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Abstract Measurement errors commonly occur in 24-h hormonal data and may 
affect the outcomes of such studies. Measurement errors often appear as outliers in 
such data sets; however, no well-established method is available for their automatic 
detection. In this study, we aimed to compare performances of different methods for 
outlier detection in hormonal serial data. Hormones (glucose, insulin, thyroid-
stimulating hormone, cortisol, and growth hormone) were measured in blood 
sampled every 10 min for 24 h in 38 participants of the Leiden Longevity Study. 
Four methods for detecting outliers were compared: (1) eyeballing, (2) Tukey’s 
fences, (3) stepwise approach, and (4) the expectation-maximization (EM) algo-
rithm. Eyeballing detects outliers based on experts’ knowledge, and the stepwise 
approach incorporates physiological knowledge with a statistical algorithm. 
Tukey’s fences and the EM algorithm are data-driven methods, using interquartile 
range and a mathematical algorithm to identify the underlying distribution, respec-
tively. The performance of the methods was evaluated based on the number of 
outliers detected and the change in statistical outcomes after removing detected 
outliers. Eyeballing resulted in the lowest number of outliers detected (1.0% of all 
data points), followed by Tukey’s fences (2.3%), the stepwise approach (2.7%), and 
the EM algorithm (11.0%). In all methods, the mean hormone levels did not change 
materially after removing outliers. However, their minima were affected by outlier 
removal. Although removing outliers affected the correlation between glucose and 
insulin on the individual level, when averaged over all participants, none of the 4 
methods influenced the correlation. Based on our results, the EM algorithm is not 
recommended given the high number of outliers detected, even where data points 
are physiologically plausible. Since Tukey’s fences is not suitable for all types of data 
and eyeballing is time-consuming, we recommend the stepwise approach for out-
lier detection, which combines physiological knowledge and an automated process.
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INTRODuCTION

Many physiological parameters such as hormones 
or metabolites exhibit rhythmicity. These rhythms are 
regulated by different systems. The most prominent 
rhythm is the circadian rhythm, which is induced by 
the biological clock located in the suprachiasmatic 
nucleus in the brain. The biological clock not only 
synchronizes molecular clocks in peripheral cells but 
also orchestrates many physiological functions 
including blood pressure, core body temperature, 
and hormone secretion. An example of a hormone 
that exhibits a strong circadian rhythmicity is cortisol. 
The sleep-wake cycle is another form of rhythm, and 
although similar to the circadian rhythm, it has other 
effects on hormone secretion than the biological clock. 
The secretion of growth hormone (GH), for example, 
is more strongly influenced by sleep than by clock 
time. Also, external cues, including food intake and 
physical activity, can influence hormone secretion, 
such as the secretion of insulin (Oike et al., 2014).

Hormones and metabolites are measured for dif-
ferent purposes, for example, in clinical settings to 
make a diagnosis or to evaluate the effect of treat-
ment and in research settings to investigate how these 
parameters change based on interventions or differ 
between groups. Different cues can elicit changes in 
hormone secretion, among which are circadian time, 
nutrient availability and food intake, physical activ-
ity, and sleep. Circulating concentrations of many 
hormones change over time, because these hormones 
are secreted in a pulsatile fashion and have a rela-
tively short half-life (Spiga et al., 2015). Therefore, to 
obtain reliable hormonal time-series data, hormones 
need to be measured in blood that is sampled fre-
quently. For some hormones, such as insulin, the pre-
ferred sampling frequency is 2 min because of its 
short half-life (Porksen et al., 1997). Other hormones, 
including thyroid-stimulating hormone (TSH), can 
be measured every 20 min to obtain reliable profiles 
(Odell et  al., 1967; Grossmann et  al., 1997). To take 
into account practical possibilities, half-lives, costs, 
and ethics, most studies investigating hormone secre-
tion are performed with a sampling frequency of 
every 10 min during 24 h, as reviewed by Veldhuis 
et al. (2016) and Roelfsema et al. (2017).

When measuring hormones frequently over time, 
measurement errors are likely to occur. Measurement 
errors can be caused by preanalytical experimental 
variation of various sources, including sample dilu-
tion (possibly because of flushing the intravenous 
line with heparinized saline), or the presence of a 
blood clot in the sample. Measurement error can 
influence the outcomes of studies with serial hor-
monal data. Therefore, it is important to identify 
measurement errors. Measurement errors are likely 

to be outliers (Grubbs, 1969), which deviate largely 
from the overall trend of the data. The challenge is 
that there is no clear-cut distinction between mea-
surement errors and true biological variation. The 
starting point to detect measurement errors, however, 
is by identifying outliers.

