservoir of soil carbon.

As the largest terrestrial ecosystem carbon pool, soil organic carbon (SOC) plays a critical role in the Earth’s cli-
mate. Soil carbon storage is 2–3 times that of the global terrestrial vegetation carbon pool1–3. Current studies have 
shown that SOC is an atmospheric CO2 sink and SOC pools can help mediate atmospheric CO2 concentrations 
and mitigate global warming4. Frozen soil refers to any rock and soil below 0 ℃ that contains ice. Generally, it 
can be divided into short-term frozen soil (hours or days to two weeks), seasonally frozen soil (2 weeks to several 
months) and permafrost (refers to a layer of frozen and unmelted soil that lasts 2 years or more). Studies have 
shown that half of the global SOC is in frozen soil5 and a large amount of soil is stored in permafrost regions. 
Climate warming and degradation of permafrost cause the long-term storage of SOC to be released, changing 
the carbon cycle of the original permafrost area and perhaps accelerating climate warming6.

For the Qinghai-Tibet Plateau, with the largest area of frozen soil in China’s low latitudes, the thickness of the 
permafrost active layer is increasing while the area of frozen soil is decreasing7. Research by Plaza et al.8 found 
that with the degradation of permafrost, the rate of organic carbon loss was as high as 4.5% a−1. Daxing’anling 
Mountain is located in northeastern China, on the southern edge of the high-latitude permafrost region of 
Eurasia. Frozen soil is mainly permafrost at high latitudes. It contains a key state-owned natural forests area and 
contains a large amount of soil organic carbon.

Regionally, SOC is critical for agriculture and environmental ecology9, and its content directly affects the func-
tion and sustainable utilization of soil ecosystems10. The spatial distribution characteristics of SOC content are 
affected by many environmental cofactors and their variability has different characteristics at different scales11,12. 
In recent years, the Daxing’anling Mountain range has experienced severe degradation in ecological function13. 
In this context, we studied factors influencing the spatial distribution of SOC and the main factors controlling 
it in the Daxing’anling Mountain range.

Study area
The study area was the Daxing’anling Mountain range in the northeast region of China. The geographic coor-
dinates are 121°12′–127°00′ E, 50°10′–53°33′ N14 and the total area is 8.35 million km215,the east–west length is 
greater than the north–south expanse. It is mainly composed of middle-lower mountains and tundra that are 
higher in the northeast and lower in the northwest. The average altitude of the area is 573 m and the highest 
altitude 1528 m. The altitude of the western and central parts of Huzhong District, the Xinlin District, and Tahe 
County is 300–500m16. The average slope is 12° 15.
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In the study area, water resources are rich, with nearly 150 rivers, including the Huma, Pangu, Naduli, Xiergen, 
Gan, Emuer, and Duobukuer, among others. Vegetation diversity is low, mainly composed of the main founda-
tion species Larix gmelinii Kuzen in the northern mountains, accounting for 75% of total cover17. Other tree 
species include Pinus sylvestris var. mongolica Litv., Pinus pumila, Betula platyphylla Suk, and Picea asperata Mast.

Experimental samples were collected in July 2018. Sampling points were arranged according to the land use 
map of the frozen soil area of Daxing’anling Mountain. A total of 180 sample points was collected using a soil 
drill and other tools and we ensured that sites were distributed across the study area (Fig. 1).

Results
Spatial distribution of SOC content.  Interpolation parameters were obtained based on a geostatistical 
semi-variance function method, and results of the parameters obtained by Kriging to get a better overall model. 
The SOC content in Daxing’anling Mountain is transformed from discrete point information to continuous 
surface information, and the spatial distribution characteristics of SOC content could then be further analyzed. 
Through this approach, we can use fewer sampling points to predict spatial information of soil properties in the 
entire Daxing’anling Mountain area, as shown in Fig. 2. Results suggest that prediction accuracy is high. It can 
be seen in the map of the spatial distribution that SOC content is heterogeneous, lower in the northwest and 
southeast. SOC content generally ranges from ~ 40–70 g/kg.

Principal component analysis of SOC and auxiliary environmental variables.  To determine the 
contributions of environmental auxiliary variables to SOC, correlations between SOC and environmental auxil-

Figure 1.   Distribution of sampling locations across the Daxing’anling Mountain in northeastern China. The 
map was generated by software ArcGIS 10.1 (https​://www.esri.com/) by Junyao Li & Mei Liu.

https://www.esri.com/
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iary variables were analyzed. Auxiliary environmental variables, their abbreviations and results are displayed in 
Table 1, showing a range of positive and negative correlation coefficients.

