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Abstract

The following review will aid readers in providing an overview of scale-free dynamics

and monofractal analysis, as well as its applications and potential in functional mag-

netic resonance imaging (fMRI) neuroscience and clinical research. Like natural phe-

nomena such as the growth of a tree or crashing ocean waves, the brain expresses

scale-invariant, or fractal, patterns in neural signals that can be measured. While neu-

ral phenomena may represent both monofractal and multifractal processes and can

be quantified with many different interrelated parameters, this review will focus on

monofractal analysis using the Hurst exponent (H). Monofractal analysis of fMRI data

is an advanced analysis technique that measures the complexity of brain signaling by

quantifying its degree of scale-invariance. As such, the H value of the blood oxygena-

tion level-dependent (BOLD) signal specifies how the degree of correlation in the sig-

nal may mediate brain functions. This review presents a brief overview of the theory

of fMRI monofractal analysis followed by notable findings in the field. Through

highlighting the advantages and challenges of the technique, the article provides

insight into how to best conduct fMRI fractal analysis and properly interpret the find-

ings with physiological relevance. Furthermore, we identify the future directions nec-

essary for its progression towards impactful functional neuroscience discoveries and

widespread clinical use. Ultimately, this presenting review aims to build a foundation

of knowledge among readers to facilitate greater understanding, discussion, and use

of this unique yet powerful imaging analysis technique.
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1 | INTRODUCTION

Fractal analysis is a tool for quantifying various fractal features, one of

which is self-similarity, that is the presence of a self-similar, repeating

spatial or temporal structure that is observed at no dominant scale

(hence is scale-free or scale-invariant; see Figure 1) (Eke et al., 2002). In

recent decades, fractal analysis of physiological time series has revealed

the fractal nature of multiple biophysical processes, predominantly in

the cardiovascular (Captur et al., 2017), respiratory (Tanabe

et al., 2020), and neurovascular (Lemmens et al., 2020) systems. While

the scaling behavior of cardiac rhythms has arguably been the most

widely investigated (Cecen & Erkal, 2009), the fractal properties of the

brain have been increasingly recognized and are demonstrating great

value in understanding brain function (Bullmore & Sporns, 2009).
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Prominent scaling phenomena have been reported across a wide

range of neuronal spatiotemporal scales (He, 2011; Werner, 2010),

from dendritic branching structures (Caserta et al., 1995) in the spatial

domain to neurotransmitter release (Lowen et al., 1997) and neuronal

firing rates (Mazzoni et al., 2007) in the time domain. Furthermore,

local field potentials (Bédard & Destexhe, 2009) and electroencepha-

lographic (EEG) signals (Bullmore et al., 1994) exhibit scale-invariance

in cortical regions, implicating fractal scaling as a possible key media-

tor of neuronal information processing and cognitive functioning

(Rubin et al., 2013). Fractal properties are also reflected in the associ-

ated hemodynamic and metabolic temporal fluctuations that occur in

the brain (Maxim et al., 2005). This renders functional magnetic reso-

nance imaging (fMRI)—which measures brain activity through hemo-

dynamic changes—a promising modality to capture, describe, and

analyze the brain's scale-free dynamics. The modality that fMRI mea-

sures is known as the blood oxygenation level-dependent (BOLD) sig-

nal. In brief, it is a paramagnetic signal that measures hemodynamic

variations in brain tissue over time (Ogawa et al., 1990), indirectly

reporting levels of neuronal activity as increases in metabolic demand

are reflected in greater blood and oxygen flow (Lee et al., 2005;

Thurner et al., 2002). Fractal properties have repeatedly been identi-

fied in the BOLD signal, and their subsequent analysis has yielded

highly relevant and impactful physiological findings (Churchill

et al., 2015; Dong et al., 2018; He, 2011; Maxim et al., 2005).

Fractal analysis provides an opportunity to explore and understand

fMRI data in a different way to the conventional methods of regression

and independent component analysis (ICA) and may provide additional/

complementary information. Currently, BOLD analysis techniques are

often mean-based and use scale-dependent simple descriptive statistics

or linear models to infer functional topology or connectivity (He, 2011).

Fractal analysis, on the other hand, is a scale-independent variance-

based method that reveals the intrinsic dynamics of brain activity. As

opposed to conventional BOLD analysis techniques, this method is able

to capture the chaotic, nonlinear, and complex dynamics that drive neu-

ral functions (Eke et al., 2002); it can provide new information that is

fundamental to understanding the brain.

While both multifractal and monofractal properties have been

observed in the BOLD signal (Wink et al., 2008), monofractal analysis

shows appeal in synthesizing brain signal information in a single quan-

titative measure, the Hurst exponent (H). Through measuring the

long-range correlation of a signal, H defines the degree of complexity

of the underlying biological processes (Eke et al., 2000). In the brain,

H has been found to temporally correspond to changes in activation

(He, 2011), external stressors (Ciuciu et al., 2014), aging (Dong

et al., 2018), and disease progression (Dona, Hall, &

Noseworthy, 2017). This has captured the curiosity and imagination

of many with its potential to reveal signal dynamics of the brain and

how they impact neurological functions.

This review aims to provide an overview of (1) fractals and their

properties, (2) the Hurst exponent, and (3) the notable findings and

potential clinical implications of the field. This is followed by a discus-

sion of the techniques' limitations and strengths and insight on possi-

ble future directions.

2 | FRACTALS AND THE HURST
EXPONENT

2.1 | Fractals

Fractals, as first introduced by Mandelbrot (Mandelbrot et al., 1983),

are objects with a recursive structure that is created by the repetition

of a simple process (Eke et al., 2000). They are a pervasive phenome-

non in the universe, exemplifying robustness and beauty in their sub-

tle yet powerful presence in biological systems, living organisms, and

nature. Fractal objects manifest in the spatial domain, as seen in physi-

cal branching structures (e.g., a tree or the vascular system), as well as

F IGURE 1 Self-similarity demonstrated on an exact geometrical
fractal. The generation rule of the Koch curve (e) is repeatedly applied
to the straight lines of the object to create an ideal fractal structure
(d-a). Self-similarity can be observed, for example, in comparing
(a) and (b), where the pattern is observed independent of the scale at
which it is viewed. If a portion of (a) is magnified, it resembles the
whole of (b)
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in the time domain, where fractal scaling is observed in time series

such as those of a crashing wave or cardiac rhythm. As this review

focuses solely on the BOLD signal, which is a physiological time series

modeled as a temporal fractal (Eke et al., 2012; Herman et al., 2011),

only fractals in the time domain will be discussed further.

A time series, Xi, is a long-memory process, that is, one with a cor-

relation between its successive events whose decay over time is

slower than 1=i (Eke et al., 2000). The strength of this correlation is

quantified by H. A fractal time series can be characterized by three

fractal properties: self-affinity, scale-invariance, and power-law scaling

(Eke et al., 2000). Self-affinity is a property distinct from self-similarity

(Eke et al., 2002). While a self-similar object scales uniformly in all

directions, the scaling of a self-affine object is not uniform across all

directions. Thus, as described by Eke et al. (2002), a physiological time

series is self-affine because its scaling is not the same along time and

amplitude. When the amplitude is rescaled by the Hurst exponent, the

statistically self-similar property of the time series becomes apparent

(see Eke et al., 2002, fig. 2). Furthermore, self-affinity relates to scale-

invariance. The latter expresses the fact that the ratio of two esti-

mates of a statistical property (such as variance) measured at two dif-

ferent scales depends only on the ratio of scales (Eke et al., 2002).

The third property denotes that the power spectral density (PSD) of a

fractal process follows a power-law, formally expressed as jA
(f)j2/c�f�β, where c is a constant, A is the amplitude of power at fre-

quency f, and β is the spectral index (the negative slope of the PSD's

log–log plot). In a log–log representation, this relationship is also a

demonstration of scale-invariance in the frequency domain: As one

moves along the frequency scale, the power changes by the same

fraction (β) (Eke et al., 2000).

Two commonly applied models to capture the essential properties

of fractal signals are fractional Gaussian noise (fGn) and fractional

Brownian motion (fBm) (Eke et al., 2000). fGn signals are stationary

F IGURE 2 fGn and fBm signals and their power spectral density plots. (a) Sample fGn (top) and fBm (bottom) plots, illustrating the stationary
versus nonstationary nature of each. Each plot is 1,024 time-points, has a Hurst value of 0.75, and was created using the Davies Harte method
(Davies & Harte, 1987) (using https://pypi.org/project/fbm/). (b) Power spectral density log–log plots of the above signals were generated using
Welch's method using β = 0.49 for the fGn signal and 2.4 for the fBm signal. Applying the extended H (H0) concept (Eke et al., 2000; Hartmann
et al., 2013), the relation H0 = ([β + 1]/2) yielded H0 values of 0.75 and 1.75 for the fGn and fBm signals, respectively
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with constant variance, whereas fBm signals are nonstationary with

increasing variance over time (Figure 2) (Eke et al., 2002, fig. 6). Math-

ematically, the signal classes are distinguished by their spectral index

(β) values, where �1 < β < 1 defines fGn signals and 1 < β < 3 defines

fBm signals. Given the differences between fGn and fBm processes,

Eke and colleagues (Eke et al., 2000) advocate for the importance of

distinguishing signal class in order to fully understand the true fractal

properties of a signal and to assist in selecting the proper analytical

tool for its analysis (Eke et al., 2000; Eke et al., 2012). As both fGn

and fBm signals have been observed in fMRI data (Bullmore

et al., 2004; Ciuciu et al., 2008; Herman et al., 2011), proper classifica-

tion of the BOLD signal is a critical step. An unfit model of the data

will likely result in erroneous measures of the scaling phenomena and

inaccurate results (Eke et al., 2002; von Wegner et al., 2018).

2.2 | Interpretation of H

As one measure of fractality, H quantifies the correlation structure of

a long-memory process (Eke et al., 2000). It is understood as an esti-

mation of the strength of dependence in a signal, where higher-H

values indicate a more regular and less erratic process (Eke

et al., 2000; Mielniczuk & Wojdyłło, 2007). For stationary (fGn) pro-

cesses, meaningful H values are between 0 and 1 (Racine, 2011).

H < 0.5 defines a anticorrelated signal, H = 0.5 is random noise (the

signal has no memory), and H > 0.5 indicates a positively correlated

signal (characteristic of a long-memory process) (Gentili et al., 2015;

Herman et al., 2011). Therefore, BOLD signals with higher-H values

(closer to 1) are smooth, closely correlated trends, and those with

lower values (closer to 0) are rough, anticorrelated processes, and sig-

nals with H = 0.5 are not correlated (Eke et al., 2000). For non-

stationary (fBm) processes, the signal is positively correlated for all H

values in the range of 0–1 (Eke et al., 2000). Note that H = 0.5 of an

fBm signal is the cumulative sum of the random noise fGn signal and

thus is a random walk (Eke et al., 2000).

The same H values within the range of 0–1 for different signal

classes may bear confusion in the field. Thus, “extended H” (H0),

where 0 < H0 < 2, is a helpful interpretation of the Hurst exponent. As

first conceptualized by Eke et al. (2000) and termed by Hartmann

et al. (2013), H0 values between 0 and 1 characterize fGn signals, and

values between 1 and 2 define fBm signals. This representation of H

is appealing because the values indicate signal class, whereas using

the standard 0 < H < 1 model does not. H0 can be estimated with

methods such as detrended fluctuation analysis (DFA) and signal sum-

mation conversion (SSC) (see Supporting Information). With this

model, estimates greater than 1 do not reflect unrealistic Hurst expo-

nents but rather realistic fBm H values (see Figure 5 of this review).

2.3 | H and the brain

fMRI monofractal analysis has great value in understanding the brain

as the reported H values provide unique information about signal

complexity and function. Complexity, in this context, is a balance

between regularity and irregularity; it marks a “grey boundary

between order and disorder over time” (Omidvarnia et al., 2021). This

means that a signal that is perfectly ordered, such as a sine wave, has

low complexity. Likewise, a process with chaos or randomness also

has maximal complexity. As summarized by Buzsáki (2006), complexity

lies at the intersection of order and chaos, predictability and random-

ness, and stability and lability (Buzsáki, 2006, fig. 2.7). See also fig. 2.2

of Herman et al. (2009).

A complex system, such as the brain, is one with a hierarchy of

interacting time scales and an emerging self-organized structure

(Gentili et al., 2015; Varley et al., 2020). There are four important

aspects of complex systems: criticality, small-world topological

attributes, modularity, and fractality (Bullmore et al., 2009). As a

measure of fractality, monofractal analysis is useful in understand-

ing and quantifying the complexity of the brain using neuroimaging

data, which remains a challenging endeavor (Bullmore et al., 2009).

In terms of brain function specifically, fractal patterns of activity

are observed among a bed of spontaneous fluctuations

(Werner, 2010), and the BOLD time series captures this complexity.

In the signal, ordered structure emerges from a random background

at multiple time scales, illustrating a complex balance between

order and disorder (Omidvarnia et al., 2021). As a way to measure

this complexity, fMRI monofractal analysis provides valuable infor-

mation about brain function. Differing from other complexity mea-

sures and BOLD signal analytical techniques, it indicates (1) the

extent to which a time-invariant mechanism controls a function;

(2) how the persistence of a time-invariant mechanism affects the

function; and (3) how internal and external stressors affect the

time-invariant mechanism. Taken together, the H value of the

BOLD signal specifies if and how internal and external stressors

affect brain functioning through changes in the degree of correla-

tion in the signal.

2.4 | Estimation methods of H

There are numerous monofractal analysis techniques that can be used

to estimate H, and each method varies in its strengths, biases, sensi-

tivity, and applicability to various signal types (Eke et al., 2002;

Sokunbi et al., 2014). Despite differences, comparison of method per-

formance on simulated and experimental data has found that they are

all highly correlated and do indeed measure the same quantity (Eke

et al., 2002, tab. 1; Rubin et al., 2013). While there appears to be no

clear consensus of a single best-performing technique, common

methods include DFA, PSD analysis, and discrete wavelet transform

(DWT) analysis. Please see the Supporting Information for a brief

introduction of the mathematical techniques and the referenced

papers for further understanding.

H can be estimated per voxel or as a whole-brain, regional, or net-

work average. While the value of H (or H0) indicates the strength of

correlation in the signal, studies in the field often perform further

analysis to determine if the value “goes up” or “goes down” relative
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to another task, group, region, or parameter. Statistically, this may be

done by using a permutation test and cluster-wise probability thresh-

old to identify regions of significant between-group differences

(Maxim et al., 2005), calculating the Pearson coefficient of H and

another variable (Dong et al., 2018), performing analysis of variance

(ANOVA) tests (He, 2011), linear modeling and nonparametric infer-

ence (Barnes et al., 2009), or conducting regional analyses with two-

sample t tests (Sokunbi et al., 2014).

3 | FINDINGS AND
NEUROPHYSIOLOGICAL INTERPRETATIONS

Several reports of fMRI monofractal analysis have highlighted the physio-

logical relevance of the Hurst exponent with respect to both spatial orga-

nization and temporal responses in the brain. Spatially, H has been

shown to differentiate brain tissue type (Wink et al., 2008) and functional

networks (Ciuciu et al., 2014; He, 2011). It also correlates with brain glu-

cose metabolism (He, 2011), global connectivity (Churchill et al., 2016),

and BOLD signal variance (Churchill et al., 2016) on a topological scale.

Temporally, fractal parameters respond to changes and perturbations to

a system, including activation (Ciuciu et al., 2014; He, 2011), cognition

(Churchill et al., 2016), aging (Dong et al., 2018), emotional states/traits

(Gentili et al., 2015, 2017; Lei et al., 2013), and dysfunction/disease

(Maxim et al., 2005; Sokunbi et al., 2014).

3.1 | Spatial organization

Voxel- and region-wise estimations of the Hurst exponent have

yielded values spatially corresponding with neural physiology both

anatomically in tissue type and functionally in network connectivity.

Typical H, or H0, values reported in the brain are above 0.5 (Fadili &

Bullmore, 2002; Herman et al., 2009; von Wegner et al., 2018), with a

common pattern of higher values dominating cortical gray matter

regions and lower values seen in white matter and cerebrospinal fluid

(CSF) tissue types (Dong et al., 2018; Wink et al., 2008) (Figure 3). As

neuronal cell bodies reside in gray matter regions, observed persistent

high-H values likely indicate higher-order neuronal activations rather

than neurophysiological noise (Maxim et al., 2005). This was demon-

strated by Thurner et al. (2003), whose group found that fractal

parameters directly correlate with mental activity using visual stimula-

tions. They report high scaling exponents in areas of visual activation

and random signal in inactive brain regions (Thurner et al., 2003). Fur-

thermore, Herman et al. (2011) present direct evidence of the rela-

tionship between scaling parameters and neuronal activity in rat

brains. They report that β values between cortical and subcortical

structures differ significantly, with higher values dominating cortical

regions. In addition, they find that this spatial distribution of β disap-

pears post-mortem, where ubiquitously low values are reported

across brain regions (Herman et al., 2011). This finding, among the

others mentioned, provides convincing evidence for the neuronal ori-

gin of high fractal parameters.

