
animals

Article

Rapid and Non-Destructive Monitoring of Moisture Content in
Livestock Feed Using a Global Hyperspectral Model

Daniel Dooyum Uyeh 1,2,3, Juntae Kim 4 , Santosh Lohumi 4, Tusan Park 1,3,* , Byoung-Kwan Cho 4,* ,
Seungmin Woo 1,2,3, Won Suk Lee 5 and Yushin Ha 1,2,3,*

����������
�������

Citation: Uyeh, D.D.; Kim, J.;

Lohumi, S.; Park, T.; Cho, B.-K.; Woo,

S.; Lee, W.S.; Ha, Y. Rapid and

Non-Destructive Monitoring of

Moisture Content in Livestock Feed

Using a Global Hyperspectral Model.

Animals 2021, 11, 1299. https://

doi.org/10.3390/ani11051299

Academic Editors: Mélissa Duplessis

and Liliana Fadul-Pacheco

Received: 22 March 2021

Accepted: 28 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Bio-Industrial Machinery Engineering, Kyungpook National University, Daegu 41566, Korea;
uyehdooyum@gmail.com (D.D.U.); woosm7571@gmail.com (S.W.)

2 Upland-Field Machinery Research Centre, Kyungpook National University, Daegu 41566, Korea
3 Smart Agriculture Innovation Center, Kyungpook National University, Daegu 41566, Korea
4 Department of Biosystems Machinery Engineering, College of Agricultural and Life Science,

Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; biosch94@gmail.com (J.K.);
Santosh.sanny123@gmail.com (S.L.)

5 Department of Agricultural & Biological Engineering, University of Florida, Gainesville, FL 32611, USA;
wslee@ufl.edu

* Correspondence: tusan.park@knu.ac.kr (T.P.); chobk@cnu.ac.kr (B.-K.C.); yushin72@knu.ac.kr (Y.H.)

Simple Summary: Moisture content is an important parameter for monitoring the quality of feed and
feed materials as its established ranges serve as markers for safe storage, mixing, and feeding animals.
The moisture content of feed materials changes very rapidly and necessitates rapid measurement.
Current moisture content measurement methods are time-consuming, destructive, and require
specialized skills. This often causes reduced and/or delayed testing, which results in the spoilage of
feed and feed materials. Additionally, the improper balance of dry matter intake which is inversely
proportional to moisture content often causes metabolic diseases for animals consuming the diet.
To solve these, we have developed a rapid and non-destructive global hyperspectral model that
could quantify moisture content in feed materials. Our results show that the developed model is
robust, could provide a method to measure the distribution of moisture in feed, and has potential for
implementation in a commercial setting.

Abstract: The dry matter (DM) content of feed is vital in cattle nutrition and is inversely correlated
with moisture content. The established ranges of moisture content serve as a marker for factors such as
safe storage limit and DM intake. Rapid changes in moisture content necessitate rapid measurements.
A rapid and non-destructive global model for the measurement of moisture content in total mixed
ration feed and feed materials was developed. To achieve this, we varied and measured the moisture
content in the feed and feed materials using standard methods and captured their images using a
hyperspectral imaging (HSI) system in the spectral range of 1000–2500 nm. The spectral data from the
samples were extracted and preprocessed using seven techniques and were used to develop a global
model using partial least squares regression (PLSR) analysis. The range preprocessing technique had
the best prediction accuracy (R2 = 0.98) and standard error of prediction (2.59%). Furthermore, the
visual assessment of distribution in moisture content made possible by the generated PLSR-based
moisture content mapped images could facilitate precise formulation. These applications of HSI,
when used in commercial feed production, could help prevent feed spoilage and resultant health
complications as well as underperformance of the animals from improper DM intake.

Keywords: dairy cattle; dry matter intake; feed materials; metabolic diseases; multivariate analyses;
precision feed formulation; rapid and non-destructive measurement; safe storage; total mixed ration

1. Introduction

Moisture content is an important and widely used indicator in the processing and
testing of foods. The terms moisture content and water content have been used interchange-
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ably to designate the amount of water in a product. Since the dry matter in food is inversely
related to the moisture it contains, the moisture content is of direct economic importance
to the processor and the consumer. Grain that contains excess water is subject to rapid
deterioration from bacteria, mold growth, heating, insect damage, and sprouting [1]. In
the livestock industry, moisture content of feed materials, and total mixed ration (TMR)
for cattle is very important in preventing spoilage [2] and ensuring good health of the
animal. In most countries, TMRs are mixed on the farm. However, in some countries
such as the Republic of Korea, TMR feed is manufactured in factories, bagged, stored,
and sold to farms [2]. This is because most of the raw materials for feed production are
sourced internationally, which makes it difficult for small farmers (less than 50 cattle) [3]
to import, store, and process by themselves. The amount of water in the TMR feed and
feed materials can also be a factor to cause bacterial and fungal spoilage of feed when the
temperature is conducive [4]. However, microbial spoilage could occur in environments
with low moisture content at conducive temperatures [5]. In [6], the microbial activity of
selected feed materials was monitored at nine different moisture contents. In that study,
they established critical moisture contents between 16–46% to be favorable for microbial
growth to occur depending on the microorganism and material.

