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Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new andmore
robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of
others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical
system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other
analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide
reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the
evolution of prokaryotes’ taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia
taxonomy. 'is example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the
nitrogen input to both natural ecosystems and agricultural crops. 'is case study reports the technological advances and the
methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of
new taxa.

1. Introduction

'e taxonomy terminology has been broadly discussed.
Some researchers consider the taxonomy as systematics,
while others define taxonomy as the classification of or-
ganisms and part of the systematics, which would have a
broader scope, including studies with evolutionary and
phylogenetic components [1]. Taxonomy is the science re-
sponsible for the orderly arrangement of living organisms
respecting a hierarchical system that can presume the
evolutionary relationships; it also offers relevant information
about the origin of life and how it evolved on Earth [2, 3].
'e objective of general taxonomy is to establish a

classification system based on genealogical relationships,
aiming to reach a natural system that mirrors the “order in
nature” [4–6].

Prokaryotes include living organisms belonging to both
domains, Archaea and Bacteria, known as archaebacteria or
archaea and eubacteria, respectively. 'ose microorganisms
do not have a distinct nucleus or other organelles due to the
lack of internal membranes, main characteristics dis-
tinguishing them from the eukaryotes. 'e prokaryotic
taxonomy is traditionally split into three correlated areas:
classification, nomenclature, and identification [7, 8]. 'e
orderly arrangement of organisms into taxonomic ranks
designates the classification. 'e nomenclature objective is
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to name the organisms following the International Code of
Nomenclature of Prokaryotes (ICNP) rules. 'e identifi-
cation involves allocating the strains into the described
taxonomic groups [7, 9, 10]. However, if the taxonomy of a
strain remains undefined, the characterization and phylo-
genetic analysis should be carefully carried out to describe
and name the new taxon.

'e basic unit of taxonomy is the species. Bergey’s
Manual of Systematic Bacteriology defines a bacterial species
as a group of strains with certain distinctive features that
generally resemble each other in essential features of an
organization [11]. Estimates are of about 1012 bacterial
species on Earth [12]. In November 2021, there were about
17,845 valid species names (without synonyms) [13].
Considering this number, we can conclude that bacterial
diversity is not sufficiently explored and that most might still
be composed of still uncultivable species.

Besides arranging the organisms, the taxonomic tools are
used to study microbial diversity and establish phylogenetic
relationships. Biodiversity represents the basis of the stability
of the ecosystems, providing environmental resilience [14].
Assessing microbial biodiversity also provides various bio-
technological resources for food production and regenera-
tive agriculture, environmentally-friendly technologies such
as bioremediation and bioprospection of new enzymes,
antibiotics, and biological processes. Studies on microbial
diversity and taxonomy are crucial to guarantee the envi-
ronmental and socioeconomic benefits be still unknown to
the microbial world. In one attempt to put a monetary value
on goods and services provided by ecosystems, the worth of
biodiversity was estimated at the outstanding value of US$
33 trillion per year, close to the GDP (growth domestic
product) of the United States and China combined [15].
Other estimates point out to lower or similar values, but
undoubtedly, all of them are important [16].

Although many techniques, rules, and concepts are used
for prokaryotes in general, in this review we describe how
bacterial taxonomy evolved until genomic era and important
tools developed to assess bacterial diversity and guide to
proper classification. We also present a case study with
rhizobia to clarify how the evolution of the taxonomic
science impacted this group of bacteria, probably amongst
the most important for ecosystems and agricultural sus-
tainability, and improved our knowledge about them.

2. The Bacteria Species Concept and
Description of New Taxa

'e species concept is considered a universal theory limiting
the category “species” for all living organisms. Concerning
the prokaryotes, several incongruences are discussed, since
they do not fit into the most common eukaryotic species
perceptions, such as the morphological, biological, or evo-
lutionary concepts [17]. For years, the bacterial species were
classified based on phenotypic features, followed by poly-
phasic analyses involving phenotypic, genotypic, and phy-
logenetic properties, but with the methods differing among
bacterial groups. As a result, each described taxon is rep-
resented by a lower taxon, and a type species represents each

genus. Nowadays, the advancement of next-generation se-
quencing (NGS) has encouraged the description of novel
species based mainly on genomic sequences [18], and this
practice is revolutionizing the bacterial species concept and
the taxonomic groups [19–23].

For the description of novel bacterial taxa, the taxonomists
follow guidelines from the International Committee on Sys-
tematic of Prokaryotes (ICSP), split into several subcommit-
tees, according to the knowledge areas. Regarding the rhizobial
species, the Subcommittee on Taxonomy of Rhizobia and
Agrobacteria is responsible for the guidelines. For many years,
the only guideline for rhizobia taxa description available was
published by Graham and collaborators in 1991 [24]. More
recently, subcommitteemembers proposed an improvement to
the minimal standards for the species and genera description
[25], provided on the website https://sites.google.com/view/
taxonomyagrorhizo/home.'e genomic profile comparison of
strains studied and related type strains is required among the
updates, and the genome sequence of the type strain repre-
senting the new species must be deposited in databases. 'is
requirement will increase the number of genomes available for
further studies.

Another critical step in taxonomy concerns the proper
nomenclature, which the ICNP regulates. 'e scientific name
of a novel bacterial taxon needs to be in Latin, referring to the
history of the taxon, and be published in the “Approved List” of
prokaryotes to become a valid name. In the International
Journal of Systematic and Evolutionary Microbiology (IJSEM),
the official journal of the ICSP, a clear statement of the name
(i.e., fam. nov., gen. nov., sp. nov., etc.) and its etymology, as
well as the characterization data of the taxon and the type strain
designation, must be provided [26]. 'e valid names outside
the IJSEM must follow these same guidelines and request the
official journal validation [27].

'e List of Prokaryotic names with Standing in No-
menclature (LPSN) is an online tool constantly updated by
the Leibniz Institute DSMZ—German Collection of Mi-
croorganisms and Cell Cultures GmbH (https://lpsn.dsmz.
de/). It includes a broad range of taxonomic information for
each described taxon, such as etymology, nomenclatural and
taxonomic status, type strain designations, and the link to
the description publication [13]. However, it is worth
mentioning that some prokaryotes, such as those still un-
cultivable, or genetic material retrieved from the environ-
ment, although might have sequences indicating that could
represent new species, do not have sufficient information
required to be described as a novel taxon [28]. 'erefore,
these organisms are classified as a “candidate” of a new
species or a new genus, receiving the taxonomic status
Candidatus [29]. Nowadays, with the development of
metagenomics, which involves acquiring genome sequences
from sampled materials of a community of organisms
inhabiting a common environment, millions of 16S rRNA
sequences have been deposited in databases [30], and a large
number of them share less than the suggested threshold
value of similarity for species circumscription. 'erefore,
even though the uncultivable prokaryotes have not been
isolated yet, the analyses of those sequences imply that they
might represent different species. Given this evidence, many
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efforts have been carried out for gene sequences of uncul-
tivable taxa to be considered by ICSP and to change the
status of Candidatus to valid names [31].