No well-established method is yet available to 
automatically detect measurement errors. Therefore, 
we aimed to compare 4 methods to detect outliers 
likely due to measurement errors in 24-h hormonal 
data: eyeballing (relying on experts’ opinions), 
Tukey’s fences (identifying outliers based on inter-
quartile ranges), stepwise approach (identifying out-
liers based on standard deviations), and the 
expectation-maximization (EM) algorithm (using a 
mathematical algorithm based on disentangling the 2 
different distributions of outliers and nonoutliers). 
Furthermore, we studied the influence of removing 
the detected outliers on the assessment of statistical 
features of 24-h hormonal data such as mean, mini-
mum, maximum, and cross-correlation.

For this study, we used data on the pituitary hor-
mone GH, adrenocorticotropic hormone (ACTH), TSH, 
the adrenal hormone cortisol, as well as data on the 
metabolic signals insulin and glucose, all of which were 
measured every 10 min for 24 h in serum from 38 par-
ticipants of the Switchbox Leiden Study (Jansen et al., 
2015).

METhODS

Data Collection

Study population. The Leiden Longevity Study 
comprises 421 families with at least 2 long-lived Cau-
casian siblings fulfilling the age criteria (men ≥89 
years and women ≥91 years) without selection based 
on health or demographics (Westendorp et al., 2009). 
In the current study, the Switchbox Leiden Study, we 
included 20 offspring of long-lived families from the 
Leiden Longevity Study together with 18 partners of 
the offspring as environmental and age-matched con-
trols. The primary aim of the Switchbox Leiden Study 
was to compare the levels and dynamics of hormones 
and metabolites and their interplay between off-
spring of long-lived families and controls. Inclusion 
and exclusion criteria were described previously in 
detail (Jansen et al., 2015). Participants were middle-
aged (52-76 years) and had a stable body mass index 
between 18 and 34 kg/m2. The Switchbox Leiden 
Study was approved by the Medical Ethical Commit-
tee of the Leiden University Medical Centre and was 
performed according to the Helsinki Declaration. All 
participants gave written informed consent for par-
ticipation.
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24-h blood sampling. The 24-h blood-sampling 
procedure started with placing a catheter in a vein 
of the forearm of the nondominant hand, and blood 
withdrawal started around 0900 h (Akintola et al., 
2015). Samples of 2 mL serum and 1.2 mL EDTA 
plasma were withdrawn every 10 min. To prevent 
blood clotting, heparinized saline (0.9% NaCl) was 
continuously infused via an infusion pump at a 
rate of 20 mL/h. Before each blood withdrawal, 5 
mL of saline/heparin mixed with blood was col-
lected (without disconnecting the syringe from the 
blood withdrawal system to prevent contamina-
tion of heparin/saline in the blood samples). After 
blood withdrawal, this 5 mL was flushed back into 
the subject, to reduce the total amount of blood that 
would be withdrawn. Participants received stan-
dardized feeding consisting of 600 kcal Nutridrink 
(Nutricia Advanced Medical Nutrition, Zoeter-
meer, the Netherlands) at 3 fixed times during the 
day. Participants were not allowed to sleep dur-
ing the day, and except for lavatory use, no physi-
cal activity was allowed during the study period. 
Lights were switched off for approximately 9 h 
(circa between 2300 h and 0800 h) to allow the par-
ticipants to sleep.

Assays. All laboratory assays were performed 
with fully automated equipment and diagnostics 
from Roche Diagnostics (Almere, the Netherlands) 
at the Department of Clinical Chemistry and Labora-
tory Medicine of the Leiden University Medical Cen-
tre in the Netherlands.

TSH, cortisol, insulin, and glucose were measured 
in the same serum tube. GH was also measured in the 
same serum tube but after 1 additional freeze-thaw 
cycle. TSH and cortisol were measured by electroche-
moluminescence immunoassay using a Modular 
E170 Immunoanalyzer from Roche Diagnostics. For 
TSH, the overall interassay coefficients of variation 
(CV) ranged between 1.41% and 4.16% in our study, 
and the overall CV of cortisol ranged between 2.4% 
and 5.1%. Human GH with a molecular mass of 22 
kDa and insulin were measured using an IMMULITE 
2000 Xpi Immunoassay system (Siemens Healthcare 
Diagnostics). The interassay CV of GH ranged 
between 5.4% at 5.43 mU L–1 and 7.2% at 25.0 mU L–1, 
and the overall CV of insulin ranged between 3.19% 
and 7.69%. Glucose was measured using the Hitachi 
Modular P800 from Roche Diagnostics, and the over-
all interassay CV of glucose ranged between 0.90% 
and 7.44%. If a measurement was below the detection 
limit, half of the lower detection limit was taken as a 
result.

Although ACTH was also measured, we did not 
use these data in our mathematical models because 

this hormone was measured in EDTA plasma (i.e., in 
a different tube from the other hormones). However, 
for the aim of eyeballing, we did use ACTH data, as 
these data were instrumental for inspecting physio-
logically abnormal points in the cortisol data.