DMI is a factor that must be estimated before an animal’s diet can be properly formu-
lated. Routine monitoring of the dry matter content of feed ingredients is an important
strategy in preparing TMR for dairy cattle [7].

Estimating the moisture content could also help mitigate issues of sorting TMR feed
by dairy cattle. Sorting is part of the problems associated with feeding TMR to dairy cattle.
To solve the problem of sorting that could cause subacute ruminal acidosis, the addition of
water to dry TMR is conventionally considered to be a beneficial management practice. It
has been demonstrated that reducing TMR dry matter concentration from 80 to 64% [8]
results in a reduction in the extent of feed sorting against long particles and in favor of short
particles, a tendency for increased Neutral Detergent Fiber intake, and higher fat content in
the produced milk (3.41 vs. 3.31%) [8]. However, reducing the dry matter concentration
from 57.6 to 47.9% [9] encouraged greater feed sorting and reduced DMI in TMR containing
primarily forage sources. Rapid measurement of moisture content would help guide the
grower to control the right amount of water content in the TMR that would prevent sorting.

Currently, there are well-developed and commercialized non-destructive thermal
sensors. In [10], thermal imaging in agriculture was reviewed. Various specifications of
operational thermal sensors were provided. This study showed a wide range of thermal
imaging methods that can be used in measuring the temperature of the feed or feed
materials non-destructively and rapidly. However, in moisture content, the available
measurement methods include the use of a capacitance sensor for nuts and grains moisture
quantification [11] and a miniaturized non-destructive microwave sensor for measuring the
moisture content measurement of chickpea [12]. Furthermore, the near-infrared technique
has been widely applied for estimating water stress in crops [13], feed materials [14], and
in grains [15]. Additionally, change in the weight of materials before and after drying using
hot air ovens, microwaves, etc., is currently used for determining moisture content [16].

Additionally, with the considerable physical and chemical variations in the materials
used for formulating feeds, multiple non-destructive sensors would be needed to measure
each material. The above moisture content measurement methods of animal feed including
the conventional drying technique in a hot air oven are time-consuming and destructive.
The time-consuming factor could set back livestock feed production, as the materials are
also susceptible to rapid change, usually occurring before the results from the current
methods have been established.

Spectroscopic methods such as mid-infrared spectroscopy (MIRS), near-infrared spec-
troscopy (NIRS), and Raman spectroscopy have the advantages of being rapid and non-
destructive [17]. Near-infrared hyperspectral imaging [18] combines two-dimensional
object visualization obtained by spectral imaging and has the potential of effectively
describing constituent distribution in a sample with each pixel containing spectral informa-
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tion. This is added as a third dimension of values to the two-dimensional spatial image,
generating a three-dimensional data cube containing any absorption, reflectance, or fluo-
rescence spectrum data for each image pixel [19]. Hyperspectral imaging (HSI) integrates
conventional imaging and spectroscopy to obtain both spatial and spectral information
simultaneously from a sample at spatial resolutions varying from the level of single cells
up to the macroscopic objects giving it a comparative advantage of enabling rapid and non-
destructive automated screening on a large-scale [20]. Data acquired using HSI requires
preprocessing to remove the noises that it usually contains. These include noise of length
variation along the direction of light leading to non-linearities from the light scattering and
random and scattered noise produced from the device. These noises could considerably
influence the spectra and the prediction model. This makes preprocessing the data a critical
step before chemometric modeling to separate important wavelength information from
unnecessary redundant information contained in the data. Several spectral preprocessing
methods have been explored, depending on the type and level of noise. These methods
include minimum, maximum, and range normalization, multiplicative scatter correction
(MSC), standard normal variate (SNV), and Savitzky-Golay (SG) 1st and 2nd derivatives
methods [21]. HSI systems have been applied at paddock, plot, farm, and catchment scales
to determine the type and quality of forage [22], with no information on the factory scale,
as well as on heterogeneous samples like TMR and materials used in the formulation.