The SOC content in Daxing’an Mountain is taken as the dependent variable, and ten influential factors such 
as quantitative normalized difference vegetation index, integrated land use index, slope, aspect, elevation, profile 
curvature, plan curvature, topographic wetness index, convergence of confluence, and surface temperature are 

Figure 2.   Spatial distribution of SOC content in the Daxing’anling Mountain range. Select the ordinary Kriging 
model and perform Kriging interpolation on the sampling point data to obtain the spatial distribution of SOC 
content. The figure was generated by ArcGIS 10.1.

Table 1.   SOC content correlation with environmental variables in the Daxing’anling Mountain range.

Environmental auxiliary variables Abbreviation SOC content correlation coefficient

Normalized Difference Vegetation Index NDVI 0.54

Integrated land use index La 0.51

Slope S 0.44

Aspect A 0.41

Elevation H 0.42

Profile curvature Cp 0.23

Plan curvature Ct − 0.16

Topographic Wetness Index TWI 0.34

Convergence of confluence Cc 0.34

Surface temperature St 0.02

Table 2.   Influence factor eigenvalue and principal component contribution rate.

Impact factor Component Eigenvalue Contribution rate (%) Cumulative contribution rate (%)

NDVI 1 2.0 20.4 20.4

La 2 1.8 18.5 38.9

S 3 1.4 14.2 53.1

A 4 1.0 10.2 63.3

H 5 1.0 10.2 73.5

Cp 6 0.9 8.8 82.2

Ct 7 0.7 7.1 89.3

TWI 8 0.6 6.3 95.6

Cc 9 0.3 2.7 98.3

St 10 0.2 1.7 100.0
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taken as independent variable, using X1 X2……X10 named. Based on ten independent variables and principal 
component analysis, the eigenvalues, contribution rates and cumulative contribution rates of the ten environ-
mental auxiliary factors in this paper are obtained, and the main influencing factors of SOC content are analyzed 
and determined. The results are shown in Table 2.

The cumulative contribution of the first, second, third, fourth, and fifth principal components is 73.5%. The 
top five principal components met the requirements of the Kaiser criterion, which suggests strong explanatory 
power for the SOC variation for Daxing’anling Mountain.

The first principal component is NDVI, whose contribution rate is 20.4%. The second principal compo-
nent is the land use comprehensive index (18.5%), indicating that the change of soil organic carbon content in 
Daxing’anling Mountain is related to residential land, roads, rivers, and green space. The third principal com-
ponent is the slope (14.2%), the fourth principal component is the aspect (10.2%), and the fifth is the elevation 
(10.2%). Indicating that the topographic changes in Daxing’an Mountain range are correlated with the SOC 
content and will have a certain influence on it.

Evaluation of the geographically weighted regression Kriging model.  Using geographically 
weighted regression (GWR) and multiple linear regression (MLR) models for analysis, the same auxiliary varia-
bles were selected to compare the two models. Bandwidth was set according to the modified Akaike-information 
criterion18 as shown in Table 3. The R2 value of the GWR model (0.47) is higher than that of the MLR model 
(0.30), which suggests the GWR model is better in identifying factors influencing SOC spatial distribution. Fur-
thermore, the AICC value of the GWR model is lower than that of the MLR model, suggesting a better model 
fit18.

Five-fold cross-validation was used to verify and evaluate the interpolation accuracy of the geographically 
weighted regression kriging model (GWRK) and the regression kriging model (RK). Soil sample data were 
divided randomly into five parts, and then one part was designated as a verification set and was only used for 
evaluation of model accuracy. The remaining ones were used for spatial interpolation in model formation. The 
above process was carried out five times to obtain the simulated value of SOC of the data set. The average error 
and correlation coefficients are used to evaluate and verify the prediction accuracy of each model. Results show 
that the RMSE value of the GWRK model (3.5) is less than that of the RK model (3.8), suggesting the GWRK 
model is superior. This also suggests there are many factors to consider when studying the auxiliary variables of 
spatial distribution characteristics of SOC content, which requires us to consider not only the fitting of environ-
mental auxiliary variables but also additional spatial and structural information.

