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In the recent years, gesture recognition based on the surface electromyography (sEMG)

signals has been extensively studied. However, the accuracy and stability of gesture

recognition through traditional machine learning algorithms are still insufficient to some

actual application scenarios. To enhance this situation, this paper proposed a method

combining feature selection and ensemble extreme learning machine (EELM) to improve

the recognition performance based on sEMG signals. First, the input sEMG signals are

preprocessed and 16 features are then extracted from each channel. Next, features that

mostly contribute to the gesture recognition are selected from the extracted features

using the recursive feature elimination (RFE) algorithm. Then, several independent ELM

base classifiers are established using the selected features. Finally, the recognition

results are determined by integrating the results obtained by ELM base classifiers

using the majority voting method. The Ninapro DB5 dataset containing 52 different

hand movements captured from 10 able-bodied subjects was used to evaluate the

performance of the proposed method. The results showed that the proposed method

could perform the best (overall average accuracy 77.9%) compared with decision tree

(DT), ELM, and random forest (RF) methods.

Keywords: sEMG signal, gesture recognition, extreme learning machine, machine learning, feature selection

INTRODUCTION

Hand gesture recognition provides a natural and convenient human–computer interaction mode
for rehabilitation training, virtual games, sign language translation, and many other applications.
There are many approaches to recognize hand gestures, such as computer vision, motion capture
gloves, surface electromyography (sEMG) signals, and even the combination of sEMG with near-
infrared (NIR) (Nsugbe et al., 2020) and electroencephalography (EEG) (Nsugbe et al., 2021).
Among the methods, gesture recognition based on sEMG signals has been widely studied in recent
the years due to the fact that the process of capturing sEMG signals is not affected by the variations
in light, position, and orientation of the hand (Zhang et al., 2019). As one kind of neural electrical
activity signal, sEMG signals can be recorded non-invasively and conveniently by sEMG electrodes
attached on the skin surface.

The critical part for applications using sEMG signals as intermediate media is to distinguish
sEMG signals collected from different gestures accurately. Recently, the pattern recognition
technology has become the primary method used to recognize the motion intention, in which,
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a classifier trained by supervised learning is utilized to map
sEMG signals to one of the predefined classes that correspond
to different motions (Chen J. et al., 2020). The process of
motion intention recognition usually consists of several key
procedures, including data acquisition, preprocessing, feature
extraction and selection, and classification (Jaramillo-Yánez et al.,
2020). Various methods were proposed and tried to enhance the
gesture recognition performance by the researchers for the past
few years. The existing gesture recognition approaches could
be roughly grouped into feature-based and time series-based
methods depending on whether the features need to be manually
extracted beforehand.

In the feature-based method, features are first extracted
manually by experience and then fed into the classification
models, which are mainly constructed based on the machine
learning algorithms. The diverse features can be roughly
divided into four categories: time domain features, frequency
domain features, time–frequency domain features, and non-
linear features such as fuzzy entropy (FEn) and permutation
entropy (PEn) (Mengarelli et al., 2020). Although the suitability
of each feature in accurately classifying sEMG signals has been
extensively investigated (Du et al., 2010; Phinyomark et al.,
2013), there still exists information redundancy among the
features inevitably. Thus, feature dimensionality reduction and
feature selection techniques are adopted to reduce the feature
information redundancy and select the features that mostly
contribute to the classification. Riillo et al. (2014) utilized
principal component analysis (PCA) to reduce dimensionality of
the feature vector after the feature extraction stage. Phinyomark
et al. (2012) investigated the properties of a set of 37 time
and frequency domain features, showing that considerable
levels of recognition accuracy can be achieved using a small
amount of time domain features. In the following classification
model construction process, machine learning methods such
as support vector machine (SVM), linear discriminant analysis
(LDA), random forest (RF), naive Bayes (NB), and artificial
neural network (ANN) are mostly used recently. For example,
Amirabdollahian and Walters (2017) used a linear kernel SVM
to recognize four hand gestures on 26 subjects, obtaining an
average recognition accuracy of 94.9% with 8 channels of sEMG
signal. Too et al. (2018) performed 17 different hand and
wrist gesture classification based on the sEMG signals from
Ninapro database by SVM classifier. Using the root mean square
(RMS) extracted from discrete wavelet transform (DWT) and the
average spectrogram energy at each frequency bin as the input
feature vector, they achieved the accuracy of 95 and 71.3% for
normally-limbed and amputee subjects, respectively. Zhou et al.
(2019) used the RF as a classifier to distinguish 12 finger motions
based on the nine single features and nine groups of multiple
features extracted from Ninapro database sEMG signals. An
average motion classification accuracy of 84.11% was obtained
and the best result for one subject was 92.94%. Li et al. (2017)
applied LDA classifier combining feature smoothing strategy
to enhance the motion recognition performance. By analyzing
the results of six able-bodied subjects, the accuracy could be
improved about 3–5% depending on the different smoothing
strategies. Zhang et al. (2019) proposed a real-time hand gesture