3. A Brief View of Bacteria Taxonomy

Ferdinand Cohn developed the first studies of bacterial
classification in the 1870s. He used morphologic traits as
criteria to define six different genera [1]. From this, different
methods of classification based on phenotypic traits were
published, making the studies of taxonomists difficult be-
cause of the lack of minimal standards and common
agreement on classification [17]. From the first edition of the
Bergey’s Manual of Determinative Bacteriology
(1984–1989), this status was changed, with the definition of a
reference guideline for bacterial classification, providing
conditions for the microbiologists to merge the criteria
adopted among them [32].

Even though the clustering methods emerged before the
advent of computers, they were applied in bacteriology just
after using computers, around 1957, by Sneath and Ludwig
et al. [33, 34]. 'is era of bacterial taxonomy was marked by
numerical studies where several phenotypic properties were
electronically tabulated and used as a relatedness mea-
surement. However, although the numerical taxonomy
improved the identification of bacteria, it did not consider
phylogenetic analyses [35]. Together with the evolution of
numerical taxonomy, new techniques considering the
physiologic and biochemical traits started to be developed,
such as chromatographic and electrophoretic methods to
define chemotaxonomic markers, aiming to reach the goal of
a universal classification system for bacteria [17].

In the early 1960s, the development of molecular
techniques supported the inclusion of methodologies such as
the DNA guanine and cytosine content (GC mol%) and
DNA-DNA hybridization (DDH) [36, 37] for taxonomic
studies. 'ose techniques allowed the comparison of ge-
nomes, improving the classification of bacteria. Since the
first experiments based on single-stranded DNA reassoci-
ation conducted by Schildkraut et al. in 1961 [38], and for
about 50 years, the DDH was used as a standard technique
for bacterial species circumscription [8, 9, 17].

A remarkable breakthrough in the attempts to determine
relationships between distantly related organisms came
around the 1970s when the Taq polymerase enzyme was
discovered and used for DNA amplification through the
polymerase chain reaction (PCR) techniques [39], and the
dideoxy sequencing technology was described by Sanger
et al. [40]. Almost simultaneously, the small ribosomal
subunits 16S rRNA for prokaryotes and 18S rRNA for
eukaryotes were described and started to be broadly used as
molecular markers to organize all living organisms into three
superior taxa, Archaea, Bacteria, and Eukarya, named as
domains [41].'is new hierarchical taxonomic system based
on these molecular markers allowed the incorporation of
phylogenetic information in the prokaryotic classification
[2, 42–45].

'e phylogeny studies the evolutionary relationships
among organisms, and using conserved molecular data

became commonly accepted in taxonomy. After the ribo-
somal sequences, other conserved genes started to be used
[46]. Although less sequences can be used, the Multilocus
Sequence Typing (MLST) generally evaluates 8 to 12 con-
catenated housekeeping genes or other protein-coding genes
to identify genotypes and differentiate closely related strains,
becoming broadly applied in molecular epidemiology. In the
MLST, each gene (locus) contains different alleles; the allelic
differences are converted in values resulting in the “sequence
type” for the bacteria, which are available in a specific da-
tabase for comparisons (as https://pubmlst.org/) of several
pathogenic bacteria. Even though the MLST is not com-
monly used to infer phylogeny in epidemiology studies, it
was applied for this purpose in taxonomic studies, con-
tributing to the development of the Multilocus Sequence
Analysis (MLSA) [47–52].

'e MLSA accesses the evolutionary information of
concatenated housekeeping genes to build phylogenetic
trees with more robust data than the analysis with single
sequences [53, 54]. It is an important tool for studying
prokaryotic diversity and classifying taxonomic groups due
to its high-resolution power on species delineation. 'e
sequences are aligned, and informative sites are compared.
As in the 16S rRNA analysis, the nucleotide identity (NI),
which is a percentage of sequence similarity, must respect
the threshold values suggested for each respective group of
study [46, 55, 56]. 'e phylogenetic reconstructions can be
achieved using different classes of inference methods. Each
one has its particular strengths and weaknesses, requiring
careful considerations to choose the best method that fits the
analysis [25, 57].

Today, advanced sequencing technologies allow the
taxonomy to use genomic data in silico to compare mi-
croorganisms, helping to allocate them in their respective
taxa or describe new taxa to accommodate the new group.
With sequenced genomes, the taxonomists can calculate the
overall genome-related indices (OGRIs) and estimate the
relatedness among microorganisms; however, suggested
threshold values must also be considered. 'e OGRIs came
to replace the DDH due to its low cost, reproducibility, and
quality of genomic information. Furthermore, the genome
sequences can be deposited in databases so that other sci-
entists can use the data without cultivating the respective
bacteria [51, 58]. 'e OGRIs include average nucleotide
identity (ANI) and digital DNA-DNA hybridization
(dDDH), the most broadly used to calculate the relatedness
between orthological sequences of two genomes. 'ose
sequences are descended from the same ancestral sequence,
which kept conserved across the evolution. Studies showing
that ANI is a robust measure of evolutionary distance that
correlates with DDH values have been published since 2005
[59, 60].

In conclusion, until the genomic era, the polyphasic
taxonomy was used to identify, classify, and name pro-
karyotes according to phenotypic, genotypic, and phylo-
genetic characteristics. It enabled considerable progress and
stability in microbial taxonomy. However, with advance-
ments in genome sequencing, there are today better tools to
delineate species, study phylogeny, and ordinate microbial

International Journal of Microbiology 3

https://pubmlst.org/


diversity. 'e history of microbial taxonomy incorporates
the most advanced technologies and adheres to standards
and rules, representing a scientific field where the progress
goes alongside conservatism [61, 62].

4. Bioinformatics, Evolutionary Markers, and
Threshold Values

'e evolutionary molecular markers are constitutive
genes that reflect the phylogeny of the organisms because
the bases’ substitution on DNA sequences (given by
mutations and recombination) is proportional to the
evolution that each species underwent from its ancestors,
allowing estimates of the differentiation level of the
species [63]. In bacterial taxonomy, those molecular
markers started to be amplified, sequenced, and used to
phylogenetically ordinate bacteria with the development
of the PCR and sequencing techniques. 'e sequences
from amplicons of molecular markers of strains under
study and related strains need to be aligned using specific
algorithms, such as MUSCLE [64] and ClustalW [65], to
identify significant sites for the analysis.

In the next step, it is recommended to choose the best
substitution model for the multiple sequence alignment,
which depends on the phylogenetic method used to un-
derstand the phylogeny of the group under study. Models of
substitution are algorithms responsible for evaluating the
frequency of each nucleotide and its frequency of substi-
tution, differentiating between transitions (exchange for
nitrogen bases of the same biochemical class) and trans-
versions (exchange for nitrogen bases of a different bio-
chemical class). With this, the models can infer the evolutive
history for the alignment [66, 67]. Finally, the phylogenetic
methods are used to construct the phylogenies based on the
alignment and best evolutive model. 'e result is a graphic
representation of the evolution of the strains given by a
phylogenetic tree.