The topological relevance of H has also been shown in network

connectivity. Wavelet-based analysis (Ciuciu et al., 2014) and DFA

(He, 2011) have both highlighted the distinct fractal properties of indi-

vidual networks and have reported scaling behavior localized in com-

municating regions throughout the brain. Five networks (attention,

default, motor, non-neocortical, and visual) were found to have differ-

ing mean H values in the regions of interest (ROIs) localized among

each (H = 0.90, 0.91, 0.77, 0.78, and 0.86, respectively) (Ciuciu

et al., 2014). These data are the first to connect the spatial organiza-

tion of resting-state networks with the temporal dynamics of scaling

and further suggest that different signal correlation structures may

facilitate within-network communication and functioning. Further-

more, using a modeling approach based on simulated network dynam-

ics with self-organized criticality and small-word attributes, Mukli

et al. (2018) have recently demonstrated that H of outgoing network

signal flow increases with increasing incoming signaling (Mukli

et al., 2018).

3.2 | Activation

Signals exhibit more correlated scale-free behavior when a subject is at

rest, as indicated by a region-wise reduction in H observed following task

induction (Ciuciu et al., 2014; He, 2011). This was seen across multiple

brain networks analyzed, and the relative ordering of H values across the

networks remained unchanged upon activation (Ciuciu et al., 2014).

Physiologically, the signal's transition to less correlated scale-invariant

properties upon external stimulation represents a shift towards a more

dominant frequency range (Buzsáki, 2006). While the mechanisms are

not yet fully understood, it has been postulated that when brain dynam-

ics deviate from the resting-state, neuronal groups undergo decoupling,

and this decorrelation induces high frequency domination (or low fre-

quency suppression) that then decreases the correlation of scale-free

dynamics (Ciuciu et al., 2014; He, 2011).

Task-based studies have also provided convincing evidence for the

existence of an optimal fractal state, or default mode, in the activation

spectrum that can be characterized by H. After completing a task, it has

been demonstrated that H returns to its pre-task value, suggesting an

intrinsic fractal state that the brain is drawn back to following activation

(Barnes et al., 2009). This default temporal state may have great signifi-

cance at the individual level, as any deviations from it may reflect physio-

logical and functional changes in the brain that can be identified and

measured with monofractal analysis (Barnes et al., 2009).

3.3 | Cognition

The impact of cognition on BOLD scale-free behavior has been inves-

tigated through measuring H in a variety of experimental paradigms.

Churchill et al. (2016) quantified H changes in relation to the exertion

of cognitive effort from multiple sources (Churchill et al., 2016). Using

both PSD and DFA estimators, a decrease in H was observed with

greater task novelty, age, and task difficulty, suggesting that more
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effort correlates with reductions in H (Churchill et al., 2016). A more

demanding task has also been found to predict longer recovery times

back to the higher pre-task H value (Barnes et al., 2009). This suggests

that, following greater cognitive demand, more time is required until

the scale-free signal structuring returns from a relatively high-

frequency dominant state to that of the resting state (a relative domi-

nation of the low frequencies).

Given the observed decrease in H upon external task stimulation,

H has been speculated to be a measure of online information

processing, where lower values indicate greater processing efficiency

(He, 2011). Low-H signals have less correlation between neuronal

groups, and this may mediate greater ability to respond to external

inputs. However, inconsistent findings in task-based studies suggest

that the relationship between processing efficiency and fractal

F IGURE 3 BOLD signal dynamics in the human brain. An axial slice from a healthy volunteer subject (36 year old male) scanned at rest with a
3T scanner (GE Discovery 750). The scan acquired 990 time-points with a TR of 0.6 s corresponding to a sampling frequency of 1.66 Hz with a
resolution of 3 � 3 � 3 mm3. Illustrative BOLD time series and their PSDs are shown for the CSF (top left), gray matter (bottom left), and white
matter (right). Note the multimodal pattern in the cortical gray matter region, which is consistent with the findings of Nagy et al. (2017) and
Herman et al. (2011). Herman et al. (2011) used high-definition 11.4T/5 Hz fMRI data acquisition in an anesthetized rodent model to
demonstrate that BOLD dynamics were multimodal in the cortical areas. β was calculated by the Welch's method and converted to extended H
according to Eke et al. (2000) and Hartmann et al. (2013) by H0 = ([β + 1] / 2). The respective values of β and H0 were 1.35 and 1.175 in gray
matter, 0.2 and 0.6 in white matter, and 0.08 and 0.54 in CSF, respectively
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dynamics may be paradigm- and stimulus-dependent. Faster reaction

times in a fame decision/facial encoding task are associated with

higher-H values, indicating that more correlated scale-invariance may

also reflect more efficient information processing in some task-based

experimental models (Wink et al., 2008). For example, a recent study

demonstrated that a movie-watching task evokes higher H values

than the resting-state in a large sample with 7T fMRI data (Campbell

et al., 2022). In a high-H state, the brain has strong long-memory cor-

relations, where past dynamics heavily mediate future processes.

These dynamics are essential for maintaining endogenous brain func-

tions, such as memory and planning, and might remain stable when

processing familiar stimuli, such as faces. When presented with an

unfamiliar stimulus, however, the scale-free dynamics in the brain may

shift from a more correlated to a less correlated state in order to pro-

cess the information without any inhibition from the pre-existing

strong correlations and redundant structure. This is further supported

by the negative correlation between H and task novelty, where more

novel, less familiar tasks predict lower-H values (Churchill

et al., 2016).

3.4 | Emotional responses and traits

Various personality traits, which are stable characteristics of the brain,

have also been shown to reflect characteristic H values (Gentili

et al., 2015, 2017; Lei et al., 2013). As one example, Gentili and col-

leagues found that higher scores of neuroticism correlate with lower

H in structures involved in regulating emotion (Gentili et al., 2017).

This indicates that the signal shifts towards disorder in emotional

brain regions, and this likely impairs normal emotional regulation and

increases neurotic behavior. Akhrif et al. also recently reported dis-

tinct fractal properties in the impulsivity network, revealing that more

impulsive subjects have lower-H values in the nucleus accumbens,

anterior cingulate cortex, and left medial frontal gyruses (Akhrif

et al., 2018). As these regions regulate reward processing and

response inhibition, the less correlated long-memory oscillations

observed in the high impulsivity group may allow for premature deci-

sions and impulsive responses.