recognition model based on the ANN and achieved an average
recognition rate of 98.7% on 12 subjects with each performing
five gestures.

The feature-based methods could achieve quite high
recognition accuracy. However, they need to manually extract
the features that contain effective motion information from
sEMG signals and the extracted features inevitably contain
redundant and irrelevant information. To avoid this problem
and further improve the gesture recognition accuracy, deep
learning methods such as convolutional neural network (CNN),
recurrent neural network (RNN), and the modified network
architecture were recently utilized by many researchers. The
inputs of deep learning methods are usually sEMG time series
rather than manually extracted features. Thus, we will call it time
series-based method in this paper. The deep learning models
are usually composed of many processing layers and could
automatically extract the features of input sEMG time series
in multiple levels of abstraction. Shen et al. (2019) presented
a method by cascading CNN and stacking ensemble learning,
in which CNN acts as the primary classifier to automatically
extract sEMG features and the stacking ensemble learning acts
as the secondary classifier to integrate the output of primary
classifiers. Experiments performed on the Ninapro DB5 dataset
demonstrated that the method could perform well in gesture
recognition. Considering that the sEMG signals have a sequence
nature, Hu et al. (2018) introduced an attention-based hybrid
CNN and RNN architecture to take full use of the space and
time sequence information from multi-channel sEMG signals.
Experiments on five sEMG benchmark datasets revealed that
their method could outperform all the reported state-of-the-art
methods. The deep learning method could improve gesture
recognition performance. However, the constructed models
usually have a huge number of parameters, which need a lot
more training samples to obtain a relatively high classification
performance. To reduce the number of model parameters,
Chen L. et al. (2020) developed a compact CNN model (named
EMGNet) consisting of four convolutional layers and a max-
pooling layer. The experiments performed on the Ninapro DB5
dataset and MYO dataset demonstrated the efficacy of their
methods. Although the quantity of model parameter could
be reduced by some model compression techniques, it is still
much more than that of the models built by traditional machine
learning methods, which is a challenge both to the training
sample and to the computing platform.

To achieve a relatively high gesture recognition accuracy
with as few model parameters as possible, we proposed a new
method based on extreme learning machine (ELM) algorithm.
The ELM is a single hidden layer feedforward neural network
and has been recognized as an effective learning method in
many fields (Antuvan et al., 2016; Cene and Balbinot, 2020)
due to its fast learning speed and high performance. However,
due to the weights of the ELM hidden layer being randomly
initialized and remaining unchanged during the training process,
the classification boundary may not be an optimal one. Samples
located near the classification boundary may be misclassified
(Cao et al., 2012). Thus, we proposed a method named ensemble
extreme learning machine (EELM) to enhance the accuracy and
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stability of gesture recognition based on sEMG signals with as
few parameters as possible. The main idea of EELM is to first
establish multiple independent ELM classifiers and then make
an ensemble decision based on the majority voting method. The
main procedures are as follows: The input sEMG signals are
first preprocessed, and 16 time domain and frequency domain
features are extracted from each channel. Second, the features
that mostly contribute to gesture recognition are picked out using
the recursive feature elimination (RFE) algorithm. Then, several
independent ELM classifiers are established by the features
selected and their corresponding gesture labels. Finally, the
recognition results are determined based on the results obtained
by ELM base classifiers using majority voting method.

MATERIALS AND METHODS

The flowchart of the proposed gesture recognition method
is shown in Figure 1, which consists of several key parts,
including signal preprocessing, feature extraction and selection,
and ensemble ELM classifier. In the preprocessing section, the
multi-channel sEMG signals are first filtered and then processed
by sliding windows. The feature extraction and selection process
first extract multiple time and frequency domain features, and
then, the features that mostly contribute to the result are picked
out. The ensemble ELM classifier module consists of multiple
ELM base learners and an ensemble learning machine which we
employ the majority voting method in this paper.