In a phylogenetic tree, the extremities are represented by
the investigated lineages (sequences, strains). 'e horizontal
lines are called branches, and the nodes that connect the
branches represent the most recent common ancestry
among the strains [67]. However, a reliable phylogeny re-
construction needs to consider the number of sequences, the
size of the alignment, the statistical support, and the out-
group. 'e bootstrap is commonly used in phylogenies to
provide statistical support for the tree nodes [68]. 'is
confidence test consists of multiple resampling of a dataset
with the same size as the original alignment. For each
resampling, the algorithm randomly chooses the sites, that
is, the columns of the alignment, which may be repeated or
excluded. Different resamplings result in phylogenetic trees
that are compared with the tree obtained in the original
alignment. 'e number of resamplings is variable and may
be chosen by the researcher to ensure a reliable phylogeny
[69]. 'e bootstrap value corresponds to the percentage of
each group found among all trees obtained in the resam-
pling. 'e outgroup represents a related taxonomic group,
and it is used to show the ancestral strains, helping to de-
termine the tree’s root [70].

It is also possible to calculate the NI, a mathematic
parameter used to measure the percentage of similarity
among the nucleotide sequences from the alignment, but it
does not include evolutionary analyses. Specific software is
available to calculate the NI, such as BioEdit [71]. Several
studies compare NI of particular sequences and genomic
analysis, such as dDDH or ANI, of a large group of strains to
suggest standard values of NI that reflect whole-genome
features of prokaryotes, saving time and costs. 'ese values
are commonly known as threshold or cutoff values and are
used for taxon circumscription [56, 72].

'e 16S rRNA gene, a critical molecular marker in
bacterial taxonomy, contains approximately 1,500 base pairs
(bp) and plays a role in synthesizing essential proteins to the
functioning of every prokaryote. It is originated from a
common ancestor among all prokaryotes, being homologous
and keeping conserved throughout the evolution process,
but having variable sites with evolutionary information
[42, 73]. 'e degree of divergence in the 16S rRNA se-
quences allows to estimate the phylogenetic distance among
strains and, for this reason, is considered a molecular
chronometer in bacterial taxonomy [1, 67].

Some numerical values of 16S rRNA NI have been
suggested to delimit species boundaries. For example,
Stackebrandt and Goebel, in 1994 [74] suggested that strains
sharing less than 97% NI on the 16S rRNA sequences should
not belong to the same species because the homology would
not give a DNA-DNA reassociation above 60–70%. After
that, a threshold ranging from 98.7 to 99% was recognized as
corresponding to the DDH reassociation value for species
delineation [1]. More recently, Kim et al. [72] carried out a
large comparative study between 16S rRNA sequence
similarities and ANI and proposed the threshold of 98.65%
similarity in the 16S rRNA sequence for differentiating two
species.

'e increase in the number of novel taxa described using
the 16S rRNA sequence data has revolutionized our
knowledge of the microbial taxonomy, especially at the
species level [51]. However, the resolution power of the 16S
rRNA analysis is limited due to the predominance of con-
served sites in these sequences, not giving enough evolu-
tionary information for the analysis and restricting the
identification at the genus level [6, 75–77], with the sug-
gested threshold of 95% for genus delimitation [78]. In
addition, studies have reported that those sequences can
have multiple heterogeneous copies and, in some groups of
microorganisms, the horizontal gene transference (HGT)
may happen [79, 80]. 'ese events may lead to misinter-
pretation of the evolutionary data [81]. Concerning these
issues involving the ribosomal sequences, the information
from the 16S rRNA phylogeny must corroborate with the
suggested values of molecular analyses with a better reso-
lution power and should not replace other methodologies.

Many taxonomists analyzed the internal transcribed
spacer (ITS) as an alternative molecular marker to increase
the knowledge about the ribosomal region [75, 82–84].
'ose sequences are located between the small-subunit (16S
rRNA) and the large subunit (23S rRNA) of the ribosomal
RNA and contain highly variable sequence regions, allowing
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the differentiation of bacteria even at the strain level,
showing higher phylogenetic diversity [85–87]. For example,
a study with the Bradyrhizobium genus demonstrated that
strains sharing 95.5% NI on the ITS sequences would
correspond to 60% of reassociation on the DDH, belonging
to the same species [88]. However, as the 16S rRNA, these
sequences do not have a high-resolution power to infer
taxonomic groups at the species level. Despite being not
often used, the 23S rRNAmay also be applied as a molecular
marker. 'e 23S rRNA is located in the large subunit of the
prokaryotic ribosome, has a conserved function, universal
distribution, and presents sequences with different levels of
variation. However, it is commonly characterized by
showing insertions and deletions with large sizes, resulting
in more information to improve phylogenetic resolution as
an additional analysis [66, 89].

Even though the 16S rRNA sequences have been broadly
used as an effective tool for basic evolutionary analyses of
cultivable and uncultivable bacteria, for closely related
groups, they are unable to determine their nearest neighbors
since different species can share identical or nearly identical
16S rRNA sequences [83, 90–93]. An approach that can be
used to fill this gap is the MLSA. As mentioned before, the
MLSA puts together evolutionary information from con-
catenated housekeeping genes to better assure the correct
taxa identification of strains under study. 'e housekeeping
genes are responsible for fundamental roles in the basal
microbial metabolism, encoding for essential proteins of the
cell functions. 'erefore, they have high conservation levels
but faster evolutionary rates when compared with the ri-
bosomal sequences, carrying more phylogenetic information
[94].

'e MLSA allows the analysis of genes together as a
larger phylogenetic dataset [35, 46, 52, 95]. 'erefore, the
methodology aggregates sufficient phylogenetic signals, of-
fering a buffer effect to the noncongruent signals that in-
fluence smaller datasets, being more reliable [77, 94, 96].
However, it is worth mentioning that the single house-
keeping genes analysis does not reflect the entire evolu-
tionary pattern of the strain; it is recommended to proceed
to the comparison between the 16S rRNA and each
housekeeping gene phylogeny to detect and avoid potential
HGT and recombination events, since each housekeeping
gene may have a different history of evolution [75, 92].

'e main requirements of MLSA involve the selection of
housekeeping genes that should be present in the genome of
all organisms object of study as a single copy and spread in
the genome. 'ey must also have a consistent size to allow
phylogenetic reconstructions and sequencing. Conse-
quently, different genera may vary in the set of genes used in
the analysis [46, 52]. In addition, the resulting data from
MLSA must corroborate with the 16S rRNA, dDDH, and
ANI analyses. It is recommended to use at least five
housekeeping genes, considering that the number of genes
reflects directly in the discriminatory power of the technique
[52]. Some of the most common housekeeping genes applied
for the classification of new taxa are ATP synthase β-subunit
(atpD), chaperone protein (dnaK), glutamine synthase II
(glnII), glutamate synthase (gltB), DNA gyrase β-subunit

(gyrB), recombinase A (recA), RNA polymerase β-subunit
(rpoB), and tryptophan synthase β-subunit (trpB)
[10, 75, 97–99]. In addition, new genes can be studied,
aiming to determine if they provide relevant and congruent
phylogenetic information as those genes cited above.

