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ABSTRACT
Background Injuries are often recurrent, with
subsequent injuries influenced by previous occurrences
and hence correlation between events needs to be taken
into account when analysing such data.
Objective This paper compares five different survival
models (Cox proportional hazards (CoxPH) model and
the following generalisations to recurrent event data:
Andersen-Gill (A-G), frailty, Wei-Lin-Weissfeld total time
(WLW-TT) marginal, Prentice-Williams-Peterson gap time
(PWP-GT) conditional models) for the analysis of
recurrent injury data.
Methods Empirical evaluation and comparison of
different models were performed using model selection
criteria and goodness-of-fit statistics. Simulation studies
assessed the size and power of each model fit.
Results The modelling approach is demonstrated
through direct application to Australian National Rugby
League recurrent injury data collected over the 2008
playing season. Of the 35 players analysed, 14 (40%)
players had more than 1 injury and 47 contact injuries
were sustained over 29 matches. The CoxPH model
provided the poorest fit to the recurrent sports injury
data. The fit was improved with the A-G and frailty
models, compared to WLW-TT and PWP-GT models.
Conclusions Despite little difference in model fit
between the A-G and frailty models, in the interest of
fewer statistical assumptions it is recommended that,
where relevant, future studies involving modelling of
recurrent sports injury data use the frailty model in
preference to the CoxPH model or its other
generalisations. The paper provides a rationale for future
statistical modelling approaches for recurrent sports
injury.

INTRODUCTION
Sports injuries are often recurrent in that some
people experience more than one sports injury over
time. There is wide recognition that subsequent
injury (of either the same or a different type) can
be strongly influenced by previous injury occur-
rences.1–4 Such recurrent injuries are unlikely to be
statistically independent, and appropriate statistical
methods need to be used to analyse such data
accurately.5–8 While different modelling approaches
have been used to report recurrent event data, such
as modelling the within-person total number of
events or time to the first event, they have often
been naïve in the statistical sense in that they do
not take correlation between events into account or
have excluded important detailed information
about the subsequent events.9 Over the last decade,
there have been some significant statistical advances
in the modelling of recurrent event data.7 10–12

While there has been some application to health

data,9 13 these methods are yet to be reported in
sports medicine applications. This means that many
models of the likelihood of recurrence of sports
injury, or for understanding causal relationships
when conditions can be recurrent, could be flawed,
leading to incorrect information being used to
inform prevention priorities and programmes.
A key statistical challenge inherent in analysing

recurrent injury data is that the probability of
injury occurrence is likely to be influenced by
earlier injuries, even when they are not of exactly
the same type; this can be manifest as an injury
either raising or lowering the rate of further injury.
This is important because analyses that incorrectly
treat different within-person injuries as statistically
independent run the risk of generating misleading
results. Ignoring potential within-person event
dependency leads to reported greater precision
than is warranted and possible biasing of results
away from the null. A second statistical issue is that
many naïve statistical approaches implicitly restrict
the baseline probability of injury, and the influence
of covariates on this, to be the same across all injur-
ies when, in fact, they vary across people and dif-
ferent injury types. Across people, this variability
implies that some will have inherently higher or
lower rates of different subsequent injuries.
Together, these statistical issues mean that in any
recurrent injury dataset there will be different
within-person correlations across people and that
the within-person injury times will be dependent.
Any correlation among injuries (whether produced
by event dependence or variability) will violate
assumptions that the timing of injuries is independ-
ent, and result in problems of estimation and incor-
rect inference if not properly taken into account.
Despite many studies documenting the incidence

of sports injuries, and recognition of the recurrent
nature of many injuries,14 appropriate statistical
modelling for recurrent sports injuries has largely
been absent from published studies. In general, sub-
sequent sports injury has been handled statistically
in one of three ways. The majority of cohort
studies have reported Poisson counts and calculated
injury rates as the total number of injuries per unit
time, even when many players contribute more
than one injury occurrence to the numerator.
Inherently, such calculations treat all injuries within
given players as independent. When these studies
have recognised that injury history can predict
injury risk, they have adjusted for it in regression
models by including a dichotomous predictor
representing ‘previous injury history? (yes/no)’. On
the rare occasion when researchers have recognised
within-player injury dependency, they have only
modelled the time to first injury and have excluded