Factors controlling SOC content spatial distribution.  The spatial variation of SOC content, which is 
related to the environmental auxiliary variables, has predictable geospatial characteristics. Five key indicators 
(those that loaded high on the first five PCA axes) were identified: normalized vegetation difference index, inte-
grated land use index, slope, aspect, and elevation. These five factors and results of GWRK model fitting were 
used to estimate the spatial distribution of SOC content and results are shown in Fig. 3. Coefficients of explana-
tory factors vary with location.

The coefficient with the largest absolute value is the main controlling variable in a geographical location19. 
Compared with the other four environmental explanatory factors, absolute values of NDVI coefficients are 
highest. The influence of NDVI on the spatial distribution of SOC content decreased from the mideast to the 
northwest and the southeast. This suggests that the higher the vegetation coverage, the greater the control on the 
SOC content. The other four environmental auxiliary factors play a more secondary role.

The integrated land use index ranks second in importance to NDVI. Its influence on SOC spatial distribution 
is reflected in the northeast, northwest, and southeast. In the northeast part of the study area, La is positively 
correlated with SOC content which suggests vegetation cover will promote the accumulation of SOC. In the 
northwest and southeast of the study area, the integrated land use index (La) is negatively correlated with SOC.

The slope and aspect have a major influence on the spatial distribution of SOC content in the central and 
western areas. Some low-slope areas are disturbed by human activities. When the slope increases limiting human 
activities, the impact of slope on SOC is positively correlated. The sunny slope side is conducive to SOC accumu-
lation. In the western and central areas, the elevation is positively correlated with SOC content. As the altitude 
increases, the vegetation coverage is higher which will promote the accumulation of SOC. In the eastern areas, 
the elevation is negatively correlated with SOC because of farming and other factors.

Regions with the best model fits are distributed in the eastern and central parts of the study area, whereas 
regions with weaker fits are in the northwest.

Discussion
The response of permafrost organic carbon to climate warming is a matter of general concern as it will lead to 
environmental changes affecting production, environment, and socioeconomic security20,21. Some studies have 
found that the physical and chemical properties of soil and the distribution of surface vegetation are the most 

Table 3.   Diagnostic information of the MLR and GWR residual models for SOC.

Model AICC R2 R
2

adj

Regression model 1786.9 0.4 0.1

Geographic-weighted regression 1784.9 0.5 0.3
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Figure 3.   Explanatory variable coefficients in the GWRK model for SOC and spatial distribution of R2. Use the 
GWRK model to analyze the influencing factors of SOC and obtain the fitting result graph of the GWRK model. 
(a) NDVI, (b) Integrated land use index, (c) Slope, (d) Aspect, (e) Elevation, (f) R2. All figures were generated by 
ArcGIS 10.1.
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direct driving factors affecting the spatial variability of soil organic carbon22. In McGrath et al.23 research on 
organic carbon in grassland soils in Ireland, it was found that rainfall is a key factor affecting its spatial distribu-
tion. Li24 found that the average annual temperature and rainfall both had a significant impact on the organic 
carbon content of farmland soil in China. Huang’s25 found that soil bulk density and topographic altitude mainly 
affected SOC content, while clay content and annual average temperature had little effect. Chen et al.26 research 
on soil organic carbon in natural ecosystems in northern China found that higher vegetation coverage is ben-
eficial to soil organic carbon accumulation. In this study, results of GWRK fitting shows that the absolute value 
of NDVI factor coefficient is the highest. The NDVI index reflects vegetation coverage, biomass, and vegetation 
growth status27. The index shows a positive correlation between vegetation and soil organic carbon, likely because 
of the accumulation of surface soil litter28.

In the SOC analysis at small and medium scales, scholars often focus on the linear relationship between 
influencing factors and soil organic carbon, not incorporating spatial differences. Conventional linear regres-
sion models may mask the true characteristics of spatial data29. The geographically weighted regression model 
(GWR) is a supplement and extension to the general linear model and has a wide range of applications in envi-
ronmental fields and soil analysis19,30,31. There is a difference between the predicted value calculated by the two 
models and actual values, i.e., the residual error. Some researchers use residual error information of the models 
for spatial prediction and combine the results of the two methods for improved prediction capability32. In Sun’s 
research on forest carbon storage in Maoershan, the prediction accuracy of the GWRK model is higher33. In this 
study, the results of the two models minimize local variability and residual effects in the study area. The GWRK 
model was applied to account up for deficiencies of MLR and GWR, and the SOC content prediction was more 
accurate as a result.