Signal Preprocessing
The sEMG signals are first filtered by Butterworth high pass
filter with a 0.5Hz cutoff frequency to remove the signal DC
component. Then, the sliding windows are applied on the
processed signals to divide the motion data series into multiple
data fragments with fixed lengths, as shown in Figure 2. The
window length that is crucial for the real-time system should not
be longer than 300ms according to the previous studies (Shen
et al., 2019). In this paper, we set the window length to 300ms
with a stride length of 150ms. By this window processing, the
sequential data are converted into frame data, so that they can be
mapped to the action labels.

Feature Extraction and Selection
The feature extraction procedure is applied to the data sections
obtained by window processing. In this paper, 16 time domain
and frequency domain features (Toledo-Pérez et al., 2019;
Peng et al., 2021) are extracted from each signal channel.
The features include mean absolute value (MAV) and its two
modified derivatives (MMAV1 and MMAV2), mean absolute
value slope (MAVSLP), root mean square (RMS), variance
(VAR), waveform length (WL), slope sign change (SSC), zero
crossing (ZC), integrated sEMG (IEMG), simple square integral
(SSI), median frequency (MDF), peak frequency (PKF), mean
frequency (MNF), mean power (MNP), and spectral moment
(SM). A description of the features is given in Appendix.

Although the features obtained above could represent the
sEMG signals from different dimensions, they are extracted by
experience subjectively, which inevitably leads to information

redundancy. This will reduce the efficiency of the classification
model and increase the computation amount. To alleviate
this problem, we use the RF algorithm-based RFE algorithm
(Chen et al., 2018), named RF-RFE to select the features
that mostly contribute to the recognition results. The RF-RFE
is one kind of sequential backward selection method, whose
procedures are as follows: First, the model based on RF is trained
using the whole training features, obtaining the importance
of each feature according to their classification contribution;
Second, the features are descending sorted according to the
importance; Third, the least important feature is eliminated, and
RF classification model is re-trained using the new feature set.
The third process was repeated until the feature set is empty.
After the RF-RFE, we obtain a list of performance measurement
values corresponding to each subset. Finally, the features that
correspond to the best performance are picked out as the final
feature set. The main procedures of RF-RFE algorithm are shown
in Figure 3.

Ensemble Extreme Learning Machine
Extreme Learning Machine

Extreme learning machine (Huang et al., 2006) is one kind
of single hidden layer feedforward neural network, which is
composed of three layers, named input layer, hidden layer, and
output layer. The weights between the input layer and hidden
layer are randomly assigned and remain unchanged during the
training process. The ELM output weights are determined by
an analytical solution. Thus, there is no iteration in the training
process, and the training speed of ELM is faster than traditional
neural networks. The structure of ELM is shown in Figure 4.

Suppose that xi = [xi1, xi2, . . . , xin]
T , yi =

[yi1, yi2, . . . , yim]
T , (i = 1, 2, . . . ,N) are the input and expected

output, respectively, g(x) is the activation function. The output
of the ELM is as follows:

yi =

K
∑

j=1

βjg(wjxi + bj), i = 1, 2, . . . ,N (1)

where wj = [wj1,wj2, . . . ,wjn]
T is the weight vector between

input neurons and the jth neuron of hidden layer, βj =

[βj1,βj2, . . . ,βjm]
T is the weight vector between the jth neuron

of hidden layer and output neurons. N is the total number of
samples. n, m, and K are the total number of input, output, and
hidden layer neurons, respectively.

The equation above can be rewritten as follows:

Hβ = Y (2)
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FIGURE 1 | Flowchart of the proposed gesture recognition method.

FIGURE 2 | Signal slide window processing.

where H is the output matrix of hidden layer. The weight vector

wj and bias bj are randomly assigned and remain unchanged

during training process. The weight vector β is determined by

the equation:

β = H+Y (5)

where H+is the Moore–Penrose generalized inverse matrix of
matrix H.

The procedures of ELM could be summarized following the
three steps:

(1) First, determine the number of hidden layer neurons and
initialize the weight vector wj between input and hidden
layer and bias bj randomly;

(2) Second, choose an activation function and calculate the
hidden layer output matrix H;

(3) Finally, calculate the output weight vector by β = H+Y .