Consequently, in this study, we (a) investigated and determined the moisture content
of different TMRs, conventional and alternative materials using the standard oven method;
(b) investigated the influence of different wavelength and preprocessing methods on
prediction accuracy; and (c) developed a global model for moisture content determination
irrespective of the feed or feed material.

2. Materials and Methods
2.1. Sample Preparation of TMR Feed and Feed Materials

A TMR feed sample (composed of Timothy hay: 35% DM, corn silage: 24% DM,
palm-kernel expeller: 7% DM, almond pie 7% DM, rice bran: 9% DM, mushroom medium:
6% DM, soy sauce cake: 6% DM, and distillers’ dry grain: 6% DM), mixed and blended
by-products (composed of palm-kernel expeller: 15% DM, almond pie: 15% DM, corn bran:
20% DM, rice bran: 15% DM, mushroom medium: 15% DM, soy sauce cake: 15% DM and
distillers’ dry grain: 5% DM) and three major by-products (Palm-kernel expeller, almond
pie, and corn bran) commonly used as feed materials were acquired from a factory in
Gyeongju, Republic of Korea. The samples were processed specifically to alter the moisture
content in a way that created three treatments for each sample as described below:

a. Original TMR feed sample and feed materials (Figure 1A)
b. Samples with lower moisture content than the original TMR feed and feed materials

(Figure 1B)
c. Samples with higher moisture content than the original TMR feed and feed materials

(Figure 1C).
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To achieve this, a group of samples were kept in the original condition (one sample
from each group) as shown in Figure 1A. Another group was dried at 40 ◦C for a total
duration of 9 h 30 min (Figure 1B). One sample from each group was taken out of the
drying oven every 30 min (a total of 19 samples from one group) and poured into an airtight
plastic bag to achieve equilibrium moisture content. The last group was rewetted with an
incremental 5 mL of water to 200 g of sample (total of 20 samples from one group), mixed
thoroughly, and poured into an airtight bag to achieve equilibrium moisture (Figure 1C).
These resulted in a total of 40 samples with varied moisture content for each group (TMR
feed and feed materials). Equations (1) and (2) were used in computing the moisture
content.

The treated samples (drying and wetting) were tempered in airtight plastic bags for
24 h to achieve equilibrium moisture content.

a. The initial moisture content of the samples was determined using the standard oven
method (135 ◦C for 2 h) referring to Equation (1).

Mwb =
Wm

Wm + Wd
(1)

where Mwb is moisture content (MC) on wet basis (%), Wm is the weight of water in the
feed and feed materials and Wd is the weight of dry matter in the feed and feed materials.

b. The dry matter (DM) in the feed was computed using Equation (2).

DM = Wo × (1 − Mwb) (2)

where Wo is the initial weight of the feed and feed materials, and Mwb is the initial moisture
content of the feed and feed materials in decimal calculated using Equation (1).

The difference in weight of the wetted and dried feed and feed materials before
addition of water and drying and the DM (Equation (2)) were used in computing the new
moisture content. The Wm and Wd were estimated by measuring the weight of the feed or
feed materials before and after drying and wetting.

2.2. HSI Image Acquisition of TMR Feed and Feed Materials and Correction

The samples were prepared in a circular petri dish (φ 90 × 15 mm) with weight
depending on their densities (50–100 g). The surface of the samples was evenly distributed
in the petri dish before HSI acquisition.

A line-scan type short wave infrared hyperspectral imaging system was used in
acquisition of the images of the samples as shown in Figure 2. The hyperspectral imaging
system was made up of the following: (a) line scan type hyperspectral camera (Hyperspec
SWIR, Headwall Photonics, Fitchburg, MA, USA), (b) C-mount lens with 25 mm f/1.4 and
(c) a moving stage. The camera was operated in a spectral wavelength range of 894–2504
nm with a spectral interval of approximately 5.85 nm hence a total of 275 spectral bands. A
total of six 100 W tungsten-halogen lamps (Light Bank, Ushio Inc. Tokyo, Japan) with fiber
optics (three on each side) were used to illuminate feed samples. A computer programmed
motorized sample stage was integrated to move the samples towards the camera Field of
View (FOV). The sensing unit was linked to a computer through a frame grabber with a
standard camera link cable.

The petri dishes containing feed samples were placed onto the sample holder mounted
on the translation stage. The HSI data were collected with a 47 ms exposure time. The
distance of the sample from the camera lens was approximately 34 cm, and the samples
were measured with a scanning speed of 5.3 mm/s, and a total scan of 600 scans/sample.
As the stage moved, the samples were scanned line by line in the wavelength range of
894–2504 nm. The acquired hyperspectral images were saved in a three-dimensional format
containing two spatial dimensions (x and y) and a spectral dimension (λ). A total of 28 s
was required to measure a single feed sample.
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Figure 2. HSI system for spectral image acquisition from TMR feed samples: Computer unit (a);
Sensing unit consisting of a lens, spectrograph, and camera (b); Light sources (c); Sample holder (d);
and conveyor system (e).

2.3. Calibration of Spectral Images

Calibration steps were applied to remove the dark current noise and non-uniform
illumination effect from the sample images using the white and dark reference images
acquired during measurement. The dark image (0% reflectance) was obtained by turning
off the light source and covering the lens with a black lid, and the white image (~99%
reflectance) was obtained with a white Teflon board. Thus, the normalized reflectance
value was calculated using Equation (3).

XC =
TR

ij − TD
ij

TW
ij − TD

ij
(3)

where TR
ij (λ) is the raw reflectance image of the feed sample, TD

ij (λ) is the dark image,

TW
ij (λ) is the white image, and XC is the calibrated image. Where i and j are the pixel

number and waveband, respectively.

2.4. Preprocessing of Spectral Images

Calibrated feed sample images were preprocessed to remove background noises.
This was done to acquire an image containing only the sample (Figure 3) and avoid any
interference from the background [23]. For preprocessing of the image, a single waveband
image was selected from the hypercube. The hyperspectral band image of 1140 nm was
used to remove the irrelevant background pixels because of the highest peak of sample
at this band. This was because the plotted spectra showed the highest peak near 1140
nm waveband, thus the highest difference from the background. A threshold value (0.46)
was applied to turn all the sample pixels as 1 and the background pixels were turn to 0
(Figure 3). The threshold value was selected at the average value between the maximum
and minimum values of the feed and feed material samples and the background pixel
intensity. For perfect background removal, the final masked image was created using the
morphological method (image erodes and filling) in the masked image with the primary
background removed. The background free band image was then multiplied to each image
in hypercube to generate a background free hypercube.
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2.5. Pre-Processing of HSI Data Acquired from TMR Feed and Feed Materials

Optimal data collection is the most important step in developing hyperspectral imag-
ing models for the prediction of components. The acquired hyperspectral image spectrum
contains numerous noises, such as random noise, the noise of length variation along the
direction of light leading to non-linearities from the light scattering which could signifi-
cantly influence the spectra, and scattered noise produced from the device. Preprocessing
of spectral data is the most critical step before chemometric modeling using tools such as
Partial Least Squares (PLS) and Principal Component Analysis (PCA). Consequently, it is
necessary to preprocess spectra to separate important wavelength information from un-
necessary redundant information contained in the data [24]. In this study, several spectral
preprocessing methods were explored to correct HSI data. These include normalization
methods (minimum, maximum, and range normalization), Standard normal variate (SNV),
multiplicative scatter correction (MSC), and Savitzky-Golay (SG) 1st and 2nd derivatives
methods.

i. Multiplicative Scatter Correction (MSC)

Multiplicative Scatter Correction (MSC) is a concept where undesirable scatter effect
is removed from the data matrix preceding model development. Two steps are used in
MSC (Equations (4) and (5)):

a. Correction coefficient estimation

Xorg = bo + bre f ,1 . Xre f + e (4)

b. Logged spectrum correction

Xcorr =
Xorg − bo

bre f ,1
= Xre f +

e
bre f ,1

(5)

where Xorg is original sample spectra, Xref is reference spectrum, e is the unmodeled part of
Xorg, Xcorr is the corrected spectra, and b0 and bref,1 are scalar parameters.

ii. Standard Normal Variate (SNV)

Standard Normal Variate (SNV) is another method applied to scatter correction. The
basic format for SNV correction is the same as that for the conventional MSC (Equation (6)).

Xcorr =
Xorg − a0

a1
(6)

where a0 is the average value of the sample spectrum to be corrected, a1 is the standard
deviation of the sample spectrum.

iii. Savitzky-Golay derivations

Savtizky and Golay (SG) popularized a method for numerical derivation of a vector
that includes a smoothing step. To find the derivative at center point i, a polynomial is
fitted in a symmetric window on the raw data. When the parameters for this polynomial
are calculated, the derivative of any order of this function can easily be found analytically,
and this value is subsequently used as the derivative estimate for this center point. This
operation is applied to all points in the spectra sequentially. The number of points used to
calculate the polynomial (window size) and the degree of the fitted polynomial are both
decisions that need to be made. The highest derivative that can be determined depends on
the degree of the polynomial used during the fitting (i.e., a third-order polynomial can be
used to estimate up to the third-order derivative).

2.6. Development of Moisture Content Prediction Models for TMR Feed and Feed Materials

The preprocessed spectra were used to develop the partial least squares regression
(PLSR) model. PLSR is a multivariate analysis method used to assess the correlation
between various independent variables (X) and dependent variables (Y) [25]. Since a bad
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signal-to-noise ratio (SNR) was observed for the wavelengths above 1917 nm, because
of the sensitivity of the detector, we selected the waveband range between 894–1917 nm
(175 bands) excluding the noisier spectral region. The prediction after this wavelength
(1917 nm) is poor and not robust. Subsequently, the wavelengths that have a major influence
on moisture content prediction were selected based on the beta coefficient obtained from
developed PLS model. Additionally, the significant band for moisture content prediction in
this study was below the 1917 nm bands as also reported in [26,27]. The efficiency of PLS
regression model was evaluated based on the prediction accuracy (R2) and standard errors
for calibration, cross-validation, and prediction. Inappropriate numbers of latent variables
selection can cause under- or over-fitting, leading to suppression of spectral information,
incorrect model interpretation, and spectral noise in the regression model. Consequently,
the optimal number of latent variables was selected based on the lowest value of predicted
root mean square error (RMSE) by the leave-one-out cross-validation process during the
cross-validation (CV) process.

PLS regression was implemented as multivariate analysis and regression method to
determine the linear models of prediction between the spectral data (X-matrix, Nsamples ×
Kwavelengths) and the values of the parameters obtained from the reference measurement
(Y-matrix, Nsamples × 1). The linear relationship between X and Y is predicted using
Equations (7) and (8).

X = TPT + E (7)

Y = UQT + F (8)

where Y is the matrix of dependent variables conforming to the sample values measured
from the reference data obtained using standard oven methods and calculations in Equa-
tions (1) and (2). X is the n × p matrix of independent variables corresponding to the
spectral variables for each hyperspectral measurement. The matrix X decomposes into the
loading matrix P, score matrix T, and error matrix E. The matrix Y decomposes into the
loading matrix Q, score matrix U, and error matrix F.

Furthermore, the entire X and Y matrix data were divided into calibration and valida-
tion sets, which consisted of 70% of the data for calibration and 30% for validation.

2.7. Model Evaluation of TMR Feed and Feed Materials

The developed models were evaluated using several statistical parameters. This
includes coefficient of determination shown in Equation (9). The coefficient of determina-
tion encompasses calibration (R2C), prediction (R2P), and cross-validation (R2CV). Other
statistical parameters were the standard error of calibration (SEC), prediction (SEP), and
cross-validation (SEV).

R2 =
∑n

i=1

(
yi − Ŷi

)2

∑n
i=1

(
yi − Ȳ

)2 (9)

where the predicted and measured components in TMR feed and feed materials are Ŷi and
yi, respectively. The number of validation sets observations is denoted with n and the mean
of measured values is denoted with Ȳ.

2.8. Image Visualization and Moisture Content Distribution Map of Samples

The moisture content of the TMR feed and feed materials were computed for each pixel
to visualize the corresponding distribution made possible with each pixel in a hyperspectral
image possessing a spectrum. Although it is practically impossible to obtain the precise
quality parameters of every pixel within a sample by chemical analysis, it could be predicted
by the optimal calibration model. The hyperspectral image was unfolded into a two-
dimensional (2D) matrix and then multiplied by the regression (beta) coefficient obtained
from the best calibration model and applied to the selected wavelengths. The resultant
vector was then folded back to form a 2D image. A median filter of 3 × 3 was applied to the
2D image for enhancing image quality for visual display. The difference in the predicted



Animals 2021, 11, 1299 8 of 17

attributes within one sample and those from other sources can be visualized from the
generated 2D images.

The steps of data preprocessing, prediction model development, and generating
concentration maps are shown in Figure 4. The algorithms were implemented in MATLAB,
version 2020a (MathWorks, Natick, MA, USA).
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3. Results and Discussion

The computed moisture content with initially measured values using the oven drying
method ranged from 13 to 78% for the TMR feed (S1), 5 to 54% for the mixed by-products
(S2), 1.59 to 76.41% for palm kernel expeller (S3), 2.25 to 62.42% for almond pie (S4) and
4.43 to 52.21% for corn bran (S5) (Table A1 in Appendix A).