Trait social anxiety, on the other hand, was found to be positively

correlated with H in the default mode network (DMN), with subjects

who ranked higher on social anxiety scales reporting higher-H values.

High social anxiety often indicates more internal and self-orientated

processing rather than external processing, which would lead to a

more rigid signal and larger H values (Gentili et al., 2015). Fractal anal-

ysis has also found greater DMN long-memory persistence in subjects

with low extroversion (Lei et al., 2013). High-H values may therefore

reflect the introspective cognition and reduced social regulation that

mediates socially anxious and introverted behavior.

Emotional distress has also been shown to uniquely impact tem-

poral dynamics in an investigation of the effect of cancer-diagnoses

on H values (Churchill et al., 2015). As a heavy cognitive load sup-

presses long-memory processes (Barnes et al., 2009), Churchill et al.

predicted that a systematic decrease in H would be associated with

more distress (Churchill et al., 2015). However, it was found that H

actually increased overall with intensity of cancer treatment plan, indi-

cating that patients undergoing more distress have more correlated

scale-free BOLD dynamics. This may be driven by the important dis-

tinction and complex interaction between psychological (worry, anxi-

ety) and physical (fatigue, sleep difficulties) distress, as H was found

to differentiate between distress sources. Furthermore, the findings

implicate distress as being more than simply a heavy cognitive load or

systematic brain dysfunction, providing novel insights and applications

of the method in understanding emotional processing.

3.5 | Aging

The aging process has significant impacts on scale-invariant brain

dynamics, both globally and regionally. In resting-state data, the aver-

age H of whole brain gray matter was found to be positively corre-

lated with age in adults (19–85 years of age) (r = 0.35, p < 0.01),

indicating that more correlated scale-free properties dominate

throughout healthy aging (Dong et al., 2018). Regionally, the most

prominent increases in H have been found in the parietal and frontal

lobes (Dong et al., 2018), as well as in the bilateral hippocampus

(Wink et al., 2006). However, decreases in H are reported in specific

areas as well, most notably where emotion is regulated in the tempo-

ral lobe, limbic lobe, and insula (Dong et al., 2018).

Neurophysiologically, the overall increase in H with age may be

explained by possible cholinergic mechanisms. Aging is associated with

a loss of cholinergic nuclei that transmit information to cortical and sub-

cortical regions, and this loss of nuclei may mediate the increase in H

(Wink et al., 2006). It was found that a cholinergic inhibiting drug and

older age both produce more correlated scale-free dynamics in subjects

than those in a placebo and younger group, respectively (Wink

et al., 2006). Furthermore, the effects of both the drug and age on H

were found to localize to the same region (the medial lobes), providing

greater support that cholinergic mechanisms drive fractal changes in

aging. It is also possible that the observed increase in H in fMRI studies

is driven by non-neurogenic mechanisms. High resolution imaging using

near-infrared spectroscopy found the signal to be bimodal, where the

H value of the vasogenic component increases with age but that of the

neurogenic component actually decreases (Mukli et al., 2018).

3.6 | Disease and dysfunction

H has been shown to both increase and decrease in response to dif-

ferent disease pathologies and dysfunctions. The following findings

reveal the bidirectional relationship between fractal scaling and the

physiological processes that drive brain functioning.

Brain dysfunction is associated with higher H in individuals with

Alzheimer's disease (AD) (Maxim et al., 2005), autism spectrum disor-

der (ASD) (Dona, Hall, & Noseworthy, 2017), and mild traumatic brain
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injury (mTBI) (Dona, Noseworthy, et al., 2017). Wavelet-based maxi-

mum likelihood estimation of H reveals more correlated scale-

invariance in individuals with AD, specifically in regions that have

been implicated in the disease dysfunction, such as the medial and lat-

eral temporal lobes, dorsal cingulate and premotor cortex, and left

pre- and postcentral gyrus. Measures of fractal dimension have also

indicated more correlated scaling in ASD (Dona, Hall, &

Noseworthy, 2017) and mTBI patients (Dona, Noseworthy,

et al., 2017). While multiple etiologies for the observed increase in H

with disease have been speculated, common neurophysiological

explanations include the lack of adaptability and loss of functional

components that accompany greater H values (Vaillancourt &

Newell, 2002; Warsi et al., 2012).

In contrast to these findings, but supporting the bidirectional rela-

tionship between disease and fractal scaling, studies have also

reported decreases in H in patients relative to controls. For example,

while performing a social exclusion task, individuals with schizophre-

nia report lower global and regional H values as estimated by dis-

persional analysis (Sokunbi et al., 2014). Failure in the dopamine

feedback loop and consequently its impaired ability to ensure system

stability may cause the reduced H values observed in the areas

responsive to social exclusion. Reduced scaling exponents have also

been found in Huntington's disease patients (Hausdorff et al., 1997).

Although the values were estimated from stride-interval time series

rather than fMRI data, the basal ganglia underlies the movement and

thus likely reflects very similar fractal scaling dynamics. Thus, the sup-

pression of basal ganglia long-memory may drive the uncorrelated

stride-intervals (Hausdorff et al., 1997). Contrasting previous findings

that ASD is associated with increases in H as summarized above

(Dona, Hall, & Noseworthy, 2017), Lai and colleagues have observed

lower-H values in individuals with ASD, specifically in the social brain,

connection hubs, and regions implicated in mobility (Lai et al., 2010).

They speculate that the shift towards disorder in the signal perturbs

information processing and disrupts network organization, which may

reflect a loss of coordination in local neuronal circuits.

3.7 | Interpretation of findings

Currently in the field, novel findings are abundant, but a clear consen-

sus on what they mean is notably absent. This review aims to help

address this by consolidating all relevant reports of H (Figure 4), pro-

viding a platform to aid in explaining new findings and developing

sound hypotheses in future studies. Furthermore, it reveals certain

trends that emerge between low-H and high-H brain states that may

stimulate new understandings and interpretations. While readers are

encouraged to draw their own conclusions from the presented results,

ours is as follows: Overall, it appears that low H generally predicts a

greater ability for external processing, as internal past dynamics are

less influential in mediating future processes. This is supported by the

association of low H with more attention given to external stimuli,

such as with greater extraversion and impulsivity, and may be due to

the disruption of long-memory correlations. Task studies also support

this interpretation, as tasks that require processing new external stim-

uli predict less correlated fractal scaling. Furthermore, the motor net-

work, which relies extensively on interaction with the environment,

has the lowest reported mean network H value (Ciuciu et al., 2014).

The reduced long-memory correlations in the network may serve to

keep the network in an agile state that can actively respond to exter-

nal stimuli and function properly. When diseases or disorders are

associated with an increase in H from a low-H state, this may reflect

an impairment of functions that rely on processing external stimuli

efficiently, such as motor control or cognition. This dysfunction may

be due to the shift away from an agile state, rendering the brain less

capable of adapting to the environment and less ready to respond.

On the other hand, high-H brain states may indicate more internal

processing, as reflected in more social anxiety, distress, and introver-

sion. This may be because in high-H signals, past dynamics strongly

influence future dynamics, so brain states are able to efficiently pro-

cess familiar and internal stimuli. However, this lack of adaptability in

the signal makes external inputs difficult to consolidate and may help

explain the mechanisms that drive anxiety and stress. Furthermore,

F IGURE 4 Overview of
neurological findings and H. A
diagram consolidating the current
findings and their H values.
Studies appear to agree that

white matter, task novelty,
schizophrenia, and so on generally
have lower-H values, while gray
matter, mTBI, rest, and so on are
associated with higher values. In
the middle, we have placed ASD,
as there have been conflicting
results in these studies.
ASD = autism spectrum disorder;
mTBI = mild traumatic brain
injury; DMN = default mode
network
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this interpretation is supported by higher-H values in subjects during

rest, as opposed to external tasks, and the finding that the DMN, a

network that has its lowest activity when the brain is focused on

external stimuli (Anticevic et al., 2012), has the highest H of resting-

state networks (Ciuciu et al., 2014). In terms of dysfunction, when a

brain state has high H and its function is mediated by more correlated

fractal dynamics, disease or disorder will likely be characterized by a

decrease in H, or less correlated long-memory neuronal oscillations in

brain regions involved in the function.

This interpretation of H is supported by previous discussions of

complexity and physiology. Optimal physiological functioning occurs

at an intermediate state between pure randomness and oscillatory/

constancy (both non-physiological states), and changes in complexity

between them is reflected in changes in functional states

(Buzsáki, 2006). Furthermore, Zappasodi and colleagues describe that

a shift towards randomness (white noise) mediates system dysfunc-

tion, and a shift towards periodicity (pure sinusoid) reflects a difficulty

for the system to adapt to and process changing external stimuli

(Zappasodi et al., 2014). Through measuring signal complexity, H

values can therefore reflect the dynamic state of the brain and its abil-

ity to function.

4 | LIMITATIONS AND CHALLENGES

4.1 | Scale-invariance and the scaling range

One potential weakness of the technique is the argument that scale-

free dynamics do not describe the BOLD signal accurately, rendering

fractal analysis an inappropriate technique for fMRI data. Scale-free

systems, by definition, follow a power-law distribution, and rigorous

fitting and comparison of the power-law distribution across various

real-world networks has found little empirical evidence for their per-

sistence (Broido & Clauset, 2019). Indeed, the BOLD signal is not

technically a formal “scale-free” process, and it is true that real-world

data rarely follow a power-law distribution over the entire range

(Newman, 2005). This marks the important distinction between real

and ideal fractals; where power-law scaling is infinite in ideal fractals,

it is only observed over a restricted range in real fractals due to finite

observation time and potential interacting confounds (Eke

et al., 2000). Thus, real fractals, like the BOLD signal, only exhibit

power-law behavior across a scaling range. This highlights the neces-

sity for researchers to (1) determine if their data are best fit to a

power-law; (2) identify the precise range over which their data have

power-law behavior; and (3) calculate the scaling exponent from this

range (Herman et al., 2011; Nagy et al., 2017). Given the importance

of these steps, the ability to complete them with great accuracy is

another source of concern (Eke et al., 2012).

As detailed by Clauset et al. (2009), it is recommended to first test

the power-law hypothesis on the data to determine if it is best

modeled by a power-law distribution or another function. Next, the

range over which the data fit a power-law distribution needs to be

determined. Commonly, this is done by visualizing a straight line on

the logarithmic plot of the distribution (Newman, 2005). The scaling

exponent is reported as the slope of this linear regression. However,

the measured scaling parameters can be inaccurate due to large fluc-

tuations in the tail of the distribution and challenges in identifying the

range over which the power-law distribution holds (Clauset

et al., 2009). Rather, one method the group proposes is to select a

range that minimizes the Kolmogorov–Sminov distance

(Massey, 1951) between the data's power spectrum and the power-

law distribution. In fMRI, this was done by He (2011), who compared

the BOLD power spectrum to power-law, exponential, and log-normal

distributions. They demonstrate that the BOLD signal of 21 brain

regions is indeed best fit to a power-law and select the scaling range

using Kolmogorov–Sminov distances (He, 2011). While other human

fMRI studies provide evidence of power-law scaling in their data

(Churchill et al., 2015, 2016; Ciuciu et al., 2014), the technique would

benefit from the use of more rigorous statistical techniques to deter-

mine the scaling range.

