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Allergen immunotherapy (AIT) is the only treatment with disease-transforming potential

for allergic disorders. The immunological mechanisms associated with AIT can be

divided along time in two phases: short-term, involving mast cell (MC) desensitization;

and long-term, with a regulatory T cell (Treg) response with significant reduction of

eosinophilia. This regulatory response is induced in about 70% of patients and lasts up

to 3 years after AIT cessation. MC desensitization is characteristic of the initial phase

of AIT and it is often related to its success. Yet, the molecular mechanisms involved in

allergen-specific MC desensitization, or the connection between MC desensitization and

the development of a Treg arm, are poorly understood. The major AIT challenges are its

long duration, the development of allergic reactions during AIT, and the lack of efficacy in

a considerable proportion of patients. Therefore, reaching a better understanding of the

immunology of AIT will help to tackle these short-comings and, particularly, to predict

responder-patients. In this regard, omics strategies are empowering the identification

of predictive and follow-up biomarkers in AIT. Here, we review the immunological

mechanisms underlying AIT with a focus on MC desensitization and AIT-induced adverse

reactions. Also, we discuss the identification of novel biomarkers with predictive potential

that could improve the rational use of AIT.
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INTRODUCTION

Allergic diseases are a heterogeneous group of immunological disorders characterized by a
detrimental reaction to a given allergen. The onset of allergy occurs at the sensitization phase,
which entails induction of a T helper (Th) 2 response and production of interleukin (IL)-4, IL-
13 or IL-5, and immunoglobulin (Ig) E. Following sensitization, the effector phase is triggered by
allergen re-exposure (1, 2). Effector allergic reactions are complex and often classified -according
to the timing of the reaction- in acute and late phase (3, 4). The former is largely (but not
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exclusively) mediated by IgE (5–8) and its binding to the high-
affinity IgE receptor (FcεRI), which is expressed on eosinophils
(9, 10), monocytes (11), dendritic cells (12, 13) platelets (14),
and specifically on basophils (15, 16) and mast cells (MCs) (17–
19). IgE-FcεRI cross-linking leads to MC degranulation and the
rapid release of vasoactive and pro-inflammatory mediators (e.g.,
histamine, tryptase or prostaglandins), which underlies clinical
manifestations associated with acute allergic reactions, such as
angioedema, hypotension or even anaphylaxis (1, 2, 5, 20, 21).
Of these, anaphylaxis is defined as a life-threatening condition
that compromises patient’s airway, breathing, and/or circulation,
and may occur without typical skin features or the presence of
cardiovascular collapse (22).

The standard of care is allergen avoidance, when possible,
together with the urgent treatment of an allergic reaction
upon accidental allergen exposure (23). Allergen immunotherapy
(AIT) is the most promising therapeutic approach as it is the
only clinical intervention with disease-transforming capacity.
AIT has been proven to confer long-term protection and to
prevent disease progression and exacerbation. AIT operates in
two phases: an early or escalation phase, headed by MC hypo-
responsiveness on allergen provocation and an increase of Th2
cells and IgE; and a late or consolidation phase that takes 2–
3 years of treatment and is dominated by regulatory T cells
(Treg) (24–26). Nevertheless, effector cell activation and adverse
side effects can happen at any time during AIT, compromising
patients’ safety and compliance. Thus, it is essential to discover
reliable biomarkers to monitor immunological changes, to
prevent side effects and to identify AIT-responder patients that
can benefit from intervention.

Recent studies support that AIT efficacy relies on MC
desensitization during the initial phase (24, 27, 28). However,
the molecular mechanisms underlying AIT-induced MC
hypo-responsiveness are controversial (29). Given that
MC degranulation is a common driver of anaphylaxis (30),
understandingMC desensitization is key, not only for preventing
these life-threating reactions, but also for improving current
intervention strategies, including AIT. Here, we review the
immunological mechanisms underlying AIT with a focus on
MC desensitization and AIT-induced adverse reactions. Also,
we discuss the identification of novel biomarkers with predictive
potential that could improve the rational use of AIT.

THE IMMUNE RESPONSE UNDERLYING
AIT

AIT constitutes a pivotal pharmacological intervention aiming to
control allergic diseases such as allergic rhinitis, allergic asthma,

Abbreviations: AIT, allergen immunotherapy; BAT, basophil activation test;

ELIFAB, enzyme-linked immunosorbent-facilitated antigen binding assay; FcεRI,

high-affinity IgE receptor; FcεRII, low-affinity IgE receptor; FoxP3, Forkhead box

protein 3; IgE-FAB, IgE-facilitated allergen; Ig, immunoglobulin; IL, interleukin;

ITAM, immunoreceptor tyrosine-based activation motif; MC, mast cell; MoAb,

monoclonal antibodies; MRGPRX2, Mas-related G protein-coupled receptor X2;

PAF, platelet activating factor; sIg, specific immunoglobulin; SPT, skin prick test;

STAT6, signal transducer and activator of transcription 6; Th, T helper cells; tIgE,

total IgE; TNF-α, tumor necrosis factor alfa; Treg, regulatory T cells.

atopic dermatitis, insect venom hypersensitivity (31) or food
allergy (29, 32). It consists of the administration of subsequent
increasing doses of allergen until an adequate dose is reached,
which induces immunological tolerance (31). The efficacy of
AIT relies on changes in both innate and adaptive immune
cells and is associated with a shift from a Th2 toward a Th1
and Treg phenotype. However, despite being in use for 110
years, the immunological mechanisms of AIT remain poorly
understood (33).

A 3-year-follow-up study demonstrated that the
immunological changes induced by sublingual AIT come
about in two sequential phases (Figure 1). First, an early
desensitization phase which takes place in the first 4 months.
This stage is accompanied by an initial but short invigoration of
Th2 immunity, with an increase in both allergen-specific Ig (sIg)
E and IL4+ cells (24). In addition, AIT has been demonstrated to
impair MC degranulation in this early stage (29, 32, 34). Finally,
there is a later augmentation in sIgG/sIgG4 levels, which compete
with sIgE and inhibit sIgE, thus preventing MC and basophil
activation and their production of Th2-related cytokines (29).

Next comes the consolidation of the regulatory response,
which needs at least 3 years of AIT (24). During this period
there is a contraction of IL4+ cells, a downregulation of sIgE
levels and a decrease in blood eosinophilia (24). In parallel, there
is an increase in Treg responses, particularly activated memory
Treg cells (24). Recent studies have pointed out that there is a
regulatory network between MCs and Tregs. On the one hand,
Treg suppresses MC activation by different mechanisms (i.e., IL-
10 secretion, MC anergy via OX40L engagement) (29). On the
other hand, in a food allergy model, desensitized MCs facilitated
a Treg cell expansion in a IL-2-dependent manner (32).

Altogether, MCs appear to play key roles in both early and
late phase AIT. As previous reports demonstrated strong benefits
only fewmonths after starting treatment (24),MC desensitization
seems to be a key mechanism in keeping AIT efficacy.

AIT-INDUCED ANAPHYLAXIS

Local and systemic adverse reactions have been observed during
AIT (22, 35). Of these, systemic reactions are described in
∼1–4% of patients and can be mild to severe, anaphylaxis
being the gravest (31). Over the years, diverse definitions of
anaphylaxis have appeared in the literature with the purpose
of improving its diagnosis and patients’ management. Lately,
the World Allergy Organization (WAO) depicted anaphylaxis as
a potential life-threatening compromise of airways, breathing,
and/or circulation, which may occur without typical skin
symptoms or the presence of circulatory shock (22). These
symptoms are usually developed within the first 30min after AIT
administration (31).