After the housekeeping genes selection, each set of
single-gene sequences should be aligned and trimmed to
keep the same region of comparison and the same size for
the alignment. Subsequently, the phylogeny of each single
gene is individually built and compared to each other, and if
they are congruent, the alignments must be concatenated to
proceed with the MLSA. 'e concatenation process can be
carried out manually using software or any text editor
program. Some of the most common software for alignment
of prokaryotic sequences are MEGA (Molecular Evolu-
tionary Genetics Analysis) [100] which provides alignment
tools as MUSCLE and ClustalW, and BioEdit [71] which also
provides the alignment tool ClustalW. To concatenate the
sequences, the SeaView [101] is commonly used. In addition,
it is important to search for updated sequences in databases
to construct reliable phylogenies, verifying the quality of the
sequences and the availability of the sequences of the closely
related strains.

In 2002, the ad hoc committee of the ICSP recom-
mended the analysis of the concatenated housekeeping genes
as a promising method to replace the DDH association in
bacterial taxonomy [102]. Following this, Konstantinidis
et al. [56] studied extensive whole-genome comparisons of
four important bacterial groups. 'ey concluded that the
phylogeny of six to eight genes reflects the threshold of 70%
DDH and 96% ANI for species circumscription.'e authors
did not suggest any specific set of genes and affirmed that
even if the genes are randomly combined, they provide a
robust phylogeny for the group studied [56, 103]. Since then,
the NI of concatenated housekeeping genes has been ac-
cepted to predict the whole-genome information and dif-
ferentiate bacterial groups [98, 104–106]. However, no
universal threshold for MLSA has been determined for
species circumscription yet [18]. Nevertheless, theMLSA has
been used as a great strategy to differentiate species in
bacterial taxonomic studies, and it is considered as a critical
step of bacterial taxonomy since it is more phylogenetic
sensible than 16S rRNA analysis and involves conserved
regions able to infer phylogeny, unlike OGRIs, which are
mathematic parameters [51].

5. Evaluating Genomic Traits

As the DNA molecules represent the identity of the species,
studying the genomic profiles allows obtaining relevant
information for taxonomic purposes. Prokaryotic genomes
contain repetitive sequences distributed throughout the
chromosome; however, the sites, length, and the number of
times they are repeated are characteristic of each strain,
representing a fingerprint of each genome. To evaluate those
genomic profiles, the taxonomists use DNA amplification by
PCR with specific primers for those regions or restriction
enzymes to cut the chromosome in the restriction sites. As a
result, in both procedures, there is a mixture of different
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fragments of DNA that can be separated by electrophoresis
revealing the respective genetic profile [9, 107, 108]. For
taxonomic studies, there are three main sets of repetitive
elements: repetitive extragenic palindromic (REP) [109],
enterobacterial repetitive intergenic consensus (ERIC) [110],
and BOX elements [111–113]. 'ose analyses are limited for
species circumscription, but if properly used, they can be
applied to identify variability from strains of the same
species, to find clones, and to authenticate strains in a study
or culture collection [8, 108, 114].

'e DDH evaluates the extension and stability of DNA
hybrid strands after the dissociation and consecutive reas-
sociation of a two-genomes mixture incubated under con-
trolled conditions [115]. 'e cutoff is based on the
percentage of reassociation using the difference in melting
temperature of the hybrid DNA strand (heterologous)
compared to 100% of the original strand (homologous). If
this association is 70% or higher, or the melting temperature
difference (ΔTm) is below 5°C, the genomes compared
belong to the same species [7, 18, 35]. 'e DDH started to be
applied when a putative novel group shared more than 97%
NI in the 16S rRNA sequence with the related species,
aiming to assure enough difference among the genomes of
the strains to support the description of a new group. Since
the introduction of the DDH in microbiology [116], it be-
came the “gold standard” for species delineation of Bacteria
and Archaea and a required technique in every prokaryote
species description [8]. However, despite the cited advan-
tages, the DDH has limitations, especially for being time-
consuming, requiring intensive labor, and not allowing
comparison of results obtained in different experiments, not
enabling establishing a global database [44, 51, 117, 118].

'e first prokaryote genome sequenced was of the
bacteria Haemophilus influenzae in 1995, using the con-
ventional Sanger sequencing technique [119]. Although a
new genomic era was starting, the high cost and time-
consuming process of genome sequencing did not allow
significant progress for one decade. In 2005, with the arrival
of the NGS technologies, also known as high-throughput
sequencing methods, the easy access and low cost of the
genome sequencing launched the report of sequenced ge-
nomes of prokaryotes [51, 120]. Today, many sequencing
platforms can be used, and they are split into two main
groups, depending on the type of template used for the
sequencing reactions, the high-end instruments, and the
bench-top instruments. 'e high-end platforms demand
more technology infrastructure for data tracking, analysis,
and storage, while the bench-top ones have more modest
requirements. Nowadays, the most popular platforms are the
MiSeq and HiSeq (Illumina, USA), Ion Torrent ('ermo
Fisher Scientific, USA), and Pacific Biosciences (USA) [60].

'e statistical parameters used to report the quality of
the genome assembly recommended for taxonomic pur-
poses are (i) the genome size, defined as the length of all
contigs sequenced; (ii) the N50, defined as the length of the
shortest contig that accumulatively shows 50% or more of
the genome size when the lengths of the contigs are summed
from the largest to shortest; and (iii) the depth of coverage
from the sequencing, indicating howmany sequencing reads

are generated; this value is usually given as folds and is
recommended a minimum of 50X (50-fold) for the plat-
forms cited before [60, 121]. Another critical issue to con-
sider in taxonomy is the genome authenticity, which can be
achieved by comparing complete conserved sequences, as
the 16S rRNA or housekeeping genes extracted from the
genome, with the same sequence obtained through the
conventional Sanger sequencing. When describing a new
species, this comparison should be performed at least with
the type strain [51].

Presently, using genome sequencing, the taxonomists
can use other analyses to study the relatedness among the
DNAs of bacteria. 'e threshold values suggested for these
analyses relate to the 70% from the DDH technique. As
mentioned above, these values are known as OGRIs and
effectively calculate genomes’ similarities in silico [51, 58].
'e ANI and the dDDH are now extensively used to replace
the original DDH, adopting the threshold values of 95–96%
and 70%, respectively, for species circumscription. 'e
OGRIs can be calculated using software tools for taxonomic
purposes. Today there are many readily available web ser-
vices, such as the Genome-to-Genome Distance Calculator
and the ANI calculator, and standalone tools, such as
JSpecies and OrthoANI with USEARCH. Besides being fast
and of low cost, the high quality of the sequences allows the
improvement of genomic databases that researchers can use
worldwide [60, 117, 122, 123].

With the availability of genome sequences, another
parameter that can be calculated in silico is the DNA guanine
and cytosine (GC) content, which is also used as a genotypic
marker in taxonomy [124]. In the beginning, the bases’
composition variation from strains of the same species
should not exceed 3mol%, and for strains from the same
genus, 10mol% [7]. Later, a survey comparing the GC
content with the genomic data and dDDH indicated that the
variation should not exceed 1mol% among strains of the
same species [58]. 'e GC content can be calculated using
tools to assemble the genomes, such as the SEED viewer
provided by the RAST server [125], QUAST [121], and
BioEdit [71]. Although the GC content is important to
distinguish nonrelated bacteria, similar DNA base compo-
sition does not necessarily imply that the two strains are
closely related [35].