Open Access
Scan to access more

free content

Ullah S, et al. Br J Sports Med 2014;48:1287–1293. doi:10.1136/bjsports-2011-090803 1 of 8

Original article

http://crossmark.crossref.org/dialog/?doi=10.1136/bjsports-2011-090803&domain=pdf&date_stamp=2012-08-07
http://bjsm.bmj.com
http://www.basem.co.uk/


valuable information about any subsequent injuries from consid-
eration.15 16 To progress recurrent sports injury epidemiology,
there is a need for guidance in the most appropriate statistical
models for these data.

Several event history model variations based on the Cox pro-
portional hazards (CoxPH) model17 have been proposed for the
analysis of repeated events but their application leads to differ-
ent results because of the different assumptions they make about
the data they are modelling.5 12 18–24 In practice, the choice of
the most appropriate model depends upon the: (a) distribution
of subsequent event times; (b) within-person correlation of sub-
sequent events; (c) frequency of the recurrent events; and (d)
the specific research question being posed at the time (eg, esti-
mation of population-level effects of covariates as averaged
across people or describing event dependency within
people).9 25 A major statistical consideration is therefore how to
address both the players at risk and the subsequent injuries
appropriately.

In the general recurrent event literature, extensions of the
CoxPH model are popular because they enable all events for
each individual to be analysed. Application of four prominent
regression models (Andersen-Gill (A-G),26 frailty,27

Wei-Lin-Weissfeld total time (WLW-TT) marginal model,28

Prentice-Williams-Peterson gap time (PWP-GT) conditional
model29) yield different results because of their different under-
lying assumptions. To our knowledge, these models have not
been previously applied and compared in sports injury epi-
demiological studies and so it is currently unknown which of
these is the most suitable for modelling recurrent sports injuries.

The aim of this paper is to (a) summarise the issues that need
to be considered when modelling recurrent sports injury data
where the time before/between injuries is of interest and (b) to
assess and compare the suitability of the CoxPH model and its
extensions for modelling such data. The methods and model
comparison are demonstrated on Australian National Rugby
League (NRL) injury data to provide defensible guidance on
how to appropriately model recurrent sports injury data.

METHODS
The data
To demonstrate and compare the applicability of different exten-
sions of the CoxPH model to a real-world data example, injury
data were obtained on 35 players from a professional rugby
league club competing in the 2008 Australian NRL competition.
Injury and participation data were collected from 29 matches
(including all trial, fixture and finals matches). Injuries were
defined as conditions associated with pain or disability that
occurred during match participation, irrespective of the need
for first aid, medical attention or time loss.30 In the context of
this paper, a recurrent injury was said to have occurred if a
person sustained more than one injury over the 29 matches,
irrespective of whether or not it was to the same body region or
of the same type. For this paper, only data on all contact injuries
(defined as those resulting from tackling, being tackled, collision
and accidental contact) were extracted. All players received a
clear explanation of the study, including the risks and benefits of
participation and written consent was obtained. The study was
approved by the University of Queensland Human Ethics
Committee.

The models
The CoxPH model and four recurrent event generalisations
were applied to the sports injury data. The time variable was
taken to be the match number (range 1–29). Major statistical
challenges with this sort of data are how to address the number
of recurrent events and the number of players at risk appropri-
ately. Four components were considered for the recurrent event
model:5 (a) risk interval which defines when a player is at risk
of having an injury along a given timescale and determines
whether a model is either marginal or conditional; (b) risk set
or the number of players included in the set at a given point in
time; (c) an event-specific or common baseline hazard; and (d)
handling of within-subject correlation. Table 1 summarises how
these components are defined for each of the four models con-
sidered in this paper.

Table 1 Statistical specifications and assumptions in relation to the risk interval, risk set, baseline hazard and within-person correlation in the
extended Cox proportional hazards (CoxPH) models

Components Andersen-Gill (A-G) Frailty
Wei-Lin-Weissfeld total time (WLW-TT)
marginal

Prentice-Williams-Petersen gap
time (PWP-GT) conditional

Risk interval Duration since starting
observation

Duration since starting observation Duration since starting observation Duration since previous injury

Risk set for
injury k attime t

Independent injuries (any
given injury occurrence is
not affected by previous
injuries)

A random effect (or frailty) term is
used to account for the within-player
correlation between injuries to enable
modelling of the phenomenon by
which some players are intrinsically
more or less susceptible to
experiencing a given injury than
others are

All players who have not experienced injury
k at time t

All players who have experienced
injury k−1, and have not experienced
injury k at time t

Baseline hazard Common/same baseline
hazard across all injuries

Heterogeneity is directly incorporated
via a random effect so that the
baseline hazard is allowed to vary
with each injury

Common baseline hazard for all injuries
within a player

Stratifies the data by injury so that the
baseline hazard is allowed to vary
with each injury

Within-person
correlation

The within-person injuries
are independent

Captures within-person correlation due
to both injury dependence and
heterogeneity

The within-person injuries are independent The current injury is unaffected by
earlier injuries that occurred to the
player

Comment A-G model is
recommended when there
is no injury dependence
and no covariate/injury
effects

The frailty approach accounts for
heterogeneity. The random effect (the
frailty) has a multiplicative effect on
the baseline hazard function and the
mixture of individuals with different
injury risks

At any time point (matches), WLW-TT
describes all players who have not yet
experienced k injuries are assumed to be at
risk for the kth injury which is not realistic
in the sports setting injury data

PWP-GT model takes into account the
ordering of events
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The following three risk intervals were considered: (a) gap
(or interoccurrence) time representing the time from the prior
injury event and not relative to the actual timeline of observa-
tion; (b) calendar time which uses the same timescale for all
events, referenced to a fixed point in time, but does not allow
an overlap in risk periods across events for a given player; and
(c) total time representing the time from the start of the player
follow-up. In each case, the interval ends with the current
injury. In both the gap time and calendar time representations,
the player is at risk for the same length of time. Gap and calen-
dar time models are conditional since a player is at risk of a new
injury, conditioned on having sustained a previous injury. For
total time, the clock does not reset for each event and the begin-
ning of each event is at the same point in the observation time-
line; risk periods for different events for the same player
overlap. Total time models are marginal since the player is at
risk from the start of play, independent of any previous injury.
Irrespective of the definition, the risk interval for the first injury
is the same.

Figure 1 describes these risk intervals in more detail, through
the specific examples of three players (figure 1A). In the gap
time representation, after an injury event, the player resumes
play again at time 0 and the time to the next event corresponds
to the number of matches that it takes for that player to experi-
ence the next event. The occurrence of all events after the first
is modelled on a timescale relative to the prior event and not
relative to the actual timeline of observation. Thus, the gap time
(figure 1B) for our example indicates that player A is at risk of
his first injury during 0–2 matches, and of his second, third and
subsequent injuries during 0–18 matches, 0–6 matches and 0–1
match, respectively. In the calendar time (figure 1C), player A is
at risk for his first injury event during 0–2 matches, and his
second, third and subsequent injuries during matches 2–20, 20–
26 and 26–27, respectively. The total time (figure 1D) indicates
that player A is at risk for his first, second and subsequent injur-
ies during 0–2, 0–20, 0–26 and 0–27 matches, respectively.

The Kaplan-Meier (K-M) method is used to estimate the sur-
vival function non-parametrically from observed (censored and
uncensored) survival times.31 The CoxPH model with time to
first injury event as the outcome variable is a regression model
used to estimate the survival probability after adjusting for both
baseline hazard and explanatory variables. This model counts
the players at risk at the time of this first event, after which they
are no longer considered to be at risk. The result is an estima-
tion of the probability of remaining free of injury for a given
point in time based on the observed injuries. The steps in the
K-M curves show changes in the probabilities of remaining free
of injury for various matches across the group of players, when
first injuries occur in new players.

The A-G model is a simple extension of the CoxPH model
where players contribute to the risk set for an event as long as
they are under observation at the time the injury occurs and
share the same baseline hazard function. However, the A-G
model requires the strongest statistical assumptions including
that of an independent increment in which any given injury
occurrence is not affected by previous injuries, that is within
players, injuries are independent. This restriction means that
injury dependence cannot be included and the A-G model
inherently assumes that injuries do not change the player and
that the player does not learn from previous injuries. Moreover,
this model does not allow investigation of effects that might
change based on injury-specific covariate effects, but there is the
possibility of incorporating injury dependence via time-
dependent covariates. Given these limitations, the A-G model is
recommended when there is no injury dependence and no cov-
ariate/injury effects.

Analysis of recurrent injury data frequently assumes that the
player injury histories are all statistically independent (at least
conditionally on observed time-fixed covariates) so that the
interoccurrence times appear in an independent manner.
However, some players are intrinsically more or less susceptible
to experiencing an injury than others. The frailty model is

Figure 1 Illustrations of the risk interval formulations: (A) three players with recurrent injuries; (B) gap time; (C) calendar time; (D) total time. A
circle (•) indicates an injury event and a solid square (▪) indicates censoring. Each time to an event or censoring is a separate risk interval.
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characterised by its inclusion of a random effect, or frailty, term
can account for the within-player correlation between injuries.
If the frailty is less than 1, a player tends to experience the
injury at a later time than another player, whereas the opposite
occurs if the frailty is greater than 1.

The WLW-TT model is a marginal model and assumes a
common baseline hazard for all injuries within a player.
Marginal models consider the marginal distribution of each
failure time and impose no particular structure of dependence
among distinct failure times on each player. Each recurrence is
modelled as a different stratum and each stratum is treated as
marginal data. This model is marginal with respect to the risk
set since each player is at risk from the beginning of the study
and can be at risk for several events simultaneously.

The PWP-GT model is a conditional model which allows for
event dependence via stratification by event number so that dif-
ferent events can have different baseline hazards. The main dif-
ference to the marginal model is that a player cannot be at risk
for the later injury until a prior event occurs. This conditional
model preserves the order of sequential injuries in the creation
of the risk set and therefore incorporates injury dependence.
The PWP-GT model is estimated with the data organised in
interoccurrence/gap time (ie, gap time risk set or time since the
previous injury).

Model estimation and evaluation
The outcome being modelled is the probability of remaining
injury-free over the 29 matches. As shown in table 1, different
model formulations handle the time variable in relation to
injury occurrence differently. All models were fitted using the
cph function of the Design package within R (Version
2.12.2).32 33 The strata, cluster and frailty functions were used
to fit the extended CoxPH models. The proportional hazard
assumption test was performed using the cox.zph command. All
models were adjusted by age, match experience and body mass
of the players as known confounders of injury risk in NRL
players. The R code is available from the authors, upon request.

K-M curve representations of the observed probability of
remaining free of injury were used to provide a visual compari-
son of each model fit. The log likelihood (LL), Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC)
were used to compare the goodness of fit of the fitted models in
terms of fitting the observed data.34 35 A lower AIC or BIC indi-
cates a better fit to the observed data and two models can be
compared by comparing the differences in the AIC or BIC, with
preference being given to the model with the smallest criterion
measure.36 A simple rule of thumb is that models are not differ-
ent if the difference in AIC is less than 2; there is minor evi-
dence of difference when the AIC ranges from 2 to 4, and there
is strong evidence for a difference with the AIC difference is
more than 10. When comparing BIC, differences ≤2 are consid-
ered weak, those >2 but ≤6 are positive, those >6 but ≤10.0
are strong and BIC differences >10 are very strong.37

Model accuracy
The most common criterion for evaluating the performance of a
statistical model is its accuracy in terms of data fit. In this sense,
the model accuracy is an assessment of the closeness of estimates
to the exact (or observed) value and can be computed on a
point-by-point basis. The most widely used measures of accur-
acy are the mean-squared error (MSE), the root MSE, the mean
absolute error and the mean absolute percentage error.38

Smaller values of each of measure indicate more accurate and

reliable models. Further details about these measures can be
found in Hyndman and Koehler.39

Comparing the models
Three test criteria were used to compare the fitted models: like-
lihood ratio (LRT), F40 and bootstrap tests.41 42 All tests
compare two models where one model is an extension to the
other (ie, the models are nested, with the simpler model being
contained as a subset of the more complex one). For example,
the A-G model is nested within the frailty model and compari-
son of the two models can test if there are random effects com-
ponents for recurrent events that need to be modelled (as
considered by the frailty model, but not the A-G model).

As an example, the LRT begins with a direct comparison of
the likelihood scores of the two models and tests whether the
frailty is necessary for analysing recurrent sports injury events. A
significant LRT suggests that a random effect (frailty) accounts
for the within-player correlation between injuries. A similar
approach is used for the F-ratio test.

In the bootstrapping procedure, a large number of random
samples are generated.41 The observed test statistic is then com-
pared with the test statistics calculated from the bootstrap
samples. Although there are many ways to use the bootstrap for
hypothesis testing, the method of Walters and Campbell42 for
computing a bootstrap p-value corresponding to the observed
value of a test statistic Twas used.

Simulation framework
Finally, a simulation approach for calculating the size and power
of the models was undertaken.43 One hundred sets of injury
data were simulated from the exponential distribution and the
bootstrapping procedure was applied 100 times to each gener-
ated dataset to obtain the significance level of the test. Within
the context of model selection, power and size estimates are
based on the proportion of replications that indicate acceptable
fit, with greater numbers of replications resulting in smaller CIs
(higher power, more accuracy) around the estimates.
Simulations were run on a bi-processed Pentium 4 machine with
a 3.20 GHz processor and 2.0 Gb RAM memory. The data-
generating process was performed using the SimSurv function
of the prodlim package44 from R version 2.12.2,33 operating on
a Windows XP professional platform.

RESULTS
Overall, 47 contact injuries were sustained by the 35 players
during a total of 557 player appearances. The median follow-up
time was 18 matches (range 1–29 matches). More than half of
the players (54.3%) sustained 1–6 injuries, with 40% sustaining
>1 injury over the 29 matches (table 2). The most common site
of injury was the head and neck (26% of all injuries). The inci-
dence of injury was similar for the shoulder, thigh, calf and
knee (13%). Sprains (32%), contusions (26%) and haematomas
(17%) were the most common type of injury. The majority of
injuries occurred while tackling or being tackled (47%).

Figure 2 shows the timing of the incidence of each injury
event in relation to the total number of matches (each of 80
min or 1.33 h duration). Censoring sometimes occurred when a
player (a) had not experienced the relevant outcome, by the end
of the season; (b) was lost to follow-up; or (c) experienced a dif-
ferent event that made further follow-up impossible. The data
structure shows the complex nature of the recurrent injuries in
that, in some players, several injuries occurred and the time
between injuries also differed across players.
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Figure 3 shows the K-M survival curves as a means of com-
paring the CoxPH model and its generalisations. The K-M
curves estimate the probability of remaining free of injury at a
given point in time based on observed recurrences. All players
were free of injury at the beginning of the season and survival
rates were lower after every match, during which injuries
occurred. Almost 95% of players were injured by the end of 29
matches. The Cox proportional regression model provided the
best fit for the first few matches and the worst fit for the remain-
ing matches. This is not surprising given that the CoxPH model
only considers the time to the first injury. The fit was also rela-
tively poor for the WLW-TT and PWP-GT models. The A-G26

and frailty models provided the best fit for modelling recurrent
sports injury data.

Table 3 shows the LL, AIC and BIC criteria for the fitted
models. The AIC and BIC results provide strong evidence that
both the A-G and frailty models perform better than the
WLW-TT, PWP-GT and CoxPH models. Although the differ-
ences in LL were indistinguishable, the A-G and frailty models
showed minor AIC differences but strong BIC differences in
fitting the recurrent events.

Table 4 compares the fit of the five models to the injury data
according to the four accuracy measures. On all measures, the
CoxPH model had a poorer fit than each of its extensions.
Although there was little difference in fit between the two, the
frailty model performed a little better than the A-G model.

The p-values from the pairwise LRT, F and bootstrap model
comparison tests are shown in table 5. The estimated p-values
comparing the A-G and frailty models, all being >0.05, show
that these models are indistinguishable and either model could
be used for analysing the recurrent sports injuries in this paper.
There was no significant difference between the A-G and
PWP-GT models but the A-G model was statistically different
from the WLW-TT model. The CoxPH was significantly differ-
ent only to the frailty model.

Table 6 shows that the bootstrap simulation tests were per-
formed satisfactorily for each pair of models. However, the
actual sizes and powers were slightly different from the simu-
lated model sizes and powers. For example, the simulated model
size superseded the actual size and simulated model power pre-
ceded the actual power at 10% level of significance, when the
WLW-TTand PWP-GT models were considered.

DISCUSSION
Knowing how to choose the best model for analysing recurrent
events in sports injury settings is important for the generation of
accurate and reliable information to guide priority setting for
targeting of intervention investments to tackle the sports injury
problem. Although there are some guidelines on how to appro-
priately model injury count data,45 46 little prior attention has
been paid to the analysis of recurrent injury data. A recent con-
ceptual model has described how and why recurrent injuries are
a problem in the sports injury context, but gives no guidance on
how to analyse such data.14 Analysis of recurrent sports injury is
complex and researchers interested in this are advised to collab-
orate with a statistician.

The need to correctly statistically model recurrent events
occurs in many clinical trials, longitudinal epidemiological
studies and sociological research.13 47–51 Sports injury studies
often report recurrent events because players can experience
more than one injury event over a playing season.14 Sports
injury prevention is dependent on players’ ability to tolerate
repeated exposures to injury risks while being active in their
sport. In terms of injury risk, it is likely that some of the risk
factors for a subsequent injury will also be implicated in the
initial injury. However, these injuries could also occur because
an injured player continues to participate in their sport with
some modification of their techniques, physical adaptation or
mal-adaptation, complete/incomplete recovery from injury or a
combination thereof. This means that their risk of further injury
will no longer be the same as for their first injury.52

In the sports injury literature to date, recurrent injuries have
been considered from a clinical management and return-to-play
(or time away from sport to recover from injury) perspective.1–
3 15 53 54 Sports injury surveillance guidelines and several con-
ceptual papers describe the complex issues associated with prop-
erly classifying injuries as recurrent, re-injury, exacerbations or
overuse.4 55–58 None of this prior work, however, has discussed
recurrent injuries from a statistical viewpoint, and so adequate
recognition of the various dependencies both within and
between injured players is lacking in the sports medicine
literature.

In the case of injury count data, sports injury counts have
been most commonly analysed in the literature as Poisson
counts. When players would reasonably be expected to sustain
more than one injury, it would be more correct to apply nega-
tive binomial models, as we have shown when modelling falls in
older people.46 The present study offers a comprehensive
approach to guide the choice of different survival models when

Figure 2 Recurrent injury history of 35 professional rugby league
players. The event of interest is any contact-injury sustained by a
player, which is denoted by a circle (○). Censored data which arise
when the outcome injury status is either not-injured or unknown is
denoted by solid squares (▪).

Table 2 The distribution of number of injuries sustained by 35
National Rugby League players, the respective number of matches
with a number of injuries and the injury incidence rates per 1000
matches

Number
of injuries

Number
of players

Total
number of
injuries

Proportion
of players

Total
number of
matches

Injury
incidence
rates

0 16 – 45.7 134 –

1 5 5 14.3 107 46.7
2 7 14 20.0 133 105.3
3 2 6 5.7 55 109.1
4 4 16 11.4 108 148.1

5 – – – – –

6 1 6 2.9 20 300.0
Total 35 47 557
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modelling recurrent sports injury data when the time to events
is of prime interest, rather than only an overall count.

Although the CoxPH model is the most commonly used
approach for analysing time-to-event data, it fails to take into
account the extra variability of the recurrent events and, as this
paper has shown, provides only poor fit to recurrent sports
injury data. This is perhaps not surprising given that it only con-
siders the time to the first injury and discards the remaining

injuries. This is a critical limitation because it means that
important information about injury occurrence and associated
risk factors is potentially excluded from current models which
only consider the time to first injury.

Each of the four tested generalisations of the CoxPH model
(A-G, frailty, WLW-TTand PWP-GT models) provided a substan-
tial model improvement over the CoxPH model. In general, the
A-G and frailty models performed best and provided better data

Figure 3 Standard Kaplan-Meier (K-M) curves for probability of remaining free of injury for 35 professional rugby league players. Actual and fitted
survival curves from (A) CoxPH model, (B) A-G model, (C) frailty model, (D) WLW-TT model and (E) PWP-GT model. The grey shaded regions are
95% CIs for the fitted survival curves. Models were adjusted by age, match experience and body mass of the players.

Table 3 Model selection criteria (log likelihood (LL), Akaike
information criterion (AIC) and Bayesian information criterion (BIC))
of the fitted models for sports injury recurrent data*

Model

Model selection criteria

LL AIC BIC

Andersen-Gill (A-G) 135.0 275.9 355.6
Frailty 134.9 277.9 378.0
Wei-Lin-Weissfeld total time (WLW-TT) marginal 158.1 334.2 487.6
Prentice-Williams-Petersen gap time (PWP-GT)
conditional

154.8 327.7 481.1

*The LL, AIC and BIC were not reported due to the small estimated likelihood for the
CoxPH model for only the first event.

Table 4 Mean square error (MSE), root mean-squared error
(RMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE) of the fitted models for sports injury recurrent data

Model

Model accuracy measures

MSE RMSE MAE MAPE

Cox proportional hazards (CoxPH) 0.04 0.19 0.15 0.64
Andersen-Gill (A-G) 0.001 0.04 0.03 0.13
Frailty 0.001 0.03 0.03 0.12
Wei-Lin-Weissfeld total time (WLW-TT) marginal 0.03 0.18 0.15 0.64
Prentice-Williams-Petersen gap time (PWP-GT)
conditional

0.01 0.10 0.09 0.47
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fits to the recurrent sports injury data when compared to both
WLW-TTand PWP-GT models.

There was no statistical difference between the A-G and frailty
models when applied to the NRL recurrent injury data analysed
in this study in terms of model selection, goodness of fit or accur-
acy. This was confirmed with the simulation substudy.
Nonetheless, as the frailty model requires fewer data assumptions
than the A-G model and it does allow investigation of effects that
might change based on injury-specific covariate effects (which
the A-G model does not), it is recommended that the frailty
model be adopted when analysing recurrent sports injury data in
the future, when this is consistent with the research question.

The A-G model is the most simple variance-corrected model
and incorporates robust variance estimators, which have good
statistical properties under some circumstances. This model can

also be used to adjust for covariate effects. The frailty model
includes a random effect (frailty) to account for the within-
subject correlation between injuries and so is a more general
model, with fewer assumptions. In the case where there is sig-
nificant within-person correlation (as applies to our injury data),
Kelly and Lim5 recommend the use of frailty models, which
incorporate random effects because they fit the data better than
the PWP-GT model.

The statistical model comparison was only conducted on a
small injury sample, and it is possible that different conclusions
may arise when applied to other injury contexts. We have recently
applied the frailty model to other rugby league injury data,
including for the purposes of risk factor identification, indicating
its likely robustness for this sort of recurrent injury data.59 60

Although the frailty model has offered the best fit to the rugby
league recurrent injury count data in this study, this does not guar-
antee that this model would offer the best fit for other sports
injury data sets, and this would need further exploration.
Nevertheless, the fitting procedures presented in this paper, and
the various model selection criteria, may be used as guidelines for
modelling recurrent injury data in other sports injury contexts.

In conclusion, sports injury data characterised by recurrent
events due to repeat or subsequent injuries over a period of
time need to be appropriately analysed to take into account the
different likely dependences within the data. Such data can be
appropriately analysed by either the A-G or frailty model, with
the frailty model representing a marginally better fit than A-G
model. The strength of the frailty model is that it considers indi-
vidual baseline injury risks for different players, makes fewer
statistical assumptions and also is able to model time-varying
covariates.

What this study adds

▸ A summary of the important statistical considerations when
analysing recurrent injury data.

▸ Guidance on the best statistical model to use for analysing
recurrent sports injuries.
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Table 5 Pairwise goodness-of-fit (likelihood ratio test (LRT),
F-ratio (F) and bootstrap (BS)) p-values for comparing the Cox
proportional hazards (CoxPH) model, Andersen and Gill (A-G)
model, frailty model, Wei-Lin-Weissfeld total time (WLW-TT)
marginal model and Prentice-Williams-Petersen gap time (PWP-GT)
conditional model for sports injury recurrent data

Comparison of models

Goodness-of-fit p values

LRT* F BS†

CoxPH vs A-G‡ – – –

CoxPH vs frailty – <0.001 –

CoxPH vs WLW-TT – 0.67 –

CoxPH vs PWP-GT – 0.99 –

A-G vs frailty 0.84 0.50 0.85
A-G vs WLW-TT 0.03 0.03 0.02
A-G vs PWP-GT 0.20 0.08 0.14
Frailty vs WLW-TT 0.02 0.02 <0.001
Frailty vs PWP-GT 0.03 0.02 0.01
WLW-TT vs PWP-GT‡ – – 0.78

*LRT test is based on log likelihood and is not appropriate for comparing first event
model (CoxPH model) and recurrent events models (Cox extension models).
†The resampling procedure was based on the CoxPH model in the BS test and hence
the extended models were not fitted for first event only when compared with the
CoxPH model.
‡Models are not nested.

Table 6 Simulated estimates (based on 100 simulation
replications) of the size and power of the test to compare Andersen
and Gill (A-G) model, frailty model, Wei-Lin-Weissfeld total time
(WLW-TT) marginal model and Prentice-Williams-Petersen gap time
(PWP-GT) conditional model fitted to sports injury recurrent data*

Comparison
ofmodels

Simulated model size Simulated model power

Pr(P>α)=α Pr(P>β)=1−β

α=0.01 α=0.05 α=0.10 1−β=0.99 1−β=0.95 1−β=0.90

A-G vs frailty 0.02 0.04 0.08 0.99 0.99 0.92
A-G vs WLW-TT 0.03 0.08 0.13 0.97 0.93 0.88
A-G vs PWP-GT 0.03 0.05 0.11 0.99 0.96 0.93
Frailty vs
WLW-TT

0.02 0.05 0.10 0.96 0.90 0.86

Frailty vs
PWP-GT

0.01 0.04 0.09 0.98 0.93 0.89

WLW-TT vs
PWP-GT

0.01 0.04 0.18 0.98 0.90 0.80

*The re-sampling procedure was based on the Cox model in the bootstrap test and
hence the extended models were not fitted for first event only when compared with
the Cox regression model.
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