Physiological Considerations

Since hormones are secreted in a pulsatile manner, 
a sudden increase is more likely to occur than a sud-
den decrease. Also, a glucose level <2.8 mmol/L 
does not occur in healthy persons without an accom-
panying strong stress response (cortisol and GH 
pulses). ACTH stimulates the secretion of cortisol; 
therefore, cortisol should show a pulse following an 
(extreme) increase in ACTH. If an outlier is caused by 
sample dilution, then all hormones measured in that 
sample should be lower than expected. These physi-
ological considerations could be taken into account in 
measurement error detection.

Methods of Detecting Outliers

In the following section, we will discuss 4 meth-
ods for outlier detection: (1) eyeballing, (2) Tukey’s 
fences, (3) stepwise approach, and (4) the EM algo-
rithm. The procedures of these methods are visual-
ized in Figure 1.

Eyeballing. Eyeballing was based on visual 
inspection of a graphical display of individual hor-
mone profiles from all 38 patients. This was per-
formed by 4 reviewers with expert knowledge in 
endocrinology (E.v.d.S., F.R., O.M.D., and D.v.H.). 
Hard copies of the 24-h trajectories of all hormones 
measured per participant were provided. Three 
reviewers examined all 38 participants’ hormone 
profiles, and 1 reviewer checked half of the par-
ticipants. Information about which hormones were 
measured in the same tube was given verbally. 
Reviewers were also explicitly told that dilution of 
the sample may have led to measurement errors in 
all hormones measured from the same tube. After 
reviewing the data separately, a consensus meet-
ing was held to reach agreement on data points of 
which only 1 (out of 3 or 4) or 2 out of 4 reviewers 
had marked as an outlier.

Tukey’s fences. For this algorithmic approach of 
outlier detection, we made the following assump-
tions: (1) a hormone trajectory of an individual 
person follows a smooth general trend over 24 h 
while measurement errors may deviate clearly from 
the trend, and (2) hormone levels cannot abruptly 
decrease within 10 min. If a measurement is vastly 
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distant from the adjacent measurements before and 
after, that measurement is likely to be a measurement 
error. Thus, by fitting a smooth curve to the data 
points and measuring the distance between the curve 
and each measurement, the algorithm can detect out-
liers expected to be measurement errors.

Tukey’s fences is a nonparametric method devel-
oped to detect observations out of the normal range 
by using interquartile ranges (Tukey, 1977), and it is 
often used for detecting outliers in various fields 
(Muraleedharan et  al., 2016; Pham and Eggleston, 
2016; Luo et al., 2018; O’Brien et al., 2018). Before per-
forming Tukey’s fences, normality of the data was 
checked before fitting the curve. The distributions of 
insulin and GH data were highly skewed; therefore, 

these data were log transformed prior to applying the 
algorithm. Afterward, Tukey’s fences was imple-
mented using the following 2 steps:

1. Hormone data were smoothed over time by 
fitting moving average curves for every hor-
mone per person separately. Moving average 
is a method commonly applied for smoothing 
time-series data (Montgomery et  al., 2015). 
The moving average with window size n (with 
n being an odd number) at a certain time point 
is the average of the current, the −½(n − 1) pre-
vious, and ½(n − 1) subsequent measurements 
in time. In our analyses, moving averages 
were calculated using a window of 5 points. 

Figure 1. (a) Eyeballing detects outliers without fitting smooth curves. By visual inspection, individual experts detect outliers by taking 
into account that some hormones were measured in a same sample. Afterward, a consensus meeting is held, and the experts discuss all 
data points with conflicting detection results. (b) Tukey’s fences starts with fitting a moving average curve to per-person per-hormone 
data and taking residuals of all data points. Then the interquartile range (IQR = Q3–Q1) of the residuals is calculated. The data points 
lying outside the range between Q1 − 31QR and Q3 + 3IQR are detected as outliers. (c) The stepwise approach fits the moving average 
curve to per-person per-hormone data, and standardized residuals of all data points are calculated (step 1). The data points lying outside 
the range between −3 and 4 standard deviations are detected as outliers (step 2). Then, the residuals of 5 hormones measured at the same 
time points are summed. When the sum of the residuals is smaller than −8, the data points are detected as outliers (step 3). Afterward, 
steps 1 and 3 are repeated (step 4). (d) The expectation-maximization (EM) algorithm first fits a smoothing curve to per-person per-
hormone data, and the residuals are calculated. Then, all the residuals of a hormone from all 38 participants are put in the EM algorithm. 
The algorithm then identifies 2 distinguishable distributions and yields the probability of each data point to be an outlier.
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Residuals were calculated for all data points. 
We defined a residual as the vertical distance 
between an original data point and a fitted 
moving average curve.

2. In the second step, the interquartile range 
(IQR) of the residuals, the distance between 
the first quartile and the third quartile (Q1 −  
Q3), and the median (Q2) were identified. The 
ranges between Q2 − k(Q3 −Q1) and Q2 + 
k(Q3 −  Q1) are referred to as fences. The data 
points that are below the lower fence or above 
the higher fence are identified as outliers. The 
value k determines the width of the fences. 
The larger the value of k, the lower the num-
ber of outliers that will be detected. In our 
analyses, we set k = 3, which, according to 
the literature, implies that the data point is 
“far out” (Tukey, 1977). To use the method as 
it is originally suggested and commonly 
being applied, we did not adjust the value of 
k = 3 (Horn et al., 1988; Hung and Yang, 2006; 
Kimenai et al., 2016).

Stepwise approach. The stepwise approach is an 
automatic detection process based on an algorithm 
that incorporates physiological knowledge and sta-
tistical methods and comprises 4 steps, as described 
below. Our aim was to detect potential outliers 
within a 24-h hormone trajectory in several steps. As 
in Tukey’s fences, the insulin and GH data were log 
transformed.

1. Step 1: Fitting smoothed curves. Likewise to 
Tukey’s fences, a moving average curve is fit-
ted to each participant’s 24-h hormone data 
using a window of 5 points. By computing the 
distance between each data point and the fit-
ted curve, residuals are acquired. The residu-
als are standardized to have a mean of 0 and a 
standard deviation of 1.

2. Step 2: Detecting outliers within a 24-h hormone 
trajectory. Data points with standardized resid-
uals smaller than −3 or larger than 4 are 
detected as outliers. The cutoff of 3 standard 
deviations is a commonly applied empirical 
rule for detecting outliers in normal distrib-
uted data. However, asymmetrical cutoffs are 
chosen to be more liberal for the upper bound-
ary, as hormones are secreted in a pulsatile 
fashion, which makes rapid increases in hor-
mone level biologically more plausible than 
rapid decreases, since clearance of the hor-
mone will occur more slowly. Note that this 
cutoff boundary is wider than the width of 
Tukey’s fences with k = 3. Furthermore, data 
points at which glucose <2.8 mmol/L were 

detected as outliers, as discussed in the 
Physiological Considerations section.

3. Step 3: Detecting outliers across hormones. The 
standardized residuals of all hormones mea-
sured in the same serum tube are added for 
each participant. If the sum of the standard-
ized residuals is lower than −8, all data points 
measured in that tube are detected as outliers. 
This means that the residuals of the 5 hor-
mones are on average below the fifth percen-
tile of standard normal distribution (1.64 
standard deviation). This step allows for the 
detection of measurement errors due to dilu-
tion of the samples. The underlying assump-
tion is that when samples were diluted, levels 
of the hormones measured in the same sample 
are all likely to be lower at the same time 
point. In this step, we aim to detect these types 
of measurement errors that occur across the 
hormones.

4. Step 4: Repeat step 1 and step 3. After all outliers 
detected so far are removed, a new moving 
average curve is fitted, and steps 1 and 3 are 
repeated once. If already detected outliers are 
removed, the newly fitted curves will be flatter 
than the fitted curve from the original data, 
which will allow the detection of potential 
outliers that were missed in the previous steps.

The EM algorithm. Another approach is to esti-
mate the probability for a data point to reflect mea-
surement error, rather than using a dichotomous 
division. This starts with assuming 2 distinguish-
able data distributions: true measurement variation 
and background noise due to measurement errors. 
Based on this assumption, we expect the residuals 
of the true measurements to be normally distributed 
with standard deviations close to 0, while those of 
the erroneous measurements would be normally 
distributed with a larger standard deviation. The 
EM algorithm is a method that can be used to iden-
tify these 2 distinguishable distributions. The algo-
rithm estimates model parameters when data are 
incomplete or when the model depends on a latent 
variable—a variable that is not directly observed 
but can be inferred by other observed variables 
(Dempster et al., 1977)—and the method was sug-
gested for detecting outliers (Aitkin and Wilson, 
1980). The EM algorithm was applied in R version 
3.5.1, using the normalmixEM function of the pack-
age mixtools (Benaglia et al., 2009). In our situation, 
the latent variable of interest would be whether a 
data point is a true measurement or a measurement 
error. Further technical details about the EM algo-
rithm can be found in the Supplementary Material, 
Appendix 1.
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The EM algorithm has the advantage that detected 
outliers do not have to be removed. Instead, the prob-
abilities can later be used as weights for estimating 
outcomes, such as mean hormone levels or 
cross-correlations.

The outlier detection method using the EM algo-
rithm followed the steps below. Again, insulin and 
GH data were log transformed.

1. As in Tukey’s fences and stepwise approach, a 
moving average curve per 24-h hormone pro-
file for each individual participant was fitted. 
Afterward, residuals were calculated and stan-
dardized for each data point.

2. The EM algorithm was applied for each hor-
mone with residuals of all participants together 
taken into account in one model.

Comparing Methods on Statistical Outcomes

Since we do not know with certainty which data 
points reflect measurement errors, it is not possible to 
ascertain which of the 4 methods performed best. 
Therefore, we compared the number of outliers 
detected that were counted per time point and in 
total data points. In addition, the overlap in detected 
outliers between the 4 methods was visually pre-
sented with Venn diagrams (Larsson, 2018). We chose 
these parameters since these descriptive statistics 
give a transparent description of the data and will 
give an insight into what impact removing outliers 
has on general measures.

Furthermore, we analyzed statistical outcomes of 
24-h hormonal data before and after removing the 
outliers as detected by the 4 different methods. In this 
way, we could investigate whether removing outliers 
influenced the statistical outcome and how different 
methods may do so differently. Therefore, the 24-h 
means, median, minima, and maxima of the 5 hor-
mones were assessed, which provides a transparent 
description of the data and insights on how removing 
outliers affects general measures. Another relevant 
analysis is cross-correlation between 2 hormones. 
Cross-correlation estimates the temporal relationship 
between 2 hormonal concentrations. It is a common 
analysis performed with data of 2 simultaneously 
measured hormonal time series (Vis et  al., 2014). 
Therefore, it could be of interest for researchers to 
know to which extent measurement error would 
affect the estimates, especially since this method 
might be sensitive to the presence of outliers that co-
occur in different time series data, for example, due to 
the dilution of a sample. Two relevant outcome mea-
sures are the strongest correlation coefficient (the 
maximal correlation) and the correlation coefficient at 

lag time 0. For the purpose of this article, we per-
formed cross-correlation on concentrations of glucose 
and insulin, which are expected to display strong 
cross-correlation (Feneberg et  al., 1999). When esti-
mating the mean and cross-correlations after outlier 
removal by the EM algorithm, the weighted mean 
and weighed correlation are calculated, with the 
weight equal to the probability of each data point to 
be an outlier. All statistical analyses were performed 
using the software program R, version 3.5.1.

RESuLTS

For each of the 38 participants, blood samples were 
collected at 144 time points over 24 h, with 5 hor-
mones being measured in the same serum tube. After 
discarding missing data, the total number of data 
points was 21,467. We counted detected outliers per 
time point and in total data points. If counted per 
time point, at least 1 outlier was detected in a time 
point among all hormones assayed in serum (i.e., glu-
cose, insulin, TSH, cortisol, and GH). In case of a 
complete series, a single participant has 144 time 
points for each hormone. If counted in total data 
points, every data point is counted individually. In 
the case of a complete data set, 1 participant has in 
total 720 data points, that is, 144 time points times 5 
hormones.

Number of Detected Outliers

Table 1 summarizes the mean percentage of outli-
ers detected per time points and in total data points. 
The results are averaged across 38 participants. Since 
the EM algorithm yields continuous probability as its 
outcome, we defined a data point of which its proba-
bility to be an outlier is higher than 0.9 as an outlier. 
For the percentage of detected outliers, we observed 
some differences between the 4 methods. Eyeballing 
resulted in the smallest percentage of detected outli-
ers both per time point (mean = 1.7%) and for total 
data points (1.0%), followed by the stepwise approach 
(per time points: 5.1%, total data points: 2.7%). 
Tukey’s fences yielded more outliers per time point 
(9.3%) but a similar percentage in total data points 
(2.3%). The EM algorithm method yielded the largest 
percentage of outliers (per time points: 40.3%, total 
data points: 11.0%).

In Figure 2, the numbers of detected outliers for 
each hormone averaged over all participants are pre-
sented. The EM algorithm detected more outliers 
compared to the other methods, especially in cortisol 
and GH. Eyeballing, Tukey’s fences and the stepwise 
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approach detected a similar number of outliers across 
the different hormones.

Overlap in Detected Outliers

Figure 3 displays Venn diagrams presenting the 
number of outliers detected by eyeballing, stepwise 
approach, and Tukey’s fences and their overlap. We 
did not include the results of the EM algorithm in the 
Venn diagrams for 2 reasons: (1) the EM algorithm 
detected an implausibly large number of outliers (per 
time point = 1590 and in total data points = 2728) 
and (2) 3 sets of data is the maximum to draw a pro-
portional Venn diagram in 2-dimensional space. 
Figure 3a presents the number of outliers per time 
point, and Figure 3b presents that of the total data 
points. In Figure 3a, most of the outliers detected by 
eyeballing were also detected by the other 2 methods, 
while the overlap was larger with the stepwise 
approach. In Figure 3b, the overlap between eyeball-
ing and the stepwise approach was again larger than 
the overlap between eyeballing and Tukey’s fences. 

Here, the stepwise approach and Tukey’s fences 
detected a similar number of outliers. However, the 
overlap was relatively small, which indicates that 
they detected different data points. Eyeballing 
detected 47 total data points, which were not detected 
by stepwise approach or Tukey’s fences. Among out-
liers per time point detected by eyeballing, stepwise 
approach, and Tukey’s fences, 95.8% overlapped with 
the outliers detected by the EM algorithm (data not 
shown). In addition, 70.1% of the total data points 
detected by the 3 methods overlapped with the outli-
ers detected by the EM algorithm (data not shown).