While the occurrence of adverse reactions in AIT is influenced
by factors such as viral infections, fever, physical activity, non-
steroidal anti-inflammatory drug use, hormonal changes, etc., the
route of administration and allergen type are determinant. AIT
with aeroallergens is usually administered subcutaneously and
is less likely to induce anaphylactic reactions (36, 37). On the
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FIGURE 1 | Schematic representation of early and late immune changes associated to AIT. The early phase of AIT (1–4 months) is dominated by a decrease in MC

activation, known as desensitization, and an initial invigoration of Th2 immunity, with increasing levels of allergen sIgE and IL4+ cells. Then, sIgE decreases while sIgG4

increases at the end of the early phase. Consolidation of AIT needs 2–3 years of treatment and is defined by an increase in Treg responses and a decrease in Th2

immune responses as well as in peripheral eosinophilia. amTreg, active memory Treg; MC, mast cell.

other hand, adverse allergic reactions including anaphylaxis are
more common in AIT with food allergens (38). In terms of the
route, subcutaneous AIT in peanut allergy is highly associated
with anaphylaxis (39), but oral and sublingual AIT for peanut
(and other food allergens) are clearly safer (40–44). Despite being
safer, a recent systematic review and meta-analysis showed that
the risk of anaphylaxis was significantly higher in peanut-allergic
patients undergoing oral AIT than in those following allergen
avoidance (45).

The classical pathway of anaphylaxis is IgE-mediated and
involves MCs and basophils (5–8) and recently, omalizumab in
combination with AIT has been proven to improve patients’
outcome (46). However, IgE-independent mechanisms have also
been described in murine models, and there is growing evidence
of their importance in humans (5, 8, 47). These mechanisms
involve IgG and platelet activating factor (PAF) release by
neutrophils, basophils and macrophages (5), or complement
activation. Non-immunological anaphylaxis can also occur
through the direct stimulation of MC degranulation (48, 49)
or by Mas-related G protein-coupled receptor X2 (MRGPRX2)
expressed inMCs. In addition, the differential contribution of the
endothelium to the pathophysiology of the anaphylaxis is being

increasingly recognized, which adds another layer of complexity
to this clinical manifestation (50).

Anaphylaxis severity is correlated to MC degranulation and
the release of pro-inflammatory mediators (50–52). Intriguingly,
anaphylactic mediators such as histamine are released during
AIT without induction of anaphylaxis (53, 54), which insinuates
that a certain level of MC activation may be required to
achieve desensitization. MC desensitization is accomplished
during the early-phase of AIT, and studies in murine models
support that this process directs the immunological outcome
of AIT (30). However, the molecular mechanisms of AIT
involve several effector cell types (55, 56). Therefore, it is
likely that different cellular and molecular microenvironments
created between immune and non-immune cells modify
the threshold of a detrimental inflammatory MC response
during AIT.

MC DESENSITIZATION MECHANISMS

MCs are key effector cells in allergic disease for different reasons.
They are immune sentinels located in mucosal and epithelial
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FIGURE 2 | Putative mechanisms of MC desensitization in AIT. (A) Internalization of the IgE-FcεRI complex. (B) Actin-cytoskeleton remodeling and impaired calcium

flux in MC after. (C) Dysregulation of STAT6 pathway. MCs, mast cells.

tissues, close to the vascular and lymphatic endothelium (57, 58).
Because of this strategic distribution, MCs sense and respond
promptly to allergens or pathogens (59, 60). Furthermore, MCs
have a long lifespan as compared to its mobile analog, the
basophil (61); retain surface IgE for months (62, 63); and can
react to minute amounts of allergen (64). On activation, MCs
degranulate rapidly because they are equipped with cytoplasmic
granules (50–200 per MC) that contain preformed allergic
mediators (60, 65).

In sensitized individuals, IgE-FcεRI complex clustering
causes MC activation and degranulation. FcεRI activates several
pathways through the immunoreceptor tyrosine-based activation
motif in its cytoplasmic domain, e.g., Syk, PI3K/Akt, ERK
and STAT6 (66, 67). These routes increase the intracellular
calcium flux, which is crucial for exocytosis of preformed
inflammatory mediators such as histamine or tryptase. Also,
they activate the de novo synthesis of late-phase inflammatory
cytokines (e.g., IL-6, TNF-α), prostaglandins, leukotrienes, and
PAF, among others (29). The rapid release of these vasoactive

and inflammatory mediators underlies clinical manifestations
associated with acute allergic reactions (i.e., angioedema,
hypotension or cardiovascular collapse and anaphylaxis) (5, 20,
21).

The IgE-MC pathway has long been a target for therapeutic
intervention, and some drugs and biologicals have been
developed to interfere with it (20, 29, 68). In this regard, AIT
has been shown to dampen this axis (24, 26). Several in vitro
and in vivo studies in mice have demonstrated that MC become
hypo-responsive to allergen exposures after desensitization (34).
MC desensitization appears to be allergen-specific (69, 70) and
reversible (71, 72). Yet, the molecular mechanisms underlying
AIT-induced MC desensitization remain controversial (29)
(Figure 2).

Different in vitro studies support that increasing doses of
allergen induce IgE-FcεRI complex internalization, rendering
MCs unresponsive to allergen challenge (70, 73). In contrast,
others report a partial IgE reduction in desensitized MCs (69,
72, 74, 75). In these studies, primary MCs of different origins
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were assayed, including murine and rat peritoneal MCs (70, 73),
murine bone marrow-derived MCs (69, 74), and human lung
MCs (72), which may explain this inconsistency. Moreover, MC
sensitization was performed with different IgE clones such as
SPE-7 (69, 74) and ε-26 (70). However, experiments with the
same clone yielded divergent results (69, 70). Other experimental
variables may have contributed to the discrepancy in IgE
internalization. For instance, Oka et al. (70) used lower MC
cellularity and a higher target dose of allergen than Sancho-
Serra et al. (69), which may have facilitated IgE saturation and
internalization in the former. Despite the variable results on
IgE internalization, all these experimental approaches induced
MC desensitization. In other words, MC desensitization is
accomplished whether the loss of IgE is total or partial. Hence,
mechanisms other than IgE-FcεRI internalization might be at
play during MC desensitization. The recent research of Nagata
et al. (75) report that the size of the IgE-FcεRI internalization
complexes are responsible of MC desensitization success.

Another line of inquiry on the mechanisms of MC
desensitization focused on the STAT6 pathway. Morales et al.
reported that murine STAT6-deficient bone marrow-derived
MCs failed to get desensitized (76), although they also showed
that MC desensitization did not induce STAT6 phosphorylation
(69). Additional experiments in peritonealMCs from STAT6-null
mice demonstrated that STAT6was redundant for desensitization
(70). STAT6 affects different aspects of MC biology, and
its deficiency may cause unspecific effects depending on the
maturity of MCs. For example, STAT6 is required for IL4-
dependent responses (77), which increase FcεRI expression
on MCs (18). Besides STAT6, recent studies are shedding
light on the cytoskeletal dynamics that drive MC activation
and desensitization (66, 78, 79). Gladys Ang et al. (74)
showed that desensitized MCs had an atypical but stable
redistribution of the actin cytoskeleton, which precluded calcium
flux from intracellular stores and abrogated exocytosis of
inflammatory granules.

There are some questions remaining on the mechanisms
of MC desensitization. The notion that IgE-FcεRI complex
internalization occurs to some degree during MC desensitization
is well established, but how this process is regulated is largely
unknown. In this regard, recent studies in murineMCs suggested
that sIgG binding to FcγRIIB is required for IgE downregulation
(80), and other MC inhibitory signaling pathways such as
gp49B1/LILRB4 (81) may be also involved inMC desensitization.
Nevertheless, in vitro experimentation supporting IgE-FcεRI
complex internalization was conducted in the absence of IgG
(69, 70, 74). Moreover, the role of STAT6 inMC desensitization is
controversial (69, 76) and the kinetics of STAT6 phosphorylation
during desensitization are not clearly defined.

From a broader perspective, the current mechanistic
knowledge on MC desensitization can explain how it occurs
at the cellular or local level. However, the fact that minute
amounts of allergen can desensitize systemically in AIT, even
by sublingual route (82–84), is certainly intriguing and points
toward the participation of widespread, fast-acting systems.
Further studies are necessary to understand how allergen
desensitization operates at the level of an entire organism, as

well as to identify biomarkers to monitor/predict successful MC
desensitization in AIT.

IDENTIFICATION OF BIOMARKERS IN AIT

A biomarker is any substance objectively measured that can
be used as an indicator of biological/pathological processes, or
pharmacologic responses to a therapeutic intervention. There is
a lack of reliable biomarkers that can accurately reflect the clinical
course or predict a positive response to AIT (85–87). Despite this
dearth, there are some in vivo and in vitro biomarkers applied to
monitor AIT safety and efficacy.

In the clinical practice, in vivo biomarkers such as skin
prick test (SPT), intradermoreaction, nasal provocation and
controlled exposure tests in chambers evaluate allergen-specific
reactivity, which is expected to decrease after AIT (88). In vitro
biomarkers are based on the cellular and humoral events that
take place during AIT (89). Some widespread biomarkers are
the determination of total IgE (tIgE) and sIgE. The latter is the
gold-standard test for AIT patient selection. A high sIgE/tIgE
ratio is predictive of positive responses to AIT (90, 91), although
it has not been properly validated. AIT-induced desensitization
correlates with a CD4+ T cell shift from Th2 towards a Th1 and
Treg phenotype (Table 1). Also, sIgE increases during up-dosing
but decreases during the maintenance phase, in parallel with a
higher production of sIgG4, which suggests the development of
a Treg response (24). AIT has also been shown to increase sIgA
(113) and IL-10-producing innate-like lymphoid cells 2 (98).

Other biomarkers for AIT efficacy are the assessment of the
serum inhibitory activity of IgE, which can be measured by
IgE-facilitated allergen binding (IgE-FAB) (85) or enzyme-linked
immunosorbent-facilitated antigen binding assay (ELIFAB). IgE-
FAB determines the binding of allergen-IgE complexes to B
cells via the low-affinity IgE receptor (FcεRII or CD23). The
decrease of IgE-FAB correlates with a positive clinical response
to AIT (87). It has been reported that serum IgE-inhibitory
activity persists for several years and is associated with long-term
clinical efficacy (114). Moreover, in vitro assays, like the basophil
activation test (BAT) (115), whichmeasures lysosomal-associated
proteins indicative of degranulation (e.g., CD63, CD203c) have
been used to evaluate basophil suppression in AIT (85, 91, 116).
Also, cytokines, chemokines and cellular markers have been
applied for the study of AIT (Table 1).

During the last several years, omics have been applied in
AIT research. Omics are techniques that use high-throughput
approaches, each one correlating with a specific level of the
system biology. Genomics, epigenomics, transcriptomics,
proteomics, metabolomics (including lipidomics) and
microbiomics could empower the identification of new
diagnostic strategies for AIT (117) (Table 1). Genomics has been
applied for the discovery of genetic variants that predispose to
atopy (118) or affect asthma severity (119). Genetic variants that
associate with good AIT outcomes could be used as biomarkers
moving forward to stratify patients prior to treatment (28).
Epigenomics studies have suggested that DNA methylation
patterns, specifically in gene promoter regions associated
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TABLE 1 | Potential biomarkers in AIT.

Domains Biomarkers Effect after AIT References

In vivo biomarkers Allergen provocation test SPT ↓ (92–94)

ID

NPT

EEC

Antibodies IgE sIgE ↓ (95)

tIgE

sIgE/tIgE

IgG Total ↑ (95)

IgG4 ↑

tIgG/IgG4 ↓

IgA sIgA ↑ (96)

Serum inhibitory activity for IgE IgE FAB ↓ (95)

ELIFAB

Cellular biomarkers Treg cells ↑ (97)

Breg cells ↑

DC DC2 (GATA3) ↓

DCreg (C1qA1) ↑

IL10+KLR+ ILC2 ↑ (98)

Basophil activation CD63 ↓ (99–101)

CD203c ↓

Intracellular DAO ↑

Basophil histamine release ↓

MC activation ↓ (102)

Eosinophil activation ↓

Cytokines and chemokines Th2 IL-4 ↓ (103)

IL-13

IL-9

IL-17

Eotaxin

TNF-α

Th1 IL-12 ↑ (104)

INFγ

Treg IL-10 ↑ (105)

TGFβ

Omics science Biomarkers Reference

Genomics Identification of functional variants in atopy and asthma severity (106)

Epigenomics DNA methylation of FoxP3 (107)

DNA methylation of Th cytokine genes (108)

Transcriptomics Th and Treg cytokine and chemokine transcripts (109)

Proteomics Molecular markers for four different monocyte-derived DC subclasses (97)

Metabolomics Hydroxyeicosatetraenoic acids (HETEs) during subcutaneous immunotherapy (110)

Effect of patient sensitization on the metabolic profile during sublingual immunotherapy (26)

Microbiomics Influence susceptibility to allergic diseases (111)

Others Biomarkers Reference

Immunophenotyping Th and Treg cells, IgG subclass and IgE expressing B cells, Breg (112)

SPT, skin prick test; ID, intradermal test; NPT, nasal provocation test; EEC, Environmental exposure chamber; DC, dendritic cells; IL, interleukin; TNF, tumor necrosis factor; INF,

interferons; TGFβ, Transforming growth factor beta; forkhead box protein 3 (FoxP3); ILC, innate lymphoid cells.

with Forkhead box protein 3 (FoxP3), could inform of AIT
progress (120, 121). Additionally, it has been proposed that
the microbiota composition could influence AIT efficacy

(111), which is another potential source of AIT biomarkers.
Furthermore, transcriptomics and proteomics have been used
to improve AIT patient selection through the characterization
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of allergen extracts, along with a profiling of IgE reactivity
(113, 122, 123). Regarding metabolomics, a recent study
demonstrated that the type of the patient’s sensitization (mono-
or poli-sensitized) is key in the clinical response to AIT (26). A
different study focused on eicosanoid profiles showed that they
increased at the beginning of AIT and then decreased after 1 to
3 years of AIT, decreasing at year 3 to levels below than baseline
(110). Finally, techniques such as immunophenotyping using
flow cytometry and mass spectrometry have allowed the parallel
analysis of all cell subpopulations in a sample during AIT (124).

CONCLUSION AND REMARKS

Despite the widespread use of AIT for more than 110 years,
MC desensitization has just recently been identified as a key
mechanism during the first 2 years of AIT. Yet, fundamental
mechanisms associated with desensitization remain obscure.
How a MC gets desensitized in an allergen-specific manner
and how the desensitization pattern is transmitted throughout
all barrier systems is certainly intriguing. MCs have a broad
repertoire of signaling pathways. Due to the potential for
inducing life-threatening reactions, research focus has always
been on MC degranulation, perhaps overlooking their role as
lipid-secreting mediators such as prostaglandins or leukotrienes.
Moreover, MCs hypo-responsiveness, even without dampening
Th2 responses, is effective not only in anaphylaxis prevention,
but also for the control of allergic symptoms and reduction of
medication usage (83, 125). This supports the key role of MC
activation in allergic inflammation.

The sustained and disease-modifying effect of AIT is linked to
the acquisition and epigenetic fixation of a regulatory phenotype.
However, how the initial MC control predates the Treg response
is unclear. Understanding this link is pivotal for the design of new
AIT strategies aiming to avoid IgE-mediated reactivity. To date,
no study with strict focus on Treg induction has proven to be
effective. If effector cell desensitization governs AIT during the
first 2 years of intervention, studies aiming to bypass effector cell
activation should be planned for at least 3 years of intervention.

Different inflammatory routes have been described in
anaphylaxis. AIT reduces IgE and likely impairs the classical

pathway of anaphylaxis, but its effect on allergic reactions
mediated by alternative pathways is debatable. Alternative routes
could be activated during allergic sensitization (126), and might
be relevant in pediatric anaphylaxis and AIT to foods. Should

this be the case, AIT patient selection may benefit from novel
biomarkers that classify patients according to the dominant
inflammatory routes (127).
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