Voting-Based Extreme Learning Machine

The ELM algorithm could perform well in the classification of
a relatively short training runtime. However, due to that the
hidden layer parameters are randomly assigned and remained
unchanged, the classification boundary may not be optimal,
which will result in misclassification of the samples located near
the classification boundary (Cao et al., 2012).

To tackle the issue mentioned above and improve the
recognition performance of ELM, we classify the sEMG signals
by an ensemble ELM algorithm which first establishes multiple
independent ELM classification models and then makes a
decision by the majority voting method.

The key point of EELM algorithm is to ensure the diversity
of ELM base learners. Actually, due to the fact that the hidden
parameters of base ELMs are randomly initialized independently,
the base ELM learners are different from each other. To make full
use of the information from the limited sEMG signals training
data, we trained the base ELM learners with all the training
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FIGURE 3 | RF-RFE algorithm procedures.

samples. In addition, the number of hidden layer neurons is set
the same for easy implementation. The procedures of the EELM
algorithm based on the majority voting method are shown in
Figure 5.

EXPERIMENTS AND RESULTS

sEMG Signals Dataset
To evaluate the performance of our proposed method, we used
an open-source sEMG signals dataset, named Ninapro DB5

(Pizzolato et al., 2017), which has been widely used in motion
recognition research. The Ninapro DB5 dataset contains sEMG

signals captured from 10 able-bodied subjects performing 52

different hand movements with each was repeated 6 times.

All the movements are divided into three groups (Exercise-A,
Exercise-B, and Exercise-C): Exercise-A contains 12 finger basic

movements, Exercise-B contains 17 isometric, isotonic hand

configurations and basic wrist movements, Exercise-C contains

23 different grasping and functional movements. The sEMG
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FIGURE 4 | The structure of ELM.

signals in the DB5 database were recorded by double wearable
MYO bracelets from the same arm at a 200Hz acquisition
sample rate with a built-in ADC resolution of 8 bit. Each of the
MYO could record 8 channels of sEMG signals; therefore, each
recording consists of 16-channel time series.

RESULTS

We first evaluated the efficacy of the feature selection strategy by
comparing the classification accuracy before and after the feature
selection process. All the extracted 256 features were first used
to construct the classification model, and then, the features that
mostly contribute to the classification result were selected out
by the RF-RFE algorithm. The sEMG signals generated by 52
different movements from subject 5 were used to evaluate the
performance of feature selection, in which 70% samples of each
movement were used to train the classification model, and the
remaining 30% samples were used to test the performance of the
constructed models.

The feature selection result is shown in Figure 6, in
which the x-axis represents the number of features and y-
axis represents the classification accuracy based on RF. The
classification accuracy reaches the highest when the number
of features increases to 79. From Figure 6, we can see that

the classification accuracy increases rapidly and then remains
nearly unchanged despite the increase in the feature count.
To determine the optimal number of selected features, we
thoroughly investigate the number of features from 30 to 80
with a step of 10. Finally, we determined the number of features
to 40 taking both the accuracy and computational burden
into account.

Figure 7 shows the efficacy of feature selection strategy.
A total of four classification algorithms including decision
tree (DT), ELM, RF, and EELM were used to evaluate the
performance. From the figure, the recognition accuracy of ELM
and EELM algorithms improved obviously after the feature
selection process.

We used DT, ELM, and RF algorithms as the comparison
methods to evaluate the recognition performance of the proposed
method. sEMG signals in different movement subsets (Exercise-
A, Exercise-B, Exercise-C, and Exercise-All) were used to test the
performance. The performance indexes including accuracy, F1-
score, recall and precision were used to mirror the performance
of the methods in motion recognition. About 70% of each
movement samples were used to train the classification model,
and the remaining 30% were used to test the performance.
To ensure the credibility of experiment results, 100 trials were
performed for each subject.
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FIGURE 5 | Algorithm procedure of EELM.

Table 1 presents the overall average motion recognition
accuracy of all the 10 subjects. The proposed method could
achieve the best performance with 87.8, 81.8, and 78.0% accuracy
for Exercise-A, Exercise-B, and Exercise-C, respectively. In
recognizing the 52 movements considered all together from
Ninapro DB5 dataset, the proposed method also performs the
best with about 77.9% of recognition accuracy.

The statistical analysis was executed to validate the statistical
difference among the four methods (DT, ELM, RF, and EELM).
We first used the one-way analysis of variance (ANOVA) test
to evaluate whether there is a statistical difference among the
four methods. Then, a Tukey’s honestly significant difference

(HSD) test was executed to compare the differences between our
proposed method (EELM) and the other three methods. The null
hypothesis was rejected (p < 0.05) for the ANOVA test, and the
Tukey’s HSD test (p = 0.001< 0.05) revealed that the proposed
method is statistically the best classifier.

To present more intuitively, Figures 8–11 show
the overall average accuracy, F1-score, recall, and
precision, respectively, of all the 10 subjects with
different sEMG data subsets. From the figures, we could
see that the proposed EELM algorithm performs the
best in all the data subsets compared with the other
three methods.
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FIGURE 6 | Feature selection result of subject 5.

FIGURE 7 | Efficacy of feature selection strategy.
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To further demonstrate the efficacy of the proposed method,
we compared our method with two other existing methods:
long short-term memory-CNN (LCNN) presented by Wu
et al. (2018) and stacking ensemble learning (SEL) designed
by Shen et al. (2019). Both studies used Exercise-A and
Exercise-B movement subsets to test the performance of their
methods. The performance comparison between our method
and theirs is shown in Figure 12. The average accuracy of
the LCNN method was 71.7 and 61.4% for Exercise-A dataset
and Exercise-B dataset, respectively. The performance of SEL
method was better than LCNN, which improved the accuracy
by 5 and 13% over LCNN on Exercise-A and Exercise-B,
respectively. Our proposed method (EELM) could achieve
an average accuracy of 87.8 and 81.8% for Exercise-A and
Exercise-B, respectively, performing better than the other two
existing methods.

The receiver operating characteristic (ROC) and the area
under the curve (AUC) were also used to verify the performance
of the proposed method. Figure 13 shows the ROC curves and
AUC values obtained by different methods, where the larger AUC
value represents the better classification results.

TABLE 1 | Overall motion recognition accuracy by different methods.

Methods Exercise-A Exercise-B Exercise-C Exercise-all

DT 72.8% 61.8% 55.3% 53.6%

ELM 85.3% 79.5% 75.0% 76.0%

RF 85.6% 79.1% 75.8% 77.2%

EELM 87.8% 81.8% 78.0% 77.9%

To evaluate the real-time applicability, we further investigated
the run time of the EELM method in recognizing gestures. The
run time of the constructed model was tested on the datasets
from subject 1 in Exercise-A, Exercise-B, and Exercise-C. The
test sample size of Exercise-A, Exercise-B, and Exercise-C was
N = 464, N = 717, and N = 1,014, respectively. A total of
100 trials were performed to enhance the result credibility. The
experiments were run on a laptop equipped with Intel Core i7-
8565U CPU@1.80GHz and 8GB RAM. The run time of the other
three methods is also presented in Table 2 for comparison. From
Table 2, we could find that our proposed EELM is faster than RF.

DISCUSSION

Gesture recognition based on sEMG signals has been widely
studied in the recent years. Depending on whether the feature
information needs to be manually extracted beforehand, the
existing gesture recognition approaches could be roughly
grouped into feature-based and time series-based methods.
In the feature-based method, features that represent motion
information are first extracted manually based on experience and
then fed into the classification models which are constructed
based on the machine learning algorithm. The information in
the extracted features is usually redundant, and thus, feature
selection techniques are adopted to alleviate this problem by
many studies. While in the time series-based method, the sEMG
time series are directly inputted to the recognition models
without manual feature extraction. The classification models of
the time series-based method are usually constructed based on
deep learning algorithm. Although the deep learning algorithm

FIGURE 8 | Overall average classification accuracy comparison.
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FIGURE 9 | Overall average classification F1-score comparison.

FIGURE 10 | Overall average classification recall comparison.

could achieve a relatively high recognition performance, its
computational burden is heavy due to its huge number
of parameters.

The ELM which is a single hidden layer feedforward neural
network has been recognized as an effective learning method
in many fields with fast learning speed and high performance.
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FIGURE 11 | Overall average classification precision comparison.

FIGURE 12 | Performance comparison with other existing methods.

However, the accuracy and stability cannot fulfill some actual
applications such as prosthetic hand control. Since the ELM
hidden parameters are randomly assigned, the classification

boundary is not optimal, and samples located near the boundary
may be misclassified. In this paper, we integrated the results
of several ELM base learners by the majority voting method

Frontiers in Human Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 911204

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Peng et al. Gesture Recognition by Ensemble ELM

FIGURE 13 | ROC curves and AUC values of different classification methods.

to enhance the motion recognition accuracy and stability.
The prerequisite for integrating the ELM base learners is to
guarantee the diversity of each base learner. Actually, the
randomly initialized hidden layer parameters meet the above-
mentioned requirements that the base ELM learners are different
from each other. Experiments proved that the EELM method
outperforms traditional ELM in recognizing gestures based on
the sEMG signals.

In the feature extraction and selection process, 256 features
were extracted from each subject with 16 features from each
sEMG channel. The extracted features were then simplified by
the RF-RFE feature selection algorithm, reserving the features
that mostly contribute to the recognition results. In Figure 6,
classification accuracy increases rapidly first and then remains
nearly unchanged despite the increase in the selected feature
count. Although the performance reaches the best using 79
features, we determined the number of finally selected features
to 40, taking both the accuracy and computational burden into
account by full insight on the number of features from 30 to 80
with a step of 10. When coupled with the Figure 7 information, it
leads to some conclusions that the feature selection strategy could
enhance the gesture recognition performance across all the four
classification methods (DT, ELM, RF, and EELM). The EELM
could achieve the highest recognition accuracy after the feature
selection process. However, the RF performs better than EELM

before feature the selection process. It may be because that the
RF model construction process essentially contains the feature
selection procedure, the most important features are always in
the first place to be selected out and used, reducing the effect
of other least important features, whereas, in the EELM model
construction process, all the features including the irrelevant
and redundant features contribute equally to the EELM model
construction, degrading the performance of EELMmodel. By the
feature selection process, the least important features could be
rejected, and thus, the performance of EELM could be improved.
From Figure 7, it can be seen that the performance of DT and RF
improved less by the feature selection strategy. In contrast, the
ELM and EELM significantly improved after the feature selection
process, which is consistent with our explanation.

To further evaluate the performance of the proposed method,
sEMG signals in different movement subsets (Exercise-A,
Exercise-B, Exercise-C, and Exercise-All) were used to test
the performance. Table 1 and Figures 8–11 show the overall
performances of the four methods in movement classification
using different evaluation parameters. From the presented
results, EELM combining feature selection process performs
the best in all the data subsets, and the statistical analysis
verified this. We also compared our method with the other two
existing methods: LCNN and SEL methods. The performance
comparison between our method and theirs is shown in
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TABLE 2 | Run time of each method in recognizing gestures (ms).

Methods Exercise-A Exercise-B Exercise-C

(N = 464) (N = 717) (N = 1,014)

DT 0.6 0.7 0.8

ELM 10.8 13.0 24.0

RF 116.6 133.4 428.1

EELM 81.2 108.3 205.6

Figure 12, demonstrating that our method performs better than
the other two existing methods. The real-time applicability of the
proposed method was also investigated by testing the algorithm
run time in recognizing gestures. The experimental results are
presented in Table 2, demonstrating that the EELM is faster
than RF, inferring that the real-time capability is acceptable for
real-time application scenarios.

CONCLUSION

In summary, this paper proposed a method combining feature
selection and EELM algorithms to improve the motion
recognition performance based on sEMG signals. First, the input
sEMG signals are preprocessed by a sliding window and 16
features in each channel are extracted. Second, the features
that mostly contribute to gesture recognition are picked out
using the RF-RFE algorithm. Third, several independent ELM
classifiers are established by the features selected. Finally, the
recognition results are determined by integrating the results
obtained by ELM base classifiers using the majority voting
method. Ninapro DB5 dataset with 52 different movements
was used to evaluate the performance of the proposed method.
The results showed that the motion recognition performance
could be improved evidently by the RF-RFE feature selection
process. In addition, the proposed method could achieve the best
accuracy (77.9%) compared with DT, ELM, and RFmethods. The
research achievement proved that our proposed method could
effectively enhance the gesture recognition performance based
on sEMG signals. According to the findings of this paper, our
further work will focus on improving the recognition accuracy in

distinguishing similar gestures and exploring a universal gesture
recognition model across different subjects to easily migrate
gesture recognition system between subjects quickly.
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