Representative 24-h hormone Figures Presented 
with Detected Outliers

Figures 4a–d display the detected outliers in glu-
cose, insulin, TSH, cortisol, and GH for eyeballing, 
Tukey’s fences, stepwise approach, and the EM algo-
rithm, respectively, in one representative participant. 
By eyeballing (Fig. 4a), 4 data points are detected as 
outliers in glucose, TSH, and cortisol, and these 4 

Table 1. Percentage of time points with at least 1 detected outlier among the hormones measured and the percentage of total data 
points detected as outliers among the same set of hormones.a

Mean (SD), N = 38

 
Time Points Detected to 
Contain an Outlier (%)

Total Data Points Detected 
to be Outliers (%)

Eyeballing 1.7 (2.1) 1.0 (1.4)
Tukey’s fences 9.3 (5.6) 2.3 (1.4)
Stepwise approach 5.1 (1.5) 2.7 (1.5)
EM algorithmb 40.3 (7.7) 11.0 (2.8)

a. Mean and standard deviation in the 38 participants are given.
b. For the EM algorithm results, the measurement points at which the probability to be an outlier was >0.9 were counted.

Figure 2. Mean number of data points detected per hormone per method across all participants.
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outliers are all in the same time points. Of these 4 
time points, outliers in insulin were detected in 3 time 
points and in GH in 1 time point. Tukey’s fences (Fig. 
4b) detected the same outliers for glucose, insulin, 
TSH, and cortisol but detected several more than eye-
balling. In both TSH and cortisol between time points 
110 to 130, several points that are biologically unlikely 
to be measurement errors were detected. No outliers 
were detected in GH. The stepwise approach (Fig. 4c) 
identified the same outliers as eyeballing; however, 
several extra points were detected as well. Here in 
several time points (42nd, 76th, and 114th), outliers 
were detected in all hormones, which is a result of 
step 3 of the stepwise approach. The EM algorithm 
(Fig. 4d; note that the points are marked only if the 
probability of being an outlier is higher than 0.9) 
resulted in many detected outliers in the pulses that 
are unlikely to be outliers. Remarkably, in GH, data 
points close to detection limits were detected as 
outliers.

Effects of Removing Outliers on Statistical 
Outcomes

Descriptive statistics: 24-h mean, median, minimum, 
and maximum

The mean, median, minimum, and maximum val-
ues for every hormone were calculated over time 
before and after removing outliers detected by the 4 
methods. This is shown in Table 2. Mean and median 
values did not change substantially after outlier 
removal. Minimum values changed for glucose and 
TSH after removing outliers by all 4 methods, while 
for insulin, the value did not change much after eye-
balling. The EM algorithm had the largest influence 
on maximum values in all hormones.

Cross-correlation of glucose and insulin
In Table 3, cross-correlations between glucose and 

insulin are presented before and after removing outli-
ers. Overall, removing outliers did not have a major 
influence on the cross-correlation of glucose and 
insulin nor on the lag time at the maximum cross-
correlation. Figure 5 shows the individual changes in 
correlation at lag time 0. In Figure 5, we observe large 
differences between participants. Especially, the first 
participant shows a big change in correlation after 
removing outliers by all methods. Overall, the 
changes after eyeballing, Tukey’s fences, and step-
wise approach were mostly small, and the changes 
were not toward one direction dominantly. However, 
after removing outliers detected by the EM algo-
rithm, cross-correlation decreased in most cases.

DISCuSSION

In this study, we aimed to evaluate and compare 
different methods to detect outliers in 24-h hormonal 
data since no specific methods were routinely avail-
able for this purpose. We assumed that measurement 
errors will deviate largely from physiological curves 
of hormones. By identifying outliers in the data, we 
therefore expected to detect likely measurement 
errors. The main outcomes of this study were that 
human judgment (eyeballing) defined fewer data 
points as outliers than the 3 automatic approaches. 
Among the automatic approaches, the data-driven 
methods (Tukey’s fences and the EM algorithm) 
were prone to detect more outliers likely to be  
true measurements than the method involving sub-
ject-specific knowledge (stepwise approach). The 
mean, minima, and maxima of the hormones did not 

Figure 3. Venn diagrams visualizing the number of measurement errors detected by each method (eyeballing, stepwise approach, and 
Tukey’s fences) and their overlap counted in total time points (a) and in all data points (b). The overlap with the expectation-maximiza-
tion algorithm is not presented here for the reasons mentioned in the Results section.
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(continued)
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Figure 4. (continued)

(continued)
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Figure 4. (continued)

(continued)
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Figure 4. (a) The results of outlier detection by eyeballing in glucose, insulin, thyroid-stimulating hormone (TSh), cortisol, and growth 
hormone of participant 19. hollow data points indicate detected outliers (b) The results of outlier detection by Tukey’s fences hollow data 
points indicate detected outliers (c) The results of outlier detection by stepwise approach hollow data points indicate detected outliers 
hollow data points indicate detected outliers (d) The results of outlier detection by the expectation-maximization algorithm. hollow data 
points indicate the probability of the data point to be an outlier is higher than 0.9.