Methods
Soil sampling and laboratory analysis.  Soil sampling depth was 0–20 cm, and one sample was obtained 
by five-point sampling within a 15 × 15 m area. The five-point sampling method refers to first determining the 
center point of the diagonal as the center sampling point, and then selecting four points on the diagonal line 
that are equal in distance from the center sample. Soil samples were placed in a cloth bag and labeled, and the 
temperature, longitude, latitude, and elevation data of soil samples were recorded. Soil samples were air-dried, 
ground, and sifted as a pretreatment. They then were weighed, 0.1 mol/L hydrochloric acid was added to remove 
inorganic carbon, and samples re-dried. SOC was determined by a German Jena multi N/C 3100 TOC analyzer.

Additional environmental data.  Terrain, climate, vegetation, and land use were selected as environmen-
tal auxiliary data to examine spatial variation of SOC in the Daxing’anling Mountain range. Generating deriva-
tives is commonly used in the topographic analysis, and the factors describing these features are called topo-
graphic factors34 Digital elevation models (DEM) use terrain elevation data to create a digital simulation of the 
terrain surface35. Topographic data used were compiled from USGS and auxiliary data, such as slope and aspect, 
and were extracted using ArcGIS software.

In the analysis of land use and SOC, quantitative data are critical. To this end, we employed the comprehensive 
index of land use proposed by Zhuang et al.36.

The normalized difference vegetation index (NDVI) represents plant growth form and the spatial distribution 
density of vegetation. The formula for obtaining NDVI is:

where NIR is the near-infrared band and RED is the infrared band.
Image data were obtained from Landsat8 in July 2018, and NDVI and land use type were processed using 

these. The environmental auxiliary data are shown in Table 4.

The Kriging interpolation method.  To obtain an intuitive SOC spatial distribution, the ordinary Kriging 
interpolation method was used. One advantage of this method is the inclusion of adjacent sample information. 

(1)NDVI = (NIR− RED)/(NIR+ RED)

Table 4.   Variables used for quantitative models of SOC in the Daxing’anling Mountain range. DEM refers to 
digital elevation models. OLI (Operational Land Imager) is a land imager in Landsat 8.

No. Variables Abbreviation Source

1 Slope S DEM

2 Aspect A DEM

3 Elevation H This study

4 Plan curvature Ct DEM

5 Profile curvature Cp DEM

6 Surface temperature St This study

7 Convergence of confluence Cc DEM

8 Topographic Wetness Index TWI DEM

9 Integrated land use index La LAND SAT 8 OLI

10 Normalized Difference Vegetation Index NDVI LAND SAT 8 OLI
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By using structural characteristics of the original data, a linear, unbiased, optimal estimation of values for sites 
not sampled in the study area can be established. The formula is:

where Y(X0) represents the value of the unsampled point, �i is the weight of the sampled point relative to the 
unsampled point, and Y(Xi) is the value of the known sample point adjacent to the sampled point.

Principal component analysis.  Since there are multiple variables in this study, a principal component 
analysis was applied. Due to the high correlation among variables, it is necessary to simplify into fewer predictive 
axes. To achieve data reduction, principal components were extracted representing the original variables (with 
a different relative importance of each variable, or their Eigenvalues) while ensuring that original information 
is best conserved.

Compound model construction for spatial prediction of SOC content.  Multiple linear regression 
models (MLR) and geographically weighted regression models (GWR) can be used to predict spatial variation, 
distribution trends, and driving factors of SOC content. In our study, uncertainties in the simulation of spatial 
distribution trends, the apparent randomness of influencing factors, the geographical location of the samples, 
their spatial structure, local site distribution characteristics, and key characteristics of residuals are considered. 
To this end, the regression Kriging (RK) model and GWR extension model were utilized, which combined the 
results of the MLR models with the regression-residual interpolation hybrid-space modeling method, i.e., a geo-
graphically weighted regression kriging model (GWRK) based on GWR interpolation. These models provided 
a comprehensive approach to reflect the spatial distribution characteristics of SOC in Daxing’anling Mountain.
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