6. Phenotypic Traits

In contrast to the taxonomy of eukaryotes, where the
phenotypic characteristics can be used to differentiate some
organisms, these traits are questionable in prokaryotes since
different bacterial species can present identical phenotypes
[17]. Nevertheless, starting the prokaryotic classification
using the phenotypic evaluation may help delimit further
analyses; for example, most pathogenic bacterial groups
present well-established phenotypes in the literature and are
critical to quick diagnostics.

'e classical phenotypic tests in microbiology include
morphological, physiologic, and biochemical analysis.
Morphological characteristics describe the cellular and
colony features, such as the cell shape, endospore formation,
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presence of flagella, Gram stain, color colony, diameter,
opacity, mucus production, and their consistency. On the
other hand, the physiological and biochemical characteris-
tics include data about the culture under different growth
conditions, such as range of temperature, pH (4–12), salinity
tolerance (1–10%), O2 or CO2 requirements, tolerance to
different antibiotics, enzymatic activity (i.e., urease), and
metabolism of compounds (i.e., carbon source and nitrogen
source) [7, 9, 28, 126]. 'erefore, it is recommended to
compare the data obtained with reference or type strains and
to include negative and positive controls [8]. In addition, the
use of commercial tests with minimal standards such as API
(bioMérieux) or Biolog (Biolog, Inc.) that evaluate the
carbon source utilization by bacteria is suggested to avoid
incongruences among laboratories.

Another common phenotypic test is the chemical
characterization of cells, which evaluates extracellular
elements (peptidoglycan, teichoic acids, and mycolic
acids), cell membrane composition (fatty acids, polar
lipids, respiratory lipoquinones, and pigments), or cyto-
plasm compounds (polyamines) [8]. 'ese features are
also known as chemotaxonomic markers because they are
usually stable within a bacterial group [127]. 'e resulting
data are available in specific databases. One of the most
common is the database of fatty acids profiles imple-
mented by Sherlock Microbial Identification System
(MIDI, Inc.) [8, 105, 128]. Even though the chemical
characterization provides important information about
the cells, it has become unusual in taxonomic studies
because the tests are laborious, require specific equipment
and methodologies, and usually allow the classification
only at the genus level identification. Lately, the use of
Matrix-Assisted Laser Desorption/Ionization Time-of-
Flight (MALDI-TOF) for bacterial identification has be-
come a rapid, precise, and cost-effective method, espe-
cially compared to traditional phenotypic and molecular
techniques. It is based on the analyses of bacteria com-
ponents profiles, as proteins directly extracted from intact
bacteria, and compared with a reference database for
identification [129, 130]. 'is methodology is commonly
used on clinical isolates’ identification, but as the refer-
ence databases are being updated, it is becoming practi-
cable for other groups of bacteria, such as the rhizobia
[131–133].

It is worth mentioning that there are many genes coding
proteins without known function. 'erefore, the phenotypic
tests could help the search for proteins with biotechnological
interest, improving the knowledge about the interactions of
microorganisms with the environment [18]. However, the
phenotype results from the combination of genotype and
environmental conditions. Consequently, it is impossible to
know the whole phenotype of a prokaryote based only on
observable characteristics or on the information obtained
from the genome. In taxonomy, it is common to find some
incongruent data in phenotypic evaluations, probably be-
cause the accessory genome codes many phenotypic traits;
for example, the plasmids easily exchanged among the or-
ganisms. In addition, as there are no laboratory conditions
able to mimic the environment entirely, the phenotypic

characterization can exclude some microorganisms, such as
the uncultivable. 'erefore, these data need to be validated
by genomic analysis [134].

7. Rhizobia Study Case

7.1. History of Rhizobia Taxonomy. More than 2,000 years
ago, ancient Chinese literature reported that crop rotation of
legumes with cereals was traditionally used to enhance grain
production. Improvement in soil fertility by cultivating le-
gumes was thus already noticed at that time, although the
mechanisms involved were not known yet [28]. However, it
was just by the end of the nineteenth century that the as-
similation of atmospheric nitrogen was related to the root
nodules in legumes, and in 1888 the first root-nodule
bacterium was isolated from nodules of Pisum sativum
plants (pea) and reported by the Dutch microbiologist
Martinus Willem Beijerinck to be responsible for the ni-
trogen fixation process. 'e isolated bacterium was first
named Bacillus radicicola but later reclassified as Rhizobium,
comprising the Rhizobium leguminosarum species
[28, 135, 136]. Since then, the nodulating nitrogen-fixing
bacteria have been generally called rhizobia [137].

In the early twentieth century, nodulation tests using a
broad range of host plants and different bacteria were
conducted, and the specificity between the host plants and
the symbiotic bacteria was reported. Based on this, Baldwin
and Fred [138] proposed the cross-nodulation concept,
indicating specificity between rhizobia and host plants. For
about 80 years, taxonomists used this concept for species
definition, and six main species were described:
R. leguminosarum [136], R. phaseoli, R. trifolii, and
R. meliloti [139], which produced acid reaction on yeast-
extract mannitol agar (YMA) medium, and R. lupini [140]
and R. japonicum [141], which produced alkaline reaction on
the same medium. Besides those six species, some other
strains isolated from cowpea were defined as Rhizobium spp.
[135, 142].

'e taxonomy dropped the cross-nodulation concept
after several studies reporting both exceptions and strains
sharing high similarity and belonging to different groups.
Additionally, the rhizobia classification needed to include
more information to adjust to the general bacterial taxon-
omy [143–145]. However, even after the cross-inoculation
concept was dropped in rhizobia taxonomy, it continued to
be studied, representing an important feature regarding the
inoculation and efficiency of the symbiosis [28].

'e next step of rhizobia taxonomy was based on the
numerical taxonomy using computers to compare bacteria
properties. Around the 1960s, many analyses were included
in taxonomic studies involving phenotypic traits, growth
conditions, nutrient resources, metabolic features, and re-
sistance to antibiotics and other chemicals, among others.
Also, the DNA molecule started to be investigated, and the
base composition (GC mol%) was added to bacterial clas-
sification [145–148]. Using the numerical taxonomy com-
bined with DNA analyses, three other rhizobial genera were
described. In 1982, Jordan [149] proposed the description of
the genus Bradyrhizobium to allocate the slow-growing
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species B. japonicum and B. lupini. Six years later, the genus
Azorhizobium [150] was described, encompassing strains
that can effectively nodulate roots and stems of Sesbania
rostrata and fix nitrogen under free-living aerobic condi-
tions. In the same year, the Sinorhizobium genus was pro-
posed for the fast-growing soybean species Rhizobium fredii
[151].