Figure 4. (continued)
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change much after removing outliers. However, the 
minima of glucose and TSH did change, and the EM 
algorithm had a large influence on maximum values 
in all hormones. The effect of removing outliers on 
the correlation between glucose and insulin can be 
large within an individual but had no major impact 
on a group level.

A relatively low number of outliers were detected 
by eyeballing. This may be an advantage of this 
method as only truly deviating points will be dis-
carded in the analysis. Another advantage of eyeball-
ing is that the data points detected as outliers are based 
on physiological arguments and not data driven. This 
allows eyeballing to detect (1) a sequence of data 

Figure 5. Change in correlation at lag time 0 (%) after removal of measurement errors detected by the 4 methods: eyeballing, Tukey’s 
fences, stepwise approach, and the expectation-maximization algorithm. Each bar represents an individual participant.

Table 3. Cross-correlations between glucose and insulin.

Mean (SD), N = 38

 
Correlation at Lag 

Time 0
Maximum Cross-

correlation
Lag Time at Maximum 
Cross-correlation (min)

Raw data 0.74 (0.12) 0.74 (0.12) −4.7 (7.3)
Eyeballing 0.74 (0.11) 0.75 (0.12) −5.3 (7.6)
Tukey’s fences 0.73 (0.14) 0.74 (0.14) −6.3 (8.2)
Stepwise approach 0.74 (0.12) 0.75 (0.12) −5.0 (8.0)
EM algorithma 0.71 (0.12) 0.73 (0.17) −9.5 (9.8)

Mean and standard deviation across 38 participants.
a. For the expectation-maximization (EM) algorithm results, weighted correlation is used.
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points that was physiologically implausible to display 
the same pattern in several hormones and (2) outliers 
at the beginning or end of a time series. These types of 
outliers cannot be detected by fitting smoothing 
curves, which explains the 47 data points that were 
exclusively detected by eyeballing and not by stepwise 
approach or Tukey’s fences. However, a disadvantage 
of eyeballing is that it is time-consuming and depends 
on the individual reviewer’s background knowledge 
and subjective decision. If the number of reviewers is 
large enough and a consensus meeting is held, the pre-
cision may increase; however, the amount of time to 
reach a unanimous decision would take longer. Also, 
eyeballing is a one-off process that cannot be general-
ized to other settings.

Although Tukey’s fences is advocated as a non-
parametric approach, the method did not perform 
well in our case when applied with moving median 
curves instead of moving average curves. Especially 
when the hormone profile is mostly flat with sudden 
pulses, such as GH, Tukey’s fences with moving 
median curves detected a biologically implausible 
number of outliers (54.6% of the total data points). 
Therefore, when using Tukey’s fences to detect outli-
ers, we suggest researchers be aware of the type of 
their data and smoothing methods.

We introduced the stepwise approach as a new 
method to detect measurement errors in 24-h hor-
monal data. The advantage of the stepwise approach 
is that by using the standardized residuals, it facili-
tates detection of measurement errors caused by dilu-
tion, which may not have been identified by looking 
only into individual hormones. In addition, it is 
expected to be a more objective method than eyeball-
ing, as it explicitly incorporates the information from 
multiple hormones and applies the same cutoff val-
ues of standard deviations to every hormone. 
Furthermore, it is less time-consuming than eyeball-
ing and can be applied relatively easily to different 
hormonal data sets. Compared with Tukey’s fences, 
the stepwise approach has more flexibility to incor-
porate physiological knowledge, such as adopting an 
asymmetrical cutoff or removing glucose measure-
ments lower than 2.8 mmol/L. However, the perfor-
mance of the method may depend on parameters 
such as a time window for moving average or cutoff 
points of standard deviations. These parameters still 
require decisions and need to be chosen with care; the 
decisions should also be clearly reported. Another 
disadvantage of the stepwise approach, which also 
applies for eyeballing and Tukey’s fences, is that we 
discard data according to a dichotomous division. 
Whether a data point is an outlier or not is often 
dependent on the degree of belief instead of a clear 
dichotomous distinction. Furthermore, this dichoto-
mous distinction reduces the statistical power in fur-
ther analyses.

The strength of the EM algorithm is that, instead of 
the dichotomous distinctions, it gives probabilities of 
each point to be an outlier. Therefore, we acquire extra 
information that can be incorporated in further analysis 
such as for probability weighting. In addition, the EM 
algorithm requires less prior knowledge compared with 
the previously discussed methods. However, a critical 
disadvantage of the EM algorithm is that we cannot 
ensure whether the 2 identified distributions are actu-
ally distinguishing outliers and nonoutliers. In our data 
set, it was not plausible for the detected points to be 
detected as outliers from a physiological perspective.

The performances of Tukey’s fences, stepwise 
approach, and the EM algorithm could depend on which 
smoothing technique is applied. Moving average, which 
was used in the study, does not require extensive model-
ing and is able to capture local fluctuations of hormone 
concentration. However, it may smooth out the transient 
increase of hormone concentration and lead to the detec-
tion of true measurements as outliers. The stepwise 
approach takes this shortcoming of moving average into 
account by setting different cutoff values for positive 
and negative residuals. There are, however, more 
advanced model-based smoothing techniques, such as 
deconvolution analysis, which takes underlying dynam-
ics of hormone secretions into account (Brown et  al., 
2001; Faghih et al., 2014). These methods were not con-
sidered in this study as our aim was to compare outlier 
detection methods that could be easily adopted by 
applied researchers in a preanalysis phase.

To test the efficacy of the outlier detection methods, 
we simulated 24-h hormonal data and measurement 
errors as comparable as possible to real data. The advan-
tage of the simulation study is that we know which data 
points are true measurement errors. We compared the 
performance of the stepwise approach, Tukey’s fences, 
and the EM algorithm. The simulation description and 
the results are attached as an appendix (see Supplementary 
Material, Appendix 2). The EM algorithm resulted in a 
high percentage of true measurements wrongly detected 
as errors, especially when a simulated hormone has a 
higher variation during the day than during the night. 
Most methods yielded relatively low percentages of true 
errors detected. This could be due to the fact that some 
simulated errors are close to fitted curves, while the 
methods we compared are based on detecting errors that 
deviate from the curves. For detecting dilution errors, the 
stepwise approach performed better than the other meth-
ods. This is because the stepwise approach could detect 
dilution errors that did not deviate much from the curves 
by taking the sum of the residuals from all hormones.

In this study, the effect of removing outliers on the 
cross-correlation between glucose and insulin had no 
major impact at a group level. Note that these results 
may not be generalized to other statistical outcomes, 
such as deconvolution analysis and approximate 
entropy analysis, which are also common analyses for 
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24-h hormonal data. Furthermore, glucose and insulin 
are strongly cross-correlated; however, when 2 hor-
mones are less strongly correlated, the impact of 
removing outliers may be higher.

CONCLuSIONS

Based on our results, we generally recommend the 
methods that incorporate physiological knowledge 
over the data-driven methods. The EM algorithm is not 
recommended for outlier detection in 24-h hormonal 
data, since the method seems to falsely distinguish true 
biological variations due to circadian factors, such as 
meal response or day-night differences, as outliers. 
Tukey’s fences, the other data-driven method, is not rec-
ommended in 24-h hormonal data. Since no statistical 
assumptions have to be made and fewer data points 
will be removed, eyeballing could be a good method for 
detecting outliers. However, since it is time-consuming 
(depending on the number of participants studied), it 
might not always be practical. The strengths and limita-
tions of each method are presented in Table 4.

In conclusion, we recommend the stepwise 
approach for detecting outliers in serial 24-h hor-
monal data, since this method combines both physio-
logical knowledge and an automated process. 
However, decisions such as which standard deviation 
cutoffs should be applied or which hormones can be 
used together in the method should be supported by 
solid physiological knowledge. The stepwise 
approach is especially suitable for data of several hor-
mone measurements from the same tube and when 
dilution is a possible cause of measurement errors. In 
this case, the outlier detection process can be improved 
by taking, alongside the hormonal measurements, a 
reference measurement whose concentration is stable 
over the day, such as creatinine or urea.

Although the methods showed different perfor-
mances in outlier detection, this had little impact on 
the statistical outcomes. Overall, 24-h means and 
cross-correlations did not change materially, but on an 
individual basis, correlations might change. The influ-
ence of outliers might depend on the study’s sample 
size and outcome of interest. We recommend research-
ers be aware of the potential influence of measure-
ment errors in their study, consciously decide which 
method to choose for outlier detection, and determine 
whether it is necessary to remove outliers at all.
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Table 4. Characteristics of 4 outlier detection methods.

Eyeballing Tukey’s Fences Stepwise Approach
The Expectation-

maximization Algorithm

Underlying 
assumptions

•• Researchers’ expert 
knowledge is reliable

•• Hormones follows a smooth trajectory over 24 hours •• Two distinguishable 
distributions (outliers/ 
non-outliers)

Efficiency and 
generalizability of 
the method

•• Relatively time-
consuming process

•• Different experts’ 
knowledge is required 
for different types of 
data

•• Although it needs several adjustments for different types of time series (e.g., 
parameters for smoothing curves), the processes can be easily applied to different 
settings

Strength and 
limitations

•• Explicit knowledge 
and clear physiological 
reasoning behind the 
detection process

•• Disagreement between 
experts may happen

•• The method is highly 
affected by smoothing 
techniques and the type 
of data, especially when 
the hormone levels are 
mostly constant over time

•• Measurement error 
both within a hormone 
and within a sample 
can be detected

•• Yields a probability
•• Need a large sample to 

be able to distinguish 
two distributions
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