4.2 | Describing a higher-definition signal

It is important to note that monofractal analysis may be limited in

its ability to fully describe higher definition signals, in which

multifractal analysis may be better suited. Nagy et al. (2017) found

that the BOLD signal in the rat brain actually has two distinct scal-

ing ranges and is therefore a bimodal multifractal process. This

finding is supported in humans by functional near infrared spec-

troscopy imaging (Mukli et al., 2018), as well as in Figure 3 of this

review (which is of high-definition fMRI data [1 s TR and

900 time-points]). Furthermore, Nagy et al. (2017) present a

multifractal method that is deemed essential for processing

bimodal BOLD data with large volumes, where higher signal defini-

tion can be achieved. However, due to the scanning limitations in

human fMRI studies, it is challenging to acquire enough informa-

tion in the signal to capture its bimodal nature (Nagy et al., 2017).

While the group reports that the BOLD signal (of 4096 time-

points) is bimodal in the rat brain (Nagy et al., 2017), human brain

studies, such as one by Akhrif et al. (2018), have found that their

data (of 365 time-points) can be approximated as monofractal.

They report that the scaling parameters of their data are indepen-

dent of the scaling moment (q); thus, there is no loss of informa-

tion in a monofractal versus multifractal approximation (Akhrif

et al., 2018, fig. S1). This is likely due to the inability of signals

with poorer resolution to capture the underlying bimodality of the

hemodynamic process. Nonetheless, monofractal analysis has

proven to be a robust estimator of human fMRI data (Churchill

et al., 2015, 2016) and shows advantage as a much simpler tech-

nique that requires less computational work (Churchill et al., 2016).

4.3 | Signal acquisition

This leads to perhaps the greatest weakness of the technique: the

poor definition of the BOLD signal. Compared to other modalities like

EEG or MEG, fMRI data are often short, sparse, and noisy, which
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limits how well it captures the underlying biological process and the

accuracy of fractal methods (Eke et al., 2012). In terms of signal

length, it is evident that the longer the time series, the better the frac-

tal analysis, with the accuracy of all methods reporting to increase as

a function of signal length (Eke et al., 2002). While many fMRI fractal

analysis studies in the literature use �100–300 time-points, it is actu-

ally recommended to use closer to 1,000 time-points for optimal

results (Maxim et al., 2005).

A high sampling rate is arguably more imperative (Herman

et al., 2011), as infrequent sampling grossly misrepresents the

underlying process and leads to erroneous fractal estimates (Eke

et al., 2002, fig. 12). A sampling rate that is a magnitude higher

than the highest frequency observed would be ideal for fractal

analysis of the signal, and the scaling range should ideally be

greater than two decades (Eke et al., 2002; Eke et al., 2012). It is

apparent that the most optimal fractal analysis occurs with a long

time series captured at a high frequency (TR < 1 s) (see Eke

et al., 2012, fig. 12), which poses limitations in using the conven-

tionally acquired short and sparse BOLD signal. With fMRI, it can

be difficult to achieve a high sampling rate without compromising

the signal-to-noise ratio (SNR) per frame. If the signal is sampled

more frequently, there is less time for the longitudinal magnetiza-

tion to recover which leads to different contributions from various

sources of noise (Chen et al., 2019).

However, it should be noted that others have highlighted the

need for higher sampling frequencies in fMRI (TR < 1 s) studies,

regardless of fractal analysis, as they result in more accurate modeling

of the hemodynamic response function (Dilharreguy et al., 2003), less

fluctuations due to head movement during scans (Smith et al., 2013),

and better identification of physiologic confounds (Posse et al., 2012).

Given the vast benefits, there have been major advancements in

acquisition techniques aimed at increasing the temporal sampling of

BOLD fMRI data, such as echo-volumar imaging, inverse imaging, and

multiplexed echo-planar imaging (Posse et al., 2012). While the con-

tinuous development of acquisition methods will advance the field of

fMRI fractal analysis, individual efforts to increase the length of scans

and sampling frequency should be made for optimal fractal analysis.

4.4 | SNR

The BOLD signal is not a direct measure of neuronal activity, and con-

sequently, other factors interact with the signal and reduce its SNR.

These factors are diverse and unpredictable and often vary in impact

between scanners, individuals, and time of acquisition (Suckling

et al., 2012). When performing fractal analysis, of particular concern

are sources of noise that interact with the possible fractal patterns in

the BOLD signal, such as head movement and other physiological sys-

tems (Bullmore et al., 1994; Ciuciu et al., 2008; Wink et al., 2008). In

order to reduce the contributions of scaling behavior from these

sources, extensive preprocessing steps are typically taken with aims

to isolate the fractal dynamics that originate solely from neuronal

activity (Figure 5). Among standard preprocessing steps, it appears

that regressing out the global mean signal, detrending, motion correc-

tion, and frequency exclusion most notably improves the reliability of

fractal measures (Rubin et al., 2013). While machine or physiological

noise may interfere with the signals' fractal properties, numerous

studies report that fractal analysis adequately disentagles noise from

signal (Afshinpour et al., 2008; Hu et al., 2008, 2006) and that

observed variations in SNR do not affect fractal estimations (Herman

et al., 2011) with appropriate pre-processing.

5 | STRENGTHS AND IMPLICATIONS

From the above discussion, it is clear that the largest limitation to

this technique is likely the poor definition of the BOLD signal. It is

hopeful that advances in imaging will promote the acquisition of a

greater number of data points at a higher sampling frequency, lead-

ing to more accuracy and consistency across parameters reported.

Nonetheless, even with the current BOLD signal quality, monofractal

analysis generates physiologically meaningful values; it quantifies

the underlying signal dynamics that mediate various brain functions

(Eke et al., 2012; He, 2011; Herman et al., 2011; Thurner

et al., 2002). For example, changes in H respond to sensory stimula-

tion (Thurner et al., 2002) and reflect glucose metabolism in the

brain (He, 2011). These studies, among others, highlight the direct

physiological relevance of the parameter, which is arguably the most

important criteria for interpretations that promote neuroscience

research and clinical applications.

5.1 | In neuroscience research

Through synthesizing brain complexity information into a single value,

monofractal analysis of the BOLD signal can have impactful implications

in neuroscience research. Over the last two decades, H has provided

insight into how the brain both optimally functions and responds to dys-

function, as well as novel information about etiology, manifestations, and

mechanisms of disease. Moreover, it requires no special hardware or

changes to conventional fMRI and can be performed retrospectively on

previously acquired datasets. This convenience presents exciting oppor-

tunities in neuroscience, as many investigators can bypass data acquisi-

tion and perform the analysis without being constrained by any scanning

limitations. As such, this technique can reveal the inner dynamics

involved in various tasks and populations and can easily provide comple-

mentary perspectives to other analyses.

5.2 | In clinical settings

In the clinical setting, advancing research towards a more established

relationship between brain function and H may provide the foundation

for extensive medical applications. H is speculated to be a very clinically

useful parameter (Varley et al., 2020), with the widespread and routine

use of fMRI monofractal analysis predicted to have significant impacts
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on disease prevention and drug development (Wink et al., 2006). Of

great appeal, H is a highly patient-specific measure (Dona, Noseworthy,

et al., 2017); it can be used to quantitatively identify and characterize

the extent of brain dysfunction in individuals, making more personal-

ized diagnostics, recovery monitoring, and treatment plans possible

(Dona, Noseworthy, et al., 2017; Hausdorff et al., 1997). For example,

H can be used as a biomarker to aid in improving diagnostic specificity

as knowledge of fractal patterns characteristic of certain diseases

would provide greater confidence in diagnosis (Dona, Hall, &

Noseworthy, 2017; Sun et al., 2020). Furthermore, changes in H may

be useful in monitoring patient recovery. Values progressing towards

the pre-diagnosis/injury baseline state of complexity may indicate

recovery. Similarly, deviations away from this state would suggest

greater severity of dysfunction or progression of the disease (Akhrif

et al., 2018; Barnes et al., 2009). This would provide additional informa-

tion about treatment effectiveness and reveal specific pharmaceutical

impacts on signal dynamics (Weber et al., 2014). Importantly, mono-

fractal analysis is also practical to undertake in the clinical setting; it

provides an additional application for fMRI and can be incorporated

into clinical routines with minimal issues (Akhrif et al., 2018).

6 | FUTURE DIRECTIONS

In order to maximize the potential of fMRI monofractal analysis and

progress towards impactful applications of fractal measures, the

F IGURE 5 Effects on H with and without preprocessing. All images are sample sagittal, coronal, and axial slices of a healthy human subject at
rest using a 7T scanner with 900 time-points, TR of 1 s, and resolution of 1.6 � 1.6 � 1.6 mm3. Welch's method was used to calculate β.
Extended H values (H0) were calculated as H0 = ([β + 1]/2) according to Eke et al. (2000) and Hartmann et al. (2013). (a) H0 values in the brain with
no preprocessing steps taken; (b) H0 values in the brain after performing motion correction using rigid registration, 100 s high pass filter cutoff,
5 mm full width at half maximum spatial smoothing, and variance-normalized; (c) H0 values in the brain after extraction of non-brain signal
components using independent component analysis, such as cardiac, respiratory, white matter, motion, and scanner artifacts. As can be seen,
exclusion of influences extrinsic to the voxel-wise BOLD signals by various preprocessing steps improves tissue contrast with gray matter having
H0 values exceeding 1 and white matter with H0 values closer to 0.5. This figure demonstrates that H0 values exceeding 1 are realistic for the
cortical and some sub-cortical gray matter regions indicating the presence of fBm-type dynamics. fMRI data come from the Human Connectome
Project (Young Adult cohort; HCPS1200 release https://www.humanconnectome.org/; voxel location: 64, 64, and 41, s3://hcp-openaccess/
HCP_1200/102311/unprocessed/7T/rfMRI_REST1_PA/), and H maps were produced by the authors
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reliability and reproducibility of H need to be strengthened. Firstly,

future studies need to prioritize achieving the optimal signal parame-

ters for the analysis, primarily by exploring and utilizing methods that

acquire a greater number of time-points with shorter TRs (time-

points > 1,000; TR < 1 s). Reports with longer signal lengths have

greater confidence in the accuracy of H estimates (Eke et al., 2012),

likely leading to more consistent and significant findings. This will aid

in interpreting the neurological meanings of results and help draw

concrete conclusions about the pathophysiological changes that drive

signal complexity.

Increasing the standardization of the analysis will also contribute

to more reliable and reproducible H estimates. Currently, a number of

options available at each step (data acquisition, preprocessing, and

fractal estimation method) are overwhelmingly vast and have all

shown to have differing impacts on H values. More open-access data

with greater signal definition and sample sizes, as well as more open-

source software, may help standardize the technique and increase

replicability. Furthermore, this will allow for better direct comparison

between H values reported across studies.

7 | CONCLUSION

Through identifying fractal patterns and trends in the BOLD signal,

fMRI monofractal analysis has revealed novel information about the

intrinsic dynamics of brain signals. In the spatial domain, the Hurst

exponent has been found to distinguish tissue types (Wink

et al., 2008) and functional networks (He, 2011). Temporally, fluctua-

tions in H correspond with disturbances to the system, both to exter-

nal stressors such as a cognitive task (Ciuciu et al., 2014) and to

endogenous ones, such as disease and aging (Dong et al., 2018). These

findings have greatly contributed to understanding how the brain

optimally functions and adapts to dysfunction, providing a platform

for large potential implications in the clinical setting. H may prove to

be valuable in the prevention, diagnosis, and treatment of neurological

disorders; however, further refinement and standardization of the

methodology are necessary prior to its widespread clinical use. In sum,

the findings and implications of fMRI monofractal analysis presented

in this review highlight the method's uniqueness and appeal to the

field of neuroscience; it is a simple and practical technique that can

explore and quantify the signal dynamics of the brain.
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