3.1. HSI Features of TMR Feed and Feed Materials

The MSC preprocessed spectra (Figure 6A) and mean spectra (Figure 6B) for all the
samples (n = 40 samples × 5 samples) are shown in Figure 6. The spectral region (894 nm–
1917 nm) used is related to various peaks in broadband such as the O-H, C-H, and N-H
functional groups. The disparities in spectral pattern appeared particularly around 1150
nm–1250 nm, and 1400 nm–1750 nm. In addition, the peaks around 1225 nm and 1420 nm
are associated with the C-H and O-H overtones, respectively. The small peak at 1530 nm is
associated with the N-H stretch first overtone and 1660 nm to the aromatic C-H stretch first
overtone [28]. These represent the variation in the moisture, carbohydrate, and protein
contents of the samples [28,29].

3.2. Prediction of Moisture Content in the Samples

Table 1 shows the results obtained from PLSR model developed with each prepro-
cessing method. All methods showing a good prediction accuracy (R2) of over 93% and
prediction errors (SEP) of less than 5%. The PLSR prediction values for moisture content in
multiple by-product samples are shown in Figure 7, where most of the predicted values
fall near the line of best fit.

Preprocessing methods and partial least squares regression multivariate technique
and were applied to the acquired spectra. We used the spectral data in the wavelength
range between 894 nm and 1917 nm to build the models as the HSI system used in this
study produces noisy spectra above 1917 nm. From the data preprocessing methods in
Table 1, the range preprocessing method generated the maximum correlation coefficient
values with R2C of 0.98, R2V of 0.97, and R2P of 0.98. It also had the least SEP of 2.59%.
However, all other methods were also satisfactory, with less than 5% SEP values. The
optimal number of latent variables was determined from minimum SEV values in the
cross-validation process.

Table 1. Results obtained with global PLSR model for prediction of moisture content in multiple by-products.

Method n of Calibration
Set

n of Validation
Set LV a Calibration b Cross-Validation c Prediction d

R2C e SEC f (%) R2V g SEV h (%) R2P i SEP j (%)

Mean k 140 60 10 0.98 2.61 0.97 2.83 0.98 2.76
Max l 140 60 10 0.98 2.49 0.97 2.82 0.98 2.63

Range m 140 60 10 0.98 2.62 0.97 2.92 0.98 2.59
MSC n 140 60 10 0.97 2.90 0.97 3.18 0.97 2.86
SNV o 140 60 10 0.98 2.76 0.97 3.04 0.98 2.68

Savitzky
Golay (1st) p 140 60 10 0.97 2.99 0.96 3.47 0.97 3.31

Savitzky
Golay (2nd) q 140 60 10 0.94 4.19 0.93 4.81 0.93 4.58

Raw r 140 60 10 0.96 3.68 0.95 4.07 0.95 4.11
a LV: Latent variable; b Calibration (comparison of a known standard measured values and measurement using I); c Cross-validation
(model evaluation with independent data set to test performance); d Prediction (estimation of the quantity of moisture using the developed
models); e R2C: Coefficient of determination for calibration; f SEC: standard error of calibration; g R2V: coefficients of determination for
cross-validation; h SEV: standard error of cross-validationI; i R2P: Coefficient of determination for prediction; j SEP: standard error of
prediction; Preprocessing methods (k Mean; l Max; m Range; n Multiplicative Scatter Correction (MSC); o Standard Normal Variate (SNV)
and p Savitzky-Golay 1st derivation; q Savitzky-Golay 2nd derivation) and r Raw data model (Raw).
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Figure 5. MSC preprocessed spectra (A) and mean spectra (B) of TMR feed and by-product samples
(n = 200) for moisture content prediction (S1: TMR; S2: mixed by-products; S3: palm kernel expeller;
S4: almond pie; S5: corn bran).
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Overtones and combinations of fundamental vibrations of molecules comprising -OH,
-NH, and -CH groups are characterized in the near-infrared (NIR) spectrum. These would
absorb based on the component such as moisture content, protein, etc. [30]. The broadband
peaks in the spectrum are shown in the beta coefficient graph for all the preprocessing
methods in Figure 8. In Figure 8E,F, the Savitzky Golay 1st and 2nd preprocessing methods
showed that the highest positive peaks were obtained around 1660 nm and 1400 nm,
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respectively. However, these were not the important peaks in the developed model. The
considerable amount of other nutrients contained in the TMR feed and feed materials such
as carbohydrate and protein resulted in high absorption peaks. These components also
increased with the reduction in moisture content as the measured components were in
percentages.
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The important absorption peaks appeared around 1000 nm and 1450 nm in most of
the preprocessing methods, with the exception of SNV preprocessing, where the peak
at 1000 nm was not very conspicuous. The peak around 1000 nm is related to the O-H
stretching second overtone, representing the moisture content in the samples [31]. The
peak at 1450 is associated with the first overtone of O-H stretching indicating the moisture
content absorption in the samples [32]. These indicate that all the models are robust and
can accurately predict moisture content in the TMR feed and feed materials.