Around the 1990s, many other analyses were included in
taxonomic studies. 'e polyphasic taxonomy confirmed
some of the taxa proposed with the numerical taxonomy but
also pointed out that the numerical taxonomy lacked in-
formation about the evolutionary relationships among
rhizobia. Consistent DNA studies allowed the taxonomists
to assess the diversity and phylogenetic relationship among
bacteria at a molecular level [28]. 'e 16S rRNA sequence
analysis was included in rhizobia species descriptions and
reclassifications in 1991 when Graham and collaborators
[24] published the minimal standards for species description
of new rhizobia and Agrobacterium [152]. Considering the
phylogeny and similarity of 16S rRNA, rhizobia were
classified in the phylum Proteobacteria, subdivision
α-Proteobacteria [153]. In the same decade, twomore genera
were described. First, Jarvis et al. [154] proposed the genus
Mesorhizobium to allocate five Rhizobium species with an
intermediate growth rate than fast-growing Rhizobium and
Sinorhizobium and slow-growing Bradyrhizobium. Follow-
ing, de Lajudie et al. [155] proposed the description of the
genus Allorhizobium of symbiotic bacteria associated with
the aquatic legume Neptunia natans.

'e six rhizobia genera were allocated in four distinct
families: Bradyrhizobium [149], Mesorhizobium [154], and
Azorhizobium [150] belonging to families Bradyrhizobiaceae
(today Nitrobacteraceae), Phyllobacteriaceae, and Xantho-
bacteraceae, respectively, and Rhizobium [136], Sino-
rhizobium (reclassified as Ensifer) [151, 156], and
Allorhizobium [155] belonging to the family Rhizobiaceae
[157]. Additionally, a study with members of the family
Rhizobiaceae reported similarities of the 16S rRNA gene
higher than 92% among the genera, suggesting that this
value could be a threshold for family delineation [158].

'e new century started a revolution on the rhizobia
taxonomy. A first milestone occurred in January of 2001,
with the first report of a non-rhizobia nitrogen-fixing le-
gume-symbiotic bacterium isolated from the nodules of
Crotalaria, classified as Methylobacterium [159], with the
species M. nodulans [160]. In the same month, based on the
16S rRNA analysis [161], Young et al. [162] suggested the
inclusion of all species of Agrobacterium [152] and Allo-
rhizobium undicola [155] in the genus Rhizobium. In 2002, a
new species of the genus Devosia was reported to induce
nitrogen-fixing root-nodules in Neptunia natans [163]. In
2005, the first rhizobia in the genus Phyllobacterium were
described as P. trifolii, isolated from the nodules of Trifolium
pratense [164]. From 2005 to 2007, the genus Ochrobactrum
(today, Brucella) [165, 166] allocated two nodulating species,
O. lupini and O. cytisi [167, 168], isolated from nodules of
Lupinus albus and Cytisus scoparius, respectively. In 2008,
Lin and collaborators [169] described in the Shinella genus
[170] the symbiotic bacterium S. kummerowiae isolated from

root nodules of Kummerowia stipulacea. In 2009, the first
rhizobial isolate (BA135) belonging to the species Amino-
bacter aminovorans was reported, isolated from nodules of
Lotus tenuis [171]. In the following decade, from 2012 to
2014, the genus Microvirga [172] allocated four nodulating
and nitrogen-fixing new species, M. lupini isolated from
Lupinus texensis, M. lotononidis, and M. zambiensis isolated
from Listia angolensis, and M. vignae isolated from Vigna
unguiculata [173, 174].

Besides all those changes in the α-Proteobacteria class,
2001 was outstanding by the report of a nodulating
β-Proteobacteria [175], belonging to the genus Burkholderia,
described by Yabuuchi and collaborators in 1992 [176]. It
was the first time that the essential nodulation genes (nod)
and the nodulation capacity were reported in symbiotic
bacteria not belonging to α-Proteobacteria [175]. After that,
several nodulating bacteria of β-Proteobacteria genera were
described, including the Ralstonia genus [177], reclassified in
2004 as Cupriavidus [178–180], in addition to several species
of the Burkholderia genus, later reclassified as the new genus
Paraburkholderia [181, 182]. In the following years, the
introduction of single and concatenated housekeeping genes
in phylogenetic studies culminated in the reclassification of
many species and the proposal of the new genera Neo-
rhizobium and Pararhizobium, and also the revision of the
genera Agrobacterium and Allorhizobium [183, 184]. More
recently, using whole-genome analyses, Santos and collab-
orators [21] suggested the description of two new genera,
Mycetohabitans and Trinickia, this last one containing the
nodulating nitrogen-fixing species T. symbiotica.

With the evolution of taxonomic analyses, we may
conclude that many descriptions of nodulating bacteria,
isolated from nodules of different hosts and belonging to
nonrhizobial genera have been published, and many taxo-
nomic groups were reclassified. Most of those bacteria have a
diverse set of nodulation (nod) and nitrogen fixation (nif )
genes, some of which are related to genes of different
members of classical rhizobial genera. All those findings
show that the ability to establish symbiosis with legumes is
more widespread in bacteria than anticipated before
[137, 175].

Today, rhizobia are distributed in eight families, seven
belonging to the α-Proteobacteria class and one in the
β-Proteobacteria. From both subclasses, the α-rhizobia are
reported as broadly distributed, both in geography and host-
plant range, and although the β-rhizobia are well established,
their distribution seems more restricted [28]. 'e α-Pro-
teobacteria families are the Rhizobiaceae that allocate seven
genera, the Phyllobacteriaceae with three genera, the
Methylobacteriaceae with two genera, and the other four
families allocating only one genus, Nitrobacteriaceae (old
Bradyrhizobiaceae), Brucellaceae, Hyphomicrobiaceae, and
Xanthobacteiaceae. 'e β-Proteobacteria family is Bur-
kholderiaceae with three genera. 'e list of genera and the
number of species with valid names standing in nomen-
clature (without synonyms) according to the LPSN in Oc-
tober of 2021 are listed in Table 1.

In 2020, a study performed phenotypic, genomic, and
phylogenetic analyses of the genus Ensifer and suggested that
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the genus should be separated into two genera, one for the
symbiotic clade and the other for the nonsymbiotic clade
[185]. More recently, a publication on the IJSEM suggested
the revision of family Rhizobiaceae [186]. 'e extensive
study suggests a threshold for core-proteome average amino
acid identity (cpAAI) of approximately 86% as a new
framework for genus delimitation. It is noteworthy to
mention that cpAAImust not be used as sole information for
genus delimitation, and the authors specify “approximately
86%” to provide some flexibility regarding the evolution of
each genus. Although not yet updated in the LPSNwebsite as
validated names, among the reclassifications based on the
study of Kuzmanović and collaborators [186], there are
arguments that the unification of the genera Ensifer and
Sinorhizobium is no longer justified, and eight new com-
binations were suggested, but not all involving rhizobial
strains [186].

From Table 1 based on the LPSN, we may conclude that
today over 200 known rhizobial species are split into 19
genera of the α- and β-Proteobacteria subclasses, and the
number increases every year. However, less than half of these
valid names from the 19 genera have species comprising
strains already reported for their symbiotic properties,

including nodulation and nitrogen fixation abilities. Fur-
thermore, many species are reported as endophytes, or were
isolated from environmental samples, or from nodules but
unable to reestablish symbiotic associations. 'erefore, the
symbiotic capacity remains largely unknown for many
species.

Additionally, in 2004, Benhizia and collaborators [187]
published for the first time the isolation of c-Proteobacteria
species from legume nodules. In this study, 52 isolates be-
longing to the Pseudomonas, Escherichia, Leclercia, Pantoea,
and Enterobacter genera were isolated from three Hedysa-
rum species, and rhizobia-like bacteria were found occu-
pying the nodules. However, Koch’s postulates and the
symbiotic parameters from the isolates were not investi-
gated. Shiraishi and collaborators [188] also reported in 2010
the existence of rhizobial strains in the c-Proteobacteria
subdivision. 'e authors described nod and nif genes in the
Pseudomonas sp. strain Ch10048, sharing high similarity
with the symbiotic sequences of Agrobacterium sp., sug-
gesting the acquisition of these genes through HGT from
rhizobial species in the soil. Despite the report of nod and nif
genes in strain Ch10048, and the confirmation of the ability
to nodulate the host legume Robinia pseudoacacia, the ex-
istence of c-rhizobia remains controversial until additional
evidence confirms that the genes were not provided by other
bacteria coexisting in the nodules and that the nitrogen
fixation ability of the strain is tested [28].

Undoubtedly, rhizobia taxonomy advanced together
with prokaryotes’ taxonomy, and improvements regarding
the origin and evolution of these bacteria were obtained.
However, there is a need to increase the studies relating
taxonomy and phylogeny with the phylogeny of nitrogen
fixation and biotechnological properties of rhizobia.

8. Rhizobial Symbiotic Parameters and
Genome Architecture

As commented before, the members of the Subcommittee on
Taxonomy of Rhizobia and Agrobacteria of the ICSP
reviewed the taxonomic developments for this group of
bacteria and updated the minimal standards for taxonomic
studies, including additional considerations specific to
rhizobia and agrobacteria. According to them, taxonomic
definitions should not include symbiotic or pathogenic
characters because the interactions with plants are deter-
mined by accessory genes that may be present in several
bacterial species, and be gained or lost, imposing taxonomic
limits [25]. Instead, if a strain has a phenotype regarding
plant-interaction, this should be described in the taxonomic
proposal but considered as a property of the strain, not of the
whole taxon. It is worth mentioning that symbiovars are also
studied in rhizobial surveys, although not accepted as a
formal taxonomic category. 'e term symbiovar was pro-
posed in 2011 to name a group of strains able to nodulate and
fix nitrogen with a range of legumes or a specific legume, and
today this definition is based mainly on symbiotic genes’
phylogeny [25, 189].

Concerning the description of new rhizobial species, it is
especially recommended to evaluate the symbiotic ability of

Table 1: List of genera comprising rhizobial species with valid
names standing in nomenclature (LPSN) in October 2021. 'e
number of valid names does not include synonyms.

α-Proteobacteria
Hyphomicrobiales (�Rhizobiales)

Rhizobiaceae
Agrobacterium 11 valid names 2 rhizobia
Allorhizobium 8 valid names 2 rhizobia
Ensifer (�Sinorhizobium) 20 valid names 20 rhizobia
Neorhizobium 5 valid names 4 rhizobia
Pararhizobium 6 valid names 2 rhizobia
Rhizobium 92 valid names 49 rhizobia
Shinella 8 valid names 1 rhizobia

Phyllobacteriaceae
Aminobacter 7 valid names 1 rhizobia
Phyllobacterium 12 valid names 4 rhizobia
Mesorhizobium 59 valid names 48 rhizobia

Nitrobacteraceae (�Bradyrhizobiaceae)
Bradyrhizobium 63 valid names 58 rhizobia

Methylobacteriaceae
Microvirga 18 valid names 4 rhizobia
Methylobacterium 47 valid names 1 rhizobia

Brucellaceae
Brucella (�Ochrobactrum) 25 valid names 2 rhizobia

Hyphomicrobiaceae
Devosia 26 valid names 1 rhizobia

Xanthobacteraceae
Azorhizobium 3 valid names 2 rhizobia

β-Proteobacteria
Burkholderiales

Burkholderiaceae
Cupriavidus 18 valid names 2 rhizobia
Paraburkholderia 79 valid names 22 rhizobia
Trinickia 7 valid names 1 rhizobia
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the strains based on Koch’s postulates using the original host
and/or other legume species. 'is last alternative may be
used to expand the information about the host range of the
strains and to define symbiovar groups or when the seeds of
the original host plant are not available. 'e species Pha-
seolus vulgaris, Macroptilium atropurpureum, Vigna
unguiculata, and Mimosa pudica are promiscuous legumes
commonly used in taxonomic studies of rhizobia. 'e
symbiotic ability may be evaluated compared to negative
controls by the presence/absence of root nodules, plant
biomass, N content, or the acetylene reduction assay. In
addition, the strains must be reisolated from the nodules,
keeping the original phenotypic, phylogenetic, or genotypic
features, obeying Koch’s postulates [25, 190, 191].

Based on the meta-analysis of 1,708 completed bacterial
genomes performed in 2017 by diCenzo and Finan [192], the
average and median of bacterial genomes found were
3.65Mb and 3.46Mb, respectively. In a review study of 2020,
Geddes and collaborators [193] compared the genomes of
representative strains of α-rhizobia and β-rhizobia and
showed that rhizobial genomes range from 3.42Mb in
Cupriavidus taiwanensis LMG 19424 to 9.36Mb in Micro-
virga lupini Lut6. However, the authors highlighted that
some strains of Bradyrhizobium, Mesorhizobium, and
Azorhizobium genera might have higher genomes, which
means that the rhizobial genomes can be twice or more times
higher than the average size of bacterial genomes reported in
the two studies [192, 193]. In contrast, another study re-
ported that Ensifer strains from the symbiotic clade carried
an average of 325 fewer genes and appeared to have fewer
rRNA operons when compared to strains belonging to the
nonsymbiotic clade [185]. Large genomes may be related to
adaptations to the soil and rhizosphere conditions [194].

In general, the rhizobial genes responsible for plant
infection, nodulation, and nitrogen fixation are clustered
together in symbiotic plasmids or symbiotic islands in the
chromosome, or even in both genomic regions [195–200].
'ose clusters are frequently part of mobile genetic ele-
ments (MGE) that have independent evolutionary path-
ways [201]. An exception was first reported in 2007
revealing a group of Bradyrhizobium strains with pho-
tosynthetic ability that does not possess nodulation genes
and can induce nodulation without nodulation (Nod)
factors [202]. It is known that Nod factors play a crucial
role in host specificity in the rhizobia-legume interactions;
those molecules differ on the symbiosis specific backbone
length and other structures, determining the set of plants
that the rhizobia can nodulate [203, 204]. In a review
recently published, Patra and Mandal [205] pointed out
other studies reporting that even in absence of Nod
factors, other bradyrhizobia strains, not belonging to the
photosynthetic group, are also able to establish successful
nodulation. Among the hypotheses discussed, there is the
possibility that Nod factors independent nodulation start
with the host infection through crack invasion process,
instead of the formation of the common infection thread.
After the infection, the nodulation might take place using
similar signals and mechanisms present in Nod-depen-
dent nodulation [205, 206].

Besides the main chromosome, some bacteria have a
“second chromosome” or “megaplasmid,” for which the
term “chromid” was proposed. 'ese elements have some
core genes and nucleotide composition similar to the as-
sociated chromosomes, but most of their genes are acces-
sory. Some rhizobia and agrobacteria also have genus-
specific chromids, similar within a genus but with different
sets of conserved genes among genera. An example is some
Agrobacterium species with linear chromids carrying a
unique replication system and conserved genes [207].

9. Rhizobial Origin Hypothesis and Evolution

As biological nitrogen fixation is considered one of the most
important biological processes for life on Earth, there is great
biotechnological interest in diazotrophic bacteria [208].
Studying the nodulation ability and nitrogen fixation effi-
ciency, together with the phylogenetic comparison of core
and symbiotic genes, gives insights about the origin of the
diazotrophic bacteria and the evolution of the biological
fixation ability on prokaryotes [106, 209, 210].

Remigi and collaborators [201] reviewed that the ni-
trogen fixation ability is older than the nodulation process
and broadly spread among Bacteria and Archaea. 'e
nodulation genes might have clustered early in the symbiosis
evolution path by duplication and specialization of other
functional genes. Nowadays, the high diversity of nodulation
genes makes it difficult to suggest which bacterial lineage was
ancestral. 'e nif and nod genes have different phylogenies,
implying that rhizobia inherited the nitrogen fixation ability
of their free-living relatives [211]. Besides, as the proximity
of those genes is not essential for function, it suggests a
relatively recent HGT event as a symbiosis set.

Evidence indicates that the Bradyrhizobium genus might
be the rhizobia’s ancestor [212]. Using the genes from the
glutamine synthetase enzymes (GSI and GSII), essential for
nitrogen assimilation, the estimates are that Bradyrhizobium
originated 553 million years ago (MYA). Other rhizobia
evolved 400-324 MYA, originating the Mesorhizobium,
Rhizobium, and Sinorhizobium (�Ensifer) genera. Interest-
ingly, the first legumes ascended on Earth long after, around
70 MYA [63, 213]. Another piece of evidence of Bra-
dyrhizobium ancestry is that some strains were detected with
nitrogen fixation ability as free-living bacteria, as observed in
some Azorhizobium, and both lineages are very distant from
the other rhizobial genera [28].

It is well known that bacteria have different mechanisms
to exchange genetic material. 'is event is more recurrent
among organisms sharing the same ecological environment,
reinforcing that some rhizobia evolved by acquiring sym-
biosis genes from other species by HGT [197, 214, 215].
Furthermore, a study with A. caulinodans reported an in-
crease in horizontal transference frequency of its symbiosis
island in the legume rhizosphere or in the presence of plant
flavonoids, suggesting a host-dependent evolution [216].
Over evolutionary time, the horizontal transference of
symbiotic functional genes among symbiotic and non-
symbiotic bacteria is hypothetically responsible for the
growing number of studies reporting great rhizobia diversity
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Figure 1: Timeline showing the evolution of methods and achievements in prokaryote and rhizobia taxonomy.
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[201, 217]. Given the vast population of rhizospheric bac-
teria, it might seem paradoxical that the symbiosis is re-
stricted to only nineteen genera. However, an increasing
number of studies report the coexistence of nonrhizobial
bacteria inside the nodules, which deserve further studies
and might help to explain that additional partners help the
symbiosis [153, 218–222].

10. Conclusions

As presented in this review, the main goal of taxonomy is to
ordinate living organisms in a stable and hierarchical system.
As shown in Figure 1, remarkable progress has been
achieved in both prokaryote and rhizobia taxonomy and
phylogeny. However, profound changes may arise with the
genomic era. Nevertheless, robust taxonomic methodologies
are becoming gradually available in an increasing number of
laboratories, allowing researchers to conduct surveys of great
interest. 'ese studies have contributed to new insights
about the origin, evolution, and diversity of bacteria on
Earth and the description of almost 18,000 valid species, of
which more than 220 are rhizobia. However, more studies
are needed to correlate taxonomy with biotechnological
properties of nitrogen-fixing rhizobia to improve their
contribution to agricultural and environmental
sustainability.

Abbreviations

ANI: Average nucleotide identity
DDH: DNA-DNA hybridization
dDDH: Digital DNA-DNA hybridization
ERIC: Enterobacterial repetitive intergenic consensus
GDP: Growth domestic product
HGT: Horizontal gene transference
ICNP: International Code of Nomenclature of

Prokaryotes
ICSP: International Committee on Systematic of

Prokaryotes
IJSEM: International Journal of Systematic and

Evolutionary Microbiology
ITS: Internal transcribed spacer
LPSN: List of prokaryotic names with standing in

nomenclature
MEGA: Molecular evolutionary genetics analysis
MGE: Mobile genetic elements
MLSA: Multilocus sequence analysis
MLST: Multilocus sequence typing
MYA: Million years ago
NGS: Next-generation sequencing
NI: Nucleotide identity
OGRI: Overall genome-related indices
PCR: Polymerase chain reaction
REP: Repetitive extragenic palindromic.

Conflicts of Interest

'e authors declare that they have no conflicts of interest
regarding the publishing of this paper.

Authors’ Contributions

Luisa Caroline Ferraz Helene and Milena Serenato Klepa
contributed equally to this work. 'e authors declare that
they have consented to participate in the manuscript and
publish it.

Acknowledgments

L.C.F. Helene acknowledges a postdoctoral fellowship from
CAPES (INCT). M.S. Klepa acknowledges a PhD fellowship
from CAPES (Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior, Finance Code 001) and M. Hungria ac-
knowledges a research fellow from CNPq (Brazilian Council
for Scientific and Technological Development, 303026/2020-
0). 'is study was partially financed by INCT—Plant-
Growth Promoting Microorganisms for Agricultural Sus-
tainability and Environmental Responsibility (CNPq
465133/2014-4, Fundação Araucária-STI 043/2019, CAPES).
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[52] S. P. Glaeser and P. Kämpfer, “Multilocus sequence analysis
(MLSA) in prokaryotic taxonomy,” Systematic & Applied
Microbiology, vol. 38, no. 4, pp. 237–245, 2015.

[53] P. De Vos, “Multilocus sequence determination and anal-
ysis,” Methods in Microbiology, vol. 38, pp. 385–407, 2012.

[54] X. Rong and Y. Huang, “Taxonomic evaluation of the
Streptomyces hygroscopicus clade using multilocus sequence
analysis and DNA-DNA hybridization, validating the MLSA
scheme for systematics of the whole genus,” Systematic &
Applied Microbiology, vol. 35, no. 1, pp. 7–18, 2012.

[55] D. R. Zeigler, “Gene sequences useful for predicting relat-
edness of whole genomes in bacteria,” International Journal
of Systematic and Evolutionary Microbiology, vol. 53, no. 6,
pp. 1893–1900, 2003.

[56] K. T. Konstantinidis, A. Ramette, and J. M. Tiedje, “Toward a
more robust assessment of intraspecies diversity, using fewer
genetic markers,” Applied and Environmental Microbiology,
vol. 72, no. 11, pp. 7286–7293, 2006.

[57] Z. Yang and B. Rannala, “Molecular phylogenetics: princi-
ples and practice,” Nature Reviews Genetics, vol. 13, no. 5,
pp. 303–314, 2012.

[58] J. P. Meier-Kolthoff, H. P. Klenk, andM. Göker, “Taxonomic
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