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Abstract

Ferrochelatase (FECH) is an enzyme necessary for heme synthesis, which is essential for

maintaining normal functions of endothelial nitric oxide synthase (eNOS) and soluble guany-

lyl cyclase (sGC). We tested the hypothesis that inhibition of vascular FECH to attenuate

heme synthesis downregulates eNOS and sGC expression, resulting in impaired NO/

cGMP-dependent relaxation. To this end, isolated bovine coronary arteries (BCAs) were in

vitro incubated without (as controls) or with N-methyl protoporphyrin (NMPP; 10−5–10-7M; a

selective FECH antagonist) for 24 and 72 hours respectively. Tissue FECH activity, heme,

nitrite/NO and superoxide levels were sequentially measured. Protein expression of FECH,

eNOS and sGC was detected by western blot analysis. Vascular responses to various vaