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ABSTRACT The common bean is a tropical facultative short-day legume that is now grown in tropical and
temperate zones. This observation underscores how domestication and modern breeding can change the
adaptive phenology of a species. A key adaptive trait is the optimal timing of the transition from the
vegetative to the reproductive stage. This trait is responsive to genetically controlled signal transduction
pathways and local climatic cues. A comprehensive characterization of this trait can be started by assessing
the quantitative contribution of the genetic and environmental factors, and their interactions. This study
aimed to locate significant QTL (G) and environmental (E) factors controlling time-to-flower in the common
bean, and to identify and measure G · E interactions. Phenotypic data were collected from a biparental
[Andean · Mesoamerican] recombinant inbred population (F11:14, 188 genotypes) grown at five environ-
mentally distinct sites. QTL analysis using a dense linkage map revealed 12 QTL, five of which showed
significant interactions with the environment. Dissection of G · E interactions using a linear mixed-effect
model revealed that temperature, solar radiation, and photoperiod play major roles in controlling common
bean flowering time directly, and indirectly by modifying the effect of certain QTL. The model predicts
flowering time across five sites with an adjusted r-square of 0.89 and root-mean square error of 2.52 d. The
model provides the means to disentangle the environmental dependencies of complex traits, and presents
an opportunity to identify in silico QTL allele combinations that could yield desired phenotypes under
different climatic conditions.

KEYWORDS

Phaseolus
vulgaris

mixed-effects
model

multi-
environment
trial

G · E
interactions

Timing the transition from the vegetative to the reproductive stage is a
key factor in defining both adaptability and successful reproduction in a
given ecosystem (Worland 1996; Buckler et al. 2009; Li et al. 2015).
Selective forces in play during evolution, domestication, or plant breed-
ing aim to maximize fitness or yield (Cockram et al. 2007; Izawa 2007;
Slotte et al. 2007), a major target being the time-to-flower. The timing
of first anthesis depends on the developmental program governed by
the genotype, and on its interactions with the environment. The major
environmental factors that affect time-to-flower are photoperiod and
temperature (Seaton et al. 2015; Song et al. 2013). However, the vegeta-
tive phase can be divided into an early juvenile phase and a late

postjuvenile phase in which plants are first not responsive, and then
responsive to environmental cues that are inductive of flowering (Cave
et al. 2011). The duration of the juvenile phase is genetically controlled
(Matsoukas 2014; Sgamma et al. 2014).

The mechanism that controls flowering in Arabidopsis, a long-day
plant, is described as a highly complex network of interacting factors.
This network has some built-in redundancy and it is linked to the
developmental regulatory network through the action of transcription
factors that act as process integrators (Posé et al. 2012). The allelic
diversity of Arabidopsis flowering genes is reflected in the variation of
time-to-flower among diverse ecotypes, which allowed Wilczek et al.
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(2009) to model flowering under different conditions. The genetic com-
plexity of this trait explains why it is inherited as a quantitative trait in so
many species.

In comparison to long-day plants like Arabidopsis, much less is
known about the genetic mechanisms that regulate flowering in short
day plants like soybean, rice, and maize, among others. However, some
progress has been made in these species through genetic analyses that
have led to the identification of several genes. For instance, QTL anal-
ysis in soybean identified several QTL known as E loci (Tasma et al. 2001),
which determine maturity groups for this crop. Similar analyses in maize
(Koester et al. 1993), and rice (He et al. 2001) have identified QTL for
sensitivity to photoperiod and rate of development. Intriguingly, more
detailed molecular genetics analyses have revealed that several QTL asso-
ciated with time-to-flower in short-day species are orthologs of genes that
regulate flowering in Arabidopsis (Simpson and Dean 2002; Lee and An
2007; Salomé et al. 2011). For example, rice QTL HD1 and HD3a were
found to be orthologs of Arabidopsis Constans and FT, respectively
(Kojima et al. 2002; Tamaki et al. 2007). These analyses have also discov-
ered some floweringQTL that do not have an ortholog inArabidopsis, like
the EARLY HEADING DATE 1QTL of rice (Ehd1), a gene that regulates
the expression of FT (Itoh et al. 2010). This finding suggests that additional
mechanisms that control time-to-flower are likely to be discovered in
short-day plants. Emphasizing this point is the discovery that Setaria, a
short-day grass, contains a secondary mechanism that operates under
long days (Doust et al. 2017).

The common bean (Phaseolus vulgaris L.) is a facultative short-day
plant (Garner and Allard 1920). Wild bean accessions, as well as most
Andean cultivars, are mainly photoperiod sensitive (short-day re-
sponse), whereas Mesoamerican cultivars are mostly less sensitive to
photoperiod, or day-neutral (White and Laing 1989). The prevalence of
photoperiod insensitivity among the most widely cultivated beans in-
dicates that day-neutrality in beans is a recently acquired trait, most
likely the result of selection pressure applied during domestication and
more recent breeding efforts. White and Laing (1989) used the ob-
served difference in days-to-flower between plants grown under 12.5
and 18 hr photoperiods to identify eight photoperiod response classes
(Classes 1–8) in this species. Under the 18 hr day-length regime
Class 1 displayed 0–3 d delays, while Class 8 displayed over 100 d
delays. Bean cultivars belonging to these Classes are cultivated in a
variety of conditions around the world (Beebe 2012). In the United
States, the common bean is cultivated as a summer crop under long
photoperiods in the Northern plains, and as a winter crop under short
days in Florida. The genetic manipulation of the time-to-flower trait is
one of the major targets in plant breeding programs, and the wide
geographical range of cultivation obviously presents a major challenge.

Previous investigations have identified a strong dominant photope-
riod sensitive (Ppd) gene regulating flowering time in beans (White and
Laing 1989; Wallace et al. 1991; Kornegay et al. 1993; White et al. 1996;
Gu et al. 1998; Kwak et al. 2008), but a rigorous genetic analysis of this

trait has not been carried out. In the present study, we used a multi-
environmentmixed-effectsmodel, as described byMalosetti et al. (2013),
to analyze the contribution of genetic (QTL), environmental, and QTL-
by-environment interactions factors to the time-to-flower trait in an
intergene pool recombinant inbred family of the common bean. The main
aim of this study was to develop a QTL-based environmental predictive
model capable of estimating time to flowering (TF) of a bean plant
based on its genotype and environmental conditions inwhich it is grown.

MATERIALS AND METHODS

Mapping population
A recombinant inbred (RI) population was generated from a biparental
cross between theMesoamerican bean cultivar Jamapa and the Andean
cultivar Calima. F2 seeds of the cross were advanced by single seed
descent for 10 generations, followed by bulk propagation for another
three generations, giving rise to 188 F11:14 RI lines. Jamapa is a small
black seeded (c) (Prakken 1974) bean cultivar from Mexico with an
indeterminate growth habit (Fin, pvTFL1y) (Repinski et al. 2012). The
parental line Calima from Colombia is a large-seeded mottled bean
cultivar (C), with determinate (fin) growth habit. White and Laing
(1989) classified Jamapa as a day-neutral variety (Class 1), while Calima
was reported to be a photoperiod-sensitive cultivar (Class 5). Long days
(18 hr day length) delay flowering of Class 1 genotypes by 0–3 d,
while Class 5 genotypes are delayed by 40–59 d (White and Laing 1989).

Experimental sites
Five distinct locations providing contrasting growing conditions were
selected to phenotype the RI population for time to first flower after
planting (Supplemental Material, Figure S1 in File S1 and Table 1).
Three sites were located in the United States: Citra, FL (CIT); Prosper,
NorthDakota (ND); and Isabela, Puerto Rico (PR), while the remaining
two sites were in Colombia: Palmira, (PAL), and Popayan, (POP).
Proximity of PAL and POP to the equator provided short days, whereas
altitudinal difference (800 m) resulted in a temperature differential
(Table 1). PAL and PR had similar photoperiod and temperature range,
but differed in solar radiation. Situated farthest away from the equator,
ND provided long days (15:20–15:53 hr) from sowing to first anthesis,
and CIT provided high temperatures and intermediate photoperiod
length.

Primary trials were conducted between 2011 and 2012, and one trial
was conducted per site (Table S1 in File S1). An additional trial in
2016 (CIT_16) was conducted at the CIT site to generate a dataset
for model validation (Table S1 in File S1). The plant density at each
site was adjusted based on available resources (Table S1 in File S1). A
randomized complete block row-column design was adopted at each
site. A given recombinant inbred line (RIL) was sown in three replicated
plots at each site, with 35–50 plants per plot. Parental lines were,
however, replicated six times to provide additional checks. Six uniform
plants per plot were tagged at the V1 (first trifoliate opening) stage for
collection of phenological data, giving 18 observations per genotype per
site. The tagged plants were monitored daily to record the date at which
first anthesis was observed. TF (days) for a given plant was defined as
the number of calendar days it took to first flower from the date of
sowing. Themean of six plants per plot was utilized for further analysis.
Along with flowering time, data related to additional 30 phenotypic
traits were also collected at each location, but not used in this analysis.

Heritability
TF data from each of the five primary locations were spatially corrected
to reduce thenoise causedbywithinfield variation.A linearmixed-effect
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model was constructed to obtain adjusted mean predictions of the
following form:

TFijkl ¼ mþ Gi þ Bj þ BR jk þ BC jl þ eijkl (1)

where m = population mean, Gi = ith genotype effect, Bj = jth
replication effect, BRjk = effect of the kth row within the jth repli-
cation, BCjl = effect of the ith column within the jth replication, and
εijkl = residual error. The underlined terms represent random effects,
while the remaining terms were treated as fixed effects in the model.
Furthermore, genetic correlations were assumed to be 0, 0.5, and 0.5
between the parental lines, between a parent and a RI line, and among
RILs, respectively.

Broad-sense heritability (H2) of the TF trait was obtained in two
ways: (i) using individual site data, and (ii) using all five sites data. First,
site-based calculations were carried out by refitting the genotype (Gi),
and replication (Bj) terms as random effect in Equation 1. The herita-
bility was estimated by utilizing the variance component information
obtained from the model using the equation Hs

2 = Var(G)/Var(P),
where the heritability (Hs

2) is represented as the fraction of the total
phenotypic variance Var(P), explained by the genetic variance Var(G).
Second, a multi-site mixed effect model (Equation 2) incorporating
correlations among the sites was constructed in ASReml (Gilmour
et al. 2009) to re-estimate broad sense heritability at the individual
site-level (HR

2) as well as combined heritability using all five sites
(HT

2). The fitted model had the following form:

TFijklm ¼ mþ Sm þ SBmj þ SGmi þ SBRmjki þ SBCmjl þ eijklm

(2)

where m = population mean, Sm = effect of the mth site,
SBmj = interaction between the jth replication and the mth site,
SGmi = nested effect of the ith genotype in themth site, SBRmjk = effect
of the kth row within the jth replication at themth site, SBCmjl = effect
of column within the jth replication at the mth site, and εijkl = residual
error. As before, the underlined terms are random effects.

The variance–covariance component was modeled using an un-
structured variance (UN) matrix for the term SGmi. The heritability at
each site (HR

2) was obtained by dividing the variance due to genotype ·
site with the total variance (i.e., summed variance due to the effect of
row, column, genotype · site and the error term). The overall trait
heritability (HT

2) across sites was calculated by taking the average of
the variance due to genotype · site across the five primary locations,
and dividing it by the average of total variance across five sites.

Genotypic data
Themapping population comprised of 188RI lines that were genotyped
earlier (Bhakta et al. 2015) using the genotyping-by-sequencing (GBS)
(Elshire et al. 2011) protocol. The GBS-linkage map included

513 recombinationally unique markers comprising 11 linkage groups
(Bhakta et al. 2015). The map had on an average one marker per
1.84 cM, and alignment of this map with the available P. vulgaris
reference genome sequence (www.phytozome.net) revealed a genome
coverage of .97%. The genotypic data of this RI family, obtained by
Bhakta et al. (2015), were recoded for each RIL as21 or +1 represent-
ing homozygous loci for Jamapa or Calima alleles, respectively. No
heterozygous markers were considered. Missing markers information
was imputed within the GenStat v.17 (Payne et al. 2010) software using
a hidden Markov model as described by Lander and Green (1987).

Multi-environment QTL mapping
QTL controlling TF in the RI population were identified independently
by (i) GenStat v.17 (Payne et al. 2010), which uses a mixed effect model
approach; and (ii) WinQTL Cartographer (Wang et al. 2012), which
utilizes various interval mapping approaches. The phenotypic response
(TF) for QTL analysis for a given genotype at a given primary site was
computed by averaging the adjusted mean data from all three replica-
tions, giving one value of TF per genotype per site.

The initial step for mapping QTL using GenStat was to identify
the best variance-covariance matrix model for the phenotypic data
(Malosetti et al. 2013). Subsequently, simple interval mapping (SIM)
was carried out to perform a preliminary scan of the genome for map-
ping QTL using the 513 markers (genetic predictors). The identified
QTL were used as cofactors in a follow up composite interval mapping
(CIM), which allowed reduction of the background noise due to QTL
outside the genomic region under test. QTL scanning was performed
with a window size of 5 cM, while a 50 cM distance was used as
the minimum cofactor distance in the CIM scan. For both SIM and
CIM the P-value threshold value for detection of significant QTL was
computed using a modified Bonferroni correction method as described
by Li and Ji (2005). Using a genome-wide significance level of 0.05, the
software estimated the threshold value of 3.447 (2log10P) for detecting
QTL governing the trait TF.

QTL identified through CIMwere simultaneously incorporated into a
mixed-effectmodel with the appropriate variance-covariancematrix iden-
tifiedfortheTFtrait. SignificanceofeachQTLwastestedbasedontheWald
test statistic, and the final model was selected using backward selection
based on the Akaike’s Information Criterion (AIC; Akaike 1974). The QTL-
basedmixed-effectmodel containedmain individualQTL effects andQTL·
Site interaction effects allowing to explain genotype-by-environment
interactions (GEI). The mixed-effect QTL model had the form:

TFij ¼ mþ Gi þ Sj þ
X�

aXiq

�
þ
X�

bXiqSj
�
þ eijk (3)

where m = population mean, Gi = random effect of the ith geno-
type, Sj = effect of the jth primary Site, a = effect of the qth QTL on
TF, Xiq = marker value of21 (Jamapa) or 1 (Calima) at the qth QTL

n Table 1 Experimental sites

Location Site Latitude Longitude MASLa Temperature (�)b Solar Radc (MJ m22 d21) Day-Length Range (hr)

Citra, FL CIT 29� 39’ N 82� 06’ W 31 32/18 20.6 12:30–13:30
Prosper, ND ND 47� 00’ N 96� 47’ W 280 27/13 21.0 15:20–15:53
Palmira, Colombia PAL 03� 29’ N 76� 81’ W 1000 28/19 13.8 11:56–11:58
Popayan, Colombia POP 02� 25’ N 76� 62’ W 1800 25/13 15.0 12:08–12:11
Isabela, PR PR 18� 28’ N 61� 02’ W 128 29/19 21.5 11:30–12:35

Geographical data and meteorological characteristic recorded during the growing season.
a
Meters above sea level.

b
Average high/low.

c
Daily average solar radiation.
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for ith RIL, b = effect on TF due to the interaction between the qth
QTL and the jth Site, and εijkl = residual error. The “G” term cap-
tured the genetic effect on TF not explained by the identified QTL.

AdditionalQTLanalyseswereperformedusingWinQTLCartographer.
Here, an initial scan was performed using CIM with standard model
settings andforwardandbackwardregressionusinga5-cMwindowsize.
The CIM output was subsequently used to perform multiple interval
mapping (MIM; Zeng et al. 1999), in order to identify significant QTL
as well as epistatic interactions among identified QTL. Empirical
thresholds corresponding to 0.05 genome-wide significance levels were
computed for CIM likelihood ratio tests based on 1000 permutations.
Unlike GenStat, WinQTL Cartographer performed QTL analysis for
each environment separately.

Modeling the TF trait
The above-mentioned model (Equation 3) provided the basis for pre-
dicting TF for each RIL. However, in order to build the predictivemodel,
the Site term “Sj” was broken down into informative measurable envi-
ronmental variables. These variables were estimated to have influence on
flowering time at a given site, both directly and/or through their in-
teraction with specific QTL. To identify significant environmental var-
iables, we selected those that are known to have an effect on the TF in
Arabidopsis (Somers et al. 1998; Devlin and Kay 2000; Suárez-López
et al. 2001; Thomas et al. 2006; Lee et al. 2007; Strasser et al. 2009)
and rice (Kojima et al. 2002; Tamaki et al. 2007; Ishikawa et al. 2011;
Itoh et al. 2010). These variables were classified into two categories: (1)
Light related: Day-length (DAY, hr), night duration (NIGHT, hr), and
average daily solar radiation (Srad, MJ m22 d21); and (2) temperature
related: minimum temperature (Tmin, �), average temperature (Tavg, �),
maximum temperature (Tmax, �), average day time temperature
(DTavg, �), and average night time temperature (NTavg, �). Later,
RIL-specific data for these variables were averaged for the duration

observed between the sowing date and the date at which the given RIL
flowered at a given site. Successively, correlations among the environ-
mental covariates (EC) were calculated using the Spearman’s rank cor-
relation coefficient test allowing us to remove redundant variables.

ECs found with Spearman’s r , 0.5 were selected for modeling and
were sequentially incorporated into the QTL · Site term by replacing the
“Site” term in order to test their interaction with a given environmentally
guidedQTL. Subsequently, themain effects of ECswere added to themodel.
The significance of each of the new terms was statistically tested with the
assumption of a linear relationship between TF, and QTL and ECs effects.
Selection of significant terms was based onWald test statistics (a = 0.05),
which were generated by fitting the Equation 3 model in GenStat (Payne
et al. 2010; Malosetti et al. 2013). In the final model, the site term was
replaced with significant ECs, while the GEI terms were replaced with
QTL · ECs interactions. Therefore, the final model was tested for its
ability to predict TF based on specific climatic data and QTL information.

The parameter estimation process for all models was carried out
using the flowering data from the five primary locations. Parental data
were not utilized during the process of coefficient estimation. Model
evaluationwas conducted in three parts: (i) by estimatingflowering time
of each parental genotype at all five primary locations; (ii) by estimating
flowering time of 100 recombinant inbred lines regrown in 2016 at the
CIT location (CIT_16); and (iii) by estimating parameters using data
from only four primary sites, and then estimating flowering time for the
genotypes grown at the fifth site.

Data availability
Genotype data and mapping information from the RIL family can be
found in Bhakta et al. (2015). The environmental data are described in
Figure S1 and Table S1 in File S1 and Table 1. The days-to-flowering
dataareavailable inFigshare athttps://figshare.com/s/50d1ddcaf8c04026dd4c.
Seeds of the parental genotypes and RILs are available upon request.

Figure 1 Density plots of days to first flower observed at the five experimental sites. (A) Distribution of days to flower of the RI family by site. (B)
Distribution of days to flower across five sites based on growth habit; the light gray areas represent the distribution of determinate RI lines, while
dark gray areas represent the indeterminate RI lines. The five sites include: Citra, FL (CIT); Prosper, North Dakota (ND); Palmira, Colombia (PAL);
Popayan, Colombia (POP); and Puerto Rico (PR).
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RESULTS
TheRILpopulation, generated froman intergenepool crossbetween the
indeterminate Mesoamerican cultivar Jamapa and the Andean deter-
minate cultivar Calima, was grown and phenotyped for TF at the five
distinct sites listed in Table 1 (see also Figure S1 andTable S1 in File S1).

Time to first anthesis
TF in the RIL population was significantly affected by the genotype and
by the environment (Table S2 in File S1). Based on Bonferroni’s com-
parison tests, CIT, ND, and POP had significantly (P = 0.05) different
TF (Table S3 in File S1), and these sites were also different from PR and
PAL (Table S3 in File S1). TF was most delayed at the ND site with a
mean of 57.8 d, whereas the shortest average TFs were detected at PR
and PAL, each with 36.4 and 36.7 d, respectively (Table S3 in File S1).
TF had a near bell-shaped distribution across all sites, except at POP
where it displayed a strong bimodal distribution (Figure 1A). Jamapa
flowered later than Calima at CIT, PAL, PR, and POP; while the op-
posite was true at the ND site (Figure 1A). Transgressive behavior was
detected at all sites as several RILs flowered earlier or later than the
parental lines. On average, the group with an indeterminate growth
habit flowered later than the determinate group at all but the ND site
(Figure 1B); however, the length of the delay was site dependent.

The heritability of the TF trait was first calculated in order to
assess the magnitude of its genetic component. Accordingly, broad-
sense heritability of the TF trait was estimated using two separate
models: (i) a site-specific linear mixed-effect model, and (ii) a multi-
site mixed effect model capturing inter-site correlations. According
to the single-site based model (See Materials and Methods, Herita-
bility) the estimated broad-sense heritabilities (HS

2) ranged from
0.69 at ND to 0.89 at POP and PAL (Table S4 in File S1). Similar
site-specific heritability (HR

2) estimates (Table 2) were obtained
from the multi-site model (See Materials and Methods, Heritabil-
ity). This model also allowed estimation of the overall TF heritabil-
ity (HT

2), which was calculated to be 0.78 (Table 2). These results
clearly indicated that the TF trait is under strong genetic control in
all environments.

TF in the common bean is under polygenic control
The continuous distribution of TF (Figure 1) underscored the quanti-
tative nature of this trait, and its high heritability value indicated the
feasibility of identifying important genetic factors controlling it. Fur-
thermore, the transgressive behavior of some RILs and the marked
change in the trait distribution between the experimental sites sug-
gested TF is a complex trait with noticeable GEI effects. Consequently,
QTL analyses were carried out to identify the genetic determinants of
this trait and their mode of action. Following an evaluation of various
covariance models using the AIC (Akaike 1974), the unstructured var-
iance-covariance model of the phenotypic data were identified as the
best for studying QTL effects in our RIL population (Table S5 in File S1).
With this information, along with 513 marker loci, SIM, CIM, and
mixed-effect modeling were used sequentially in GenStat v.17
(Payne et al. 2010) to identify QTL that exerted significant control
of TF. These analyses identified 12 significant QTL (named TF1–TF12)
distributed along six chromosomes (Chr): 1, 3, 4, 6, 7, and 11 (Table 3).
Furthermore, site-based QTL effects estimated via the mixed-effect
model revealed that TF2 (Chr1) explained most of the genetic variation
at CIT (35.4%) and POP (37.2%) (Figure 2 and Table S6 in File S1),
whereas TF3 (Chr1) explained 39% of the variation in ND.

Both parents were found to have QTL alleles that either delayed or
hastened the time to flower. These explained the transgressive behavior
observed in theRIL population. For instance,Calima alleles of TF1,TF2,

TF4, TF6, and TF11 reduced flowering time (TF), while alleles of TF3,
TF7, TF8, TF9, TF10, and TF12 increased time to flower (Figure 2);
whereas the Jamapa alleles had the opposite effect. Interestingly, the
TF5 Calima allele delayed TF at POP, but reduced it at CIT. Out of the
12 QTL, five (TF2, TF3, TF5, TF7, and TF12) were found to interact
with the environment, and the rest were stable across environments
(Figure 2 and Table 4). For example, the Calima allele of TF1 identified
as environmentally stable, reduced TF at all sites by�1.4 d. In contrast,
the Calima allele of TF2 displayed significant interactions with the
environment, and reduced TF at CIT, ND, PAL, POP, and PR by
�3.1, 2.6, 1.3, 3.1, and 1.8 d, respectively (Table S6 in File S1).

Independent QTL analyses using the CIM approach with WinQTL
Cartographer 2.5 (Wang et al. 2012) detected the same QTL across all
sites (Figure 3) on the same six chromosomes (1, 3, 4, 6, 7, and 11) as
were detected via the GenStat software. Under this analysis, the most
significant QTL were detected on chromosomes 1 and 3, with LOD
scores ranging between 10 and 40. Our analysis also showed that several
QTL were site-specific, while others varied in their significance level
across sites (Figure 3). These results indicate the presence of significant
GEI effects. Furthermore, the QTL detected by CIM were incorporated
into a QTL model that was used to scan the linkage map using MIM
(Zeng et al. 1999). This analysis did confirm the significant additive
effects of nine QTL in the model (Table S7 in File S1), but was not able
to capture the effect of QTL TF4, TF5, and TF8. MIM results also
indicated that TF1 and TF2 on chromosome 1 had epistatic interac-
tions at CIT, PR, and PAL. TF2 and TF3 were detected as major QTL in
both GenStat and WinQTL analyses.

A QTL-based TF model
Amixed-effect additive model (Materials andMethods, Equation 3)
was constructed based on the multi-site QTL mapping model gen-
erated by GenStat v.17, with the inclusion of the epistatic effect (as
interaction) detected between TF1 and TF2 through MIM. Residual
analysis indicated that the model conformed to the assumption of a
mixed-effects linear model. The model allowed the QTL effects to be
broken down into QTL main effects and QTL-by-environment ef-
fects, allowing the assessment of individual QTL effects across en-
vironments. The Wald statistic was used to test the significance of
each term (Table 4). These tests confirmed that the effects of TF2,
TF3, TF5, TF7, and TF12 significantly varied with the environment,
and also indicated a significant interaction between TF1 and TF2
(Table 4). Successively, the mixed-effect model (QTL-site-based
model) was employed to estimate the flowering time for each RIL
at all five sites using the QTL genotype data. Comparison of the
predicted to the observed TF across sites indicated a good fit, as
represented by an r-square of 0.92, and root mean square error
(RMSE) of 2.47 d (Figure S2 in File S1).

n Table 2 Site level HR
2 and HT

2 for TF estimated using a multi-site
mixed-effect model

HR
2 HT

2

Component PR ND POP CIT PAL Overall

Rep · Row 0.244 1.449 0.044 0.189 0.000 0.385
Rep · Col 0.572 0.522 0.542 0.383 0.165 0.437
Site · RIL 12.846 36.015 25.323 21.148 8.691 20.805
Error 2.939 14.227 2.596 3.543 0.907 4.842
Total 16.600 52.212 28.505 25.263 9.763 26.469
Heritability 0.774 0.690 0.888 0.837 0.890 0.786

Estimations were made for the RI population grown at the five sites: PR, ND,
POP, CIT, and PAL.
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Incorporating environmental information into the
QTL model
TheQTL-site-basedmodel wasmodified to partition the site effects into
individual environmental components followingMalosetti et al. (2013).
This modification allowed the identification and assessment of the
main effect of environmental components as well as their interactions
with individual QTL. Light and temperature are known to strongly
influence TF; therefore, the following environmental components were
selected for modeling: DAY (hr), NIGHT (hr), Srad (MJ m22 d21),
Tmin (�), Tavg (�), Tmax (�), D_Tavg (�), and N_Tavg (�).

An assessment of collinearity between the EC identified four of the
least related (r , 0.5, Figure S3 in File S1), but biologically mean-
ingful variables for modeling; namely DAY, Srad, Tmin, and Tmax.
Variation of the four selected ECs from sowing to the flowering day
of the latest RIL across sites is shown in the boxplots of Figure 4. The
selected ECs were incorporated into the model by first substituting
the “Site” factor in QTL · Site effects with the individual EC ex-
planatory variables, one at a time, and evaluating their significance
via the Wald statistic. Subsequently, the main effects of ECs were
included in the model to estimate the direct effect of each EC on the

flowering time separate from their effect on individual QTL.Wald test
results from the QTL-EC model indicated that not only did all ECs had
significant main effects, but that they also interacted with specific QTL
(Table 5). Tmin had significant interactions with TF2, and TF3, while
DAY affected the actions of TF3, TF7, and TF12. Also, TF5 and TF12
interacted with Tmax and Srad, respectively. The QTL-EC model is pre-
sented in Figure 5.

Parameters estimated for the QTL-EC model (Figure 5) indicated
that a 1-hr increase in day length during vegetative development delayed
the population mean TF (across sites) by, on average, 4.03 6 0.13 d,
while a unit (�) increase in Tmin and Tmax reduced mean TF by
0.61 6 0.04 and 1.36 6 0.05 d, respectively (Table S8 in File S1).
The QTL-EC model further estimated the main effect of each QTL
(Table S8 in File S1). For example, TF2 was estimated to reduce the
meanflowering time by 2.28 6 0.16 dwhenhomozygous for theCalima
allele, but it has the opposite effect when homozygous for the Jamapa allele.
The model also captured QTL-by-environment interaction effects. For
example, modeling TF2 with Tmin as covariable showed a significant
change in the TF2 effect with the change in the minimum temperature
(Table 5). Of note, the model predictability is expected to be reliable only

Figure 2 Effects of TF QTL (TF1: TF12) as estimated by
the mixed-effect model across five locations. Bar height
indicates the number of days a QTL homozygous for
the Calima allele will add to or subtract from the
population mean of the TF trait. The five sites include:
CIT, ND, PAL, POP, and PR.

n Table 3 QTL detected for TF using a multi-site mixed-effect model

QTL ID Linked Markera Chromosome Position (cM) 2log10(P) QTL · Site

TF1 DiM_1-13 1 22.1 23.90 No
TF2 Fin 1 42.1 49.82 Yes
TF3 DiM_1-28 1 58.8 28.95 Yes
TF4 DiM_1-34 1 70.0 4.22 No
TF5 DiM_3-22 3 38.2 2.83 Yes
TF6 DiM_3-27 3 49.2 8.77 No
TF7 DiM_4-13 4 42.2 8.39 Yes
TF8 DiM_6-22 6 31.3 3.21 No
TF9 Bng249 7 11.7 8.90 No
TF10 DiM_7-39 7 98.7 3.91 No
TF11 Bng076 11 2.1 3.80 No
TF12 DiM_11-2 11 9.3 3.70 Yes

Five out of 11 QTL were found to interact with the environment.
a
For marker name and position please refer to Bhakta et al. (2015).
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within the environmental ranges observed across environments during
the experimental periods.

Lastly, the QTL-ECmodel was used to re-estimate TF for all RI lines
across sites. A comparison of the predicted with the observed TF across
sites showed an adjusted r-square value of 0.89 with a RMSE of 2.52 d
(Figure 6 and Table 6). The QTL-EC model’s performance was evalu-
ated in three different ways. First, by predicting the TF of both parental
lines, which were purposely left out during parameter estimation. The
predicted parental TFs at all five sites yielded an adjusted r-square value
of 0.87 (Figure 7). Second, the estimation of TF for 100 lines of the RIL
population grown again at Citra, FL (CIT_16) in the year 2016 (Figure

S5 in File S1) indicated that the QTL-ECmodel was able to estimate TF
with an adjusted r-squared value of 0.63, and RMSE of 2.71 d (Figure
8). These results indicate that the model is capable of predicting TF
across years at locations used in training the model. Lastly, the model
performance was tested by estimating parameters using data from
only four primary sites, and then predicting TF for the genotypes
grown at the fifth site (a cross-validation approach). However, this
cross-validation reported varying model performance. The model pre-
dicted flowering time at PR and PAL with adjusted r-squared values of
0.67 and 0.76, and RMSEs of 2.8 and 2.07 d, respectively (Figure S4 and
Table S9 in File S1). In contrast, the model predicted TF poorly in ND

Figure 3 TF QTL profiles across the five experimental sites. (A) LOD profile for QTL detected on chromosomes 1 and 3 at all five sites, (B) QTL
detected on chromosomes 4, 6, 7, and 11 at all five sites. Analyses were performed with the WinQTL Cartographer software using the CIM
method. The black horizontal line indicates the LOD threshold value for detecting significant QTL peaks. The numbers in the top gray panel
represent the chromosome number, while the sites are indicated on the right side gray panel. The bottom x-axis represents distance in cM for a
given chromosome, while the left y-axis represents the LOD score. The five locations include: CIT, ND, PAL, POP, and PR.

n Table 4 Conditional Wald statistic tests for significant fixed effects of the TF predictive model incorporating QTL 3 Site effects

Fixed Term Wald Statistic Degrees of Freedom (d.f.) Wald/d.f. P-Value

SITE 8353.76 4 2088.44 ,0.001
TF1 113.57 1 113.57 ,0.001
TF4 15.93 1 15.93 ,0.001
TF6 43.4 1 43.4 ,0.001
TF8 12.07 1 12.07 ,0.001
TF9 39.83 1 39.83 ,0.001
TF10 12.63 1 12.63 ,0.001
TF11 11.98 1 11.98 ,0.001
TF1 · TF2 6.98 1 6.98 0.008
SITE · TF2 113.72 4 28.43 ,0.001
SITE · TF3 131.88 4 32.97 ,0.001
SITE · TF5 19.65 4 4.91 ,0.001
SITE · TF7 31.11 4 7.78 ,0.001
SITE · TF12 22.49 4 5.62 ,0.001
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when the parameters were estimated using data from the other four
primary sites, yielding an adjusted r-squared value of 0.42, and a RMSE
of 25.83 d (Figure S4 and Table S9 in File S1).

DISCUSSION
The frequency distributions of TF at each of the five sites clearly
indicated that TF is a polygenic trait, and that site-to-site changes in
the distribution patterns were indicative of strong GEI. This phe-
nomenon was best demonstrated in the reversal in TF of the parents
in ND, and the change to a bimodal pattern observed in POP. The

latter pattern is suggestive of a gene with a predominant effect under
the conditions of the POP site, which had the lowest temperature
and short days. In addition, the transgressive behavior of some RILs
suggested that both parents possess some alleles that shorten, and
others that delay, TF. The observed variation for TF was largely due
to genetic effects, as evidenced by the broad-sense heritability
estimate of 0.78. Such high heritability is not uncommon for this
trait, as it has also been reported in other species like maize (Buckler
et al. 2009), tomato (Mohamed et al. 2012), and rice (Seyoum et al.
2012). The high heritability estimate for TF indicated a high correlation

Figure 4 Profile of four environmental
variables observed between sowing
and flowering time at each of the five
experimental sites. Boxplots show spread
of average daily solar radiation (top left),
average day length (top right), average
minimum temperature (bottom left) and
average maximum temperature (bottom
right). CIT_16 represents the weather data
collected during the validation experiment
conducted in the year of 2016 at Citra, FL.
The five sites include: CIT, ND, PAL, POP,
and PR.

n Table 5 Conditional Wald statistic tests for fixed effects of the TF predictive model incorporating QTL 3 Environment interactions

Fixed Term Wald Statistic Degrees of Freedom (d.f.) Wald/d.f. P-Value

Day 1011.79 1 1011.79 ,0.001
Srad 91.17 1 91.17 ,0.001
Tmax 761.86 1 761.86 ,0.001
Tmin 273.00 1 273.00 ,0.001
TF1 104.95 1 104.95 ,0.001
TF2 195.36 1 195.36 ,0.001
TF3 68.54 1 68.54 ,0.001
TF4 15.06 1 15.06 ,0.001
TF5 0.12 1 0.12 0.728
TF6 39.88 1 39.88 ,0.001
TF7 41.02 1 41.02 ,0.001
TF8 11.32 1 11.32 ,0.001
TF9 40.46 1 40.46 ,0.001
TF10 10.74 1 10.74 0.001
TF11 11.59 1 11.59 ,0.001
TF12 3.06 1 3.06 0.08
TF1 · TF2 6.64 1 6.64 0.01
Tmin · TF2 117.08 1 117.08 ,0.001
Day · TF3 224.12 1 224.12 ,0.001
Tmin · TF3 31.58 1 31.58 ,0.001
Tmax · TF5 14.31 1 14.31 ,0.001
Day · TF7 31.63 1 31.63 ,0.001
Srad · TF12 7.79 1 7.79 0.005
Day · TF12 9.53 1 9.53 0.002

The model has 12 QTL (TF1–TF12) and four environmental factors averaged over the time span between planting and first anthesis of the last genotype at each site.
Tmin (avg. minimum temperature, �), Tmax (avg. maximum temperature, �), Day (avg. day length, hr), and Srad (avg. solar radiation, MJ m22 d21).
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between the phenotypic and genetic values, which increased the power
of QTL detection.

The genetic complexity of the TF trait was highlighted by the
detection of a total of 12TFQTL in the RIL population. The importance
of chromosome 1 in the control of TF has been reported previously
(Gu et al. 1998; Pérez-Vega et al. 2010), and was underscored by the
detection of four associated QTL, three of which have large effects, and
were identified with LOD values between 10 and 40. The preliminary
observation of GEI was supported by our analysis with the mixed-
effects statistical model, which revealed that five QTL interacted with
the environment, whereas the remaining seven were detected as envi-
ronmentally insensitive. These environmental interactions indicate that
the common bean, like many other species, including Arabidopsis
(Mouradov et al. 2002; Simpson and Dean 2002; Moon et al. 2005),
uses environmental cues to switch from the vegetative to the reproduc-
tive phase. Thus, identification of these QTLwould be of great breeding
importance in the development of cultivars adapted to targeted
environments.

TF2 significant interactionswith the averageTmincouldexplain, toa
great extent, the bimodal pattern observed in POP, the high altitude
equatorial sitewith the lowest temperatures (aswell as short day length).
The chromosome region associated with TF2 encompasses the
FIN locus (Repinski et al. 2012), which controls growth habit in the
common bean and explains why the early flowering mode pre-
dominantly included determinate RILs, while the late flowering
mode predominantly included indeterminate RILs. It is possible
that TF2 (43.5–46.0 Mbp, Chr1) and FIN (45.5 Mbp, Chr1,
Phvul.001G189200) are tightly linked loci. However, a number of
observations suggest that these may be the same gene, and the
behavior of TF2 represents the pleiotropic effects of FIN, which

was found to be a homolog of the Arabidopsis TFL1 gene (Repinski
et al. 2012). The Arabidopsis TFL1 gene controls growth habit by
repressing floral development in the shoot apical meristem
(Shannon and Meeks-Wagner 1991), and it also acts as a temper-
ature sensor delaying flowering at low temperatures (Strasser et al.
2009; Kim et al. 2013). Mutant alleles of this gene cause the devel-
opment of a terminal inflorescence, and fail to delay flowering
at low temperatures. A similar temperature effect has also been
reported for the homolog FvTFL1 in transgenic strawberry
(Rantanen et al. 2015). The FIN allele responsible for determinacy
in beans is known to have a deletion (Repinski et al. 2012), and
could also have a similar pleiotropic function in common bean
controlling a temperature dependent flowering pathway. In this
way, FIN could explain the bimodal distribution of flowering as-
sociated with growth habit detected in POP site. These observa-
tions are in agreement with those of Wallace et al. (1991) and
Kornegay et al. (1993), who reported that flowering of indetermi-
nate genotypes is significantly delayed at low temperatures. Taken
together, these observations suggest that FIN could be considered
as a strong candidate for TF2.

At theupperrangeof the temperature scale,TF5displayedsignificant
interactions with Tmax. In fact, TF2 andTF5 could explain theU-shape
TF response of beans reported byWallace et al. (1991). Thus, the rate at
which TF is increased could be controlled by TF2 and TF5 by reduction
and increases in Tmin and Tmax, respectively.

TF3was shown toplay amajor role in conditioning sensitivity today
length, causing aminimal effect on flowering time at PR and PAL (short
day sites), but explaining a major fraction of the variation in ND (long
day site). The chromosome segment associated with TF3 appears to
coincide with the region where the previously recognized dominant
photoperiod sensitive gene “Ppd” was mapped (Gu et al. 1998), raising
the possibility that TF3 andPpd could be the same locus. The absence of
sites with clear factorial temperature and photoperiod combinations
kept us from assessing the full range of effect of the interactions be-
tween these variables on TF as described in the literature (White and
Laing 1989;Wallace et al. 1991; Kornegay et al. 1993;White et al. 1996).

An intriguingresultwas the significanteffect of solar radiationonTF,
and the significant interaction between TF12 and solar radiation. In
fact, the amount of solar radiation is known to affect the timing of
flowering (Adams et al. 1997). However, not much is known about
the exact mechanism, but some observations suggest the control of

Figure 5 QTL-EC linear model. Fti, flowering time of
the ith genotype; 44.18, mean TF (day) across the five
sites; Dayi, average day length from sowing to flowering
observed by the ith genotype (hours); Daym, mean day
length across all five sites (12.37 hr); Sradi, average so-
lar radiation from sowing to flowering observed by the

ith genotype (Srad, MJ m–2 d–1); Sradm, mean solar radiation across all five sites (18.218 MJ m–2 d–1); Tmini, average minimum temperature from
sowing to flowering observed by the ith genotype (�); Tminm, mean minimum temperature across all five sites (16.128�); Tmaxi, average maximum
temperature from sowing to flowering observed by ith genotype (�); Tmaxm, mean maximum temperature across all five sites (27.458�); TF1i:TF12i,
alleles at QTL TF1:TF12 in the ith genotype (Calima alleles = “+1” and Jamapa allele = “21”).

Figure 6 Predicted vs. observed values of TF at the five experimental
sites. The predicted values were obtained using the QTL-EC model
(QTL + environmental covariates model). Dots represent recombinant
inbred lines. The five sites include: CIT, ND, PAL, POP, and PR.

n Table 6 One-site-out evaluation of the TF predictive model (QTL+
environmental covariate based model) performance for the RI
population grown at the five sites: PR, ND, POP, CIT, and PAL

CIT ND PAL POP PR Overall

RMSE (d) 2.45 3.93 1.42 2.16 1.87 2.47
Adjusted r2 0.73 0.48 0.79 0.81 0.73 0.92

Volume 7 December 2017 | A G and E Model for Time-to-Flowering | 3909



Red:Far-red (R:FR) ratios might be involved. Although cloud coverage
is considered by many to have a neutral effect, measurements indicate
that cloud coverage reduces downwelling solar irradiance, but it also
changes the spectrum, particularly at the red end of the PAR (Bartlett
et al. 1998). Hence, differential sensitivity to perceived R:FR ratios
caused by cloud coverage may explain interactions between TF12
and both solar radiation and photoperiod as observed in other systems
(Kurepin et al. 2007; Martínez-García et al. 2014).

Themixed-effectsmodel helpedus assess the contributionofgenetic,
environmental, and G · E components to the observed variation in
TF. The QTL-EC model proved to be an effective predictor of TF,
requiring the TF-QTL genotype and environmental information as
the only inputs. In fact, the QTL-EC model predicted very well all
transgressive TF phenotypes, which resulted from the fact that Jamapa
alleles at TF1, 2, 4, 6, and 11 delayed TF, while the opposite was true for
TF3, 7, 8, 9, 10, and 12. This observation highlights the richness of the
two common bean gene pools for alleles that control the timing of the
transition from the vegetative to the reproductive phase, and suggests
that a greater amount of variation probably exists in these gene pools.
The QTL-ECmodeling approach could be very useful in plant breeding
programs, and it can contribute to facilitate development of ideotypes
for specific environments. The model will also be useful for germplasm
conversion programs where the objective is to move traits between
germplasm adapted to tropical and temperate environments.

Although the evaluation with both the parental and additional
2016 data sets showed the robustness of the QTL-EC model at all the
environments under study, the predictive accuracy of this model, or
models in general, is restricted to the range of experimental conditions
and experimental data collected (Malosetti et al. 2013). For this reason,
this model should be considered as a starting point for the construction
of a more complete model, which could be accomplished by the in-
clusion of a wider range of environments and a diversity panel that
represents the variation in the germplasm bank. Increasing diversity in
general is bound to alter the model’s center point and the slope of
environmental sensitivities.

The variation not explained by the model indicates that all the
components of variationmay not have been identified. For instance, it is
possible that severalQTLwith very small effectswerenot detecteddue to

the relatively small size of the population. In addition, the reduction in
predictability resulting from the shift from theQTL-Site to the QTL-EC
model suggests that perhaps one ormore environmental variables at the
experimental sites were not taken into account. This issue can be
appreciated more clearly by the reduced efficiency of the model when
one of the sites is left out of the calibration, particularly the ND site
(Figure S4 in File S1). The most likely explanation for the largest devi-
ations from the model observed in ND is the absence of a site with long
days and temperatures as low as those from POP. The absence of such a
site prevented us from capturing the nonlinear effect on TF caused
by interactions between temperature and photoperiod reported by
Wallace et al. (1991). Inclusion of this type of interaction, and others
that may manifest more markedly at extreme environmental condi-
tions, will require the use of nonlinear models.

Further studies are being conducted to validate andmapwith greater
precision the TF QTL detected in this study. These efforts will facilitate
the identificationof eachQTL.The currentdata strongly suggest theTF2
maycorrespond toPvTF1, andTF3maybe correspond toaphotoperiod
responsive gene, like one of the phytochromes found in that region.
However, TF1 was detected within a peak of �10 cM, but the centi-
morgan toMega base pair relationship in this region of chromosome 1
indicates that this segment stretches over 20–30 Mbp (Bhakta et al. 2015).
Thus, at this point, it would be premature to speculate about the identities
of the otherQTL.Wemust also point out that this studywas restricted to a
single biparental cross, and used only five environmental sites. Thus, it is
possible that alternative alleles of the QTL reported here, or additional loci
involved in the control of TF, may be present in the common bean
germplasm. For instance, the survey of White and Laing (1989) showed
that Calima belongs to one (Class 5) of eight photoperiod response
groups. Furthermore, additional combinations of environmental factors
should be tested to obtain a more complete assessment of the environ-
mental effects as indicated above.

In summary, this study identified 12 significant quantitative loci
controlling TF in the common bean. Development of a QTL-based
environmental linear mixed effect model allowed identification of
several QTL that interacted with specific environmental factors like
temperature, photoperiod and solar radiation. The mixed-effect model
predicted TF with good accuracy, and allowed us to improve our

Figure 7 QTL-EC model evaluation by predicting TF for the parental
genotypes grown at the five sites. The predicted values were obtained
using the QTL-EC model (QTL + environmental covariates model). The
parental genotypes Calima (CAL, solid circles) and Jamapa (JAM, solid
triangle) were not included in the model parameter estimation
process. The five sites include: CIT, ND, PAL, POP, and PR.

Figure 8 QTL-EC model evaluation by predicting TF for 100 RILs
grown in 2016 at Citra, FL (CIT_16). The predicted values were
obtained using the QTL-EC model (QTL + environmental covariates
model). The parameter estimation process did not included Citra, FL
2016 (CIT_16) data.
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understandingof the genetic andphysiologicalmechanisms that control
flowering in the commonbean.These results suggest that in silico testing
of the performance of different QTL allele combinations under specific
environmental conditions could help breeders identify and design
adapted elite varieties, thereby saving time and resources.
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