3.3. Imaging of Moisture Content in TMR Feed and Feed Materials

Every pixel in the hyperspectral image has its unique spectrum. As a result, the
moisture content can be computed with the spectrum of any pixel in the sample. To
compute the moisture content of the whole sample, all spatial pixels of the hyperspectral
image should be considered. In Figure 9, the original TMR feed, SWIR hyperspectral
images, and PLSR-based images for different levels of moisture content are shown. The
images were developed by multiplying the obtained beta coefficient (regression coefficient)
from the PLSR model with the spectra of each pixel in the image. In the generated moisture
content images, the moisture content in the TMR feed was unevenly spread. The disparate
colors (Figure 9) correspond to levels of moisture in the TMR feed and are proportional to
the spectral differences of the individual pixels. This is because of factors such as exposure
of a portion of the feed to the open environment that allows evaporation or absorption of
moisture depending on the temperature and relative humidity of the storage environment
and other substrates in the feed. This stops the feed from reaching an equilibrium state.
These moisture maps offer rapid and easy access to the spatial distributions in which the
relative intensities are indicated by the color bar. These acquired distribution maps validate
the benefits of HSI in analyzing heterogeneous samples like TMR feed. This result cannot
be achieved with conventional imaging or spectroscopy techniques.

Consequently, this study showed the potential of using HSI to estimate the moisture
content of TMR feed and feed materials.
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3.4. Models for Feed Moisture Composition Measurement

Two models were proposed for manufacturing TMR feed with accurate moisture
content. Moisture content is a very important parameter in the feed. It plays a vital role in
the storability and, most significantly, the proliferation of dangerous microorganisms such
as Aspergillus species that are responsible for the production of toxins such as Aflatoxin
B1, as discussed in the background. Furthermore, the moisture content is inversely pro-
portional to dry matter, which is an important component in formulating the diet of dairy
cattle. The current methods to estimate the moisture content of feed and feed materials
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are destructive and time-consuming. In this research, we demonstrated the possibilities
of using hyperspectral imaging technology for the rapid and non-destructive scans of all
feed samples passing through the conveyor belt for safe production, storage, and feeding
of livestock.

In the first proposed model (Figure 10A), since the hyperspectral imaging system is a
line-scan and good for a conveyor belt system, it is installed to scan the TMR feed as it is
conveyed before packaging, then storage and transportation to the farm. If the feed has
an unsatisfactory moisture content, it will be diverted for retreatment using any method
for water control depending on available resources and location in case of higher or lower
moisture contents. The moisture content will be dependent on the class of animals being
fed. After the retreatment process, the feed is re-evaluated each time until an acceptable
standard is met.
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In the second proposed model (Figure 10B), which is on the farm, the hyperspectral
imaging system is installed to examine the feed on arrival on the farm. After line-by-line
examination and dependent on the class of the animal [33] and the type of feed material or
feed, a decision is made which includes for example moisture control when:

a. Moisture content greater than 40%;
b. Moisture content below 20%, which is specific to the feed material for storage.

In the farm situation, moisture content below 20% will be acceptable for storage since
feed is most likely to be stored longer on the farm. Furthermore, mixing with by-products
or roughages would be carried out after storage. The mixing can be used to balance the
moisture content at this stage. However, after the mixing, if the moisture content falls
below the acceptable feed standard, the TMR feed moisture must be controlled in case of
more than 40% or less than 20%. This process is repeated until the acceptable standard is
achieved. When the moisture content is between 20 and 40%, it is within the acceptable
feeding range for the stage of growth of the dairy cattle considered in this study which
implies no treatment is required. This is because, in the Republic of Korea, different stages
of growth of dairy cattle necessitate the moisture of the feed being controlled to a set
percentage.

In both models (Figure 10A,B), one hyperspectral imaging system is proposed to
produce safe and satisfactory feed. Furthermore, the speed of the conveyor belt in TMR
factories is within the scanning speed of the hyperspectral imaging system, suggesting it
could be implemented in a commercial setting. However, high computing power would be
needed to process the data in real-time.

4. Conclusions

A rapid and non-destructive global model that could measure the moisture content
and invariably dry matter content irrespective of feed material type using a hyperspec-
tral imaging system was proposed and developed. The developed partial least squares
regression (PLSR) models using different preprocessing techniques yielded acceptable
prediction accuracies (R2p) of above 0.93 and standard error of prediction (SEP) of less
than 5%. However, the range preprocessing technique had the best R2p (0.98) and SEP
(2.59%). Additionally, the visual assessment in the distribution of moisture content made
possible by the generated PLSR-based moisture content mapped images could facilitate
precise feed formulation. The proposed approach eliminates the extensive preparation of
samples, time-consuming repetitive scans, and expertise required for conventional oven
and spectroscopy procedures. Our results demonstrate that the developed model is robust,
and that it could provide a method to assess the distribution of moisture in feed, while
having the potential for implementation in a commercial setting. This would help prevent
feed and feed material spoilage and resultant health complications, the underperformance
of animals from the improper intake of dry matter, and the associated financial losses.

Author Contributions: D.D.U.: Conceptualization, Methodology, Software, Investigation, Formal
analysis, Data Curation, Visualization, and Writing—original draft. J.K., S.L. & B.-K.C.: Methodology,
Investigation, Software, Data Curation, Visualization, and Writing—review & editing. T.P. and Y.H.:
Validation, Resources, Writing—review & editing, Supervision and Funding acquisition. S.W. &
W.S.L.: Validation, Visualization, Writing—review & editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Basic Science Research Program through the National
Research Foundation of Korea (NRF), Ministry of Education, Republic of Korea, grant number:
2018R1D1A1B07049186, and the Korea Institute of Planning and Evaluation for Technology in
Food, Agriculture and Forestry (IPET) through Agriculture, Food and Rural Affairs Convergence
Technologies Program for Educating Creative Global Leader, Ministry of Agriculture, Food and Rural
Affairs (MAFRA), Republic of Korea, grant number: 320001-4. And the APC was funded by the
National Research Foundation of Korea (NRF), Ministry of Education, Republic of Korea.

Institutional Review Board Statement: Not applicable.



Animals 2021, 11, 1299 16 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: All authors declare that they do not have a conflict of interest.

Appendix A

Table A1. Moisture content of TMR feed and feed materials.

Sample
Number

TMR
(%)

Mixed
By-Products (%)

Palm-Kernel
Expeller (%)

Almond Pie
(%)

Corn Bran
(%)

1 50.84 37.44 15.84 13.87 29.60
2 46.26 36.55 39.57 17.02 27.30
3 68.77 41.95 49.90 19.20 28.16
4 67.52 44.70 20.20 20.33 26.32
5 64.37 40.61 23.71 21.59 25.71
6 67.05 37.98 49.23 22.91 25.38
7 67.07 38.23 16.13 23.27 26.07
8 75.12 37.16 42.52 21.85 47.84
9 62.10 35.05 25.58 26.29 47.21

10 55.69 33.37 27.34 26.35 48.70
11 54.39 37.79 28.34 27.52 30.42
12 61.69 36.12 33.20 26.69 28.27
13 68.80 40.32 37.73 30.30 34.76
14 67.65 39.76 21.14 31.15 33.88
15 72.57 37.52 12.63 26.32 33.17
16 71.73 36.91 20.62 30.93 34.35
17 59.74 42.83 19.26 16.98 36.39
18 58.29 48.64 53.22 18.73 32.08
19 78.69 47.05 19.67 25.95 47.24
20 70.42 32.93 9.92 11.28 14.14
21 13.18 34.59 30.29 10.13 52.21
22 15.43 37.01 16.97 5.50 44.45
23 24.47 45.78 3.69 4.26 49.67
24 25.04 54.99 54.36 3.41 48.71
25 58.65 38.75 24.12 20.87 43.17
26 15.19 36.95 57.99 37.41 34.72
27 14.39 37.64 8.58 40.97 47.14
28 14.21 34.18 63.95 45.75 49.69
29 28.89 54.13 1.59 62.42 45.75
30 15.49 49.29 35.82 49.27 51.90
31 20.72 23.30 49.03 4.12 6.04
32 52.59 31.26 76.41 2.25 4.43
33 54.71 26.15 1.71 2.70 9.07
34 45.31 30.07 2.97 2.47 6.76
35 48.03 26.88 2.64 28.68 4.49
36 53.69 5.96 24.34 32.77 4.68
37 33.51 13.69 54.95 40.80 11.22
38 16.02 18.56 6.34 48.33 11.02
39 24.31 21.80 30.15 30.13 9.78
40 21.43 19.27 4.54 26.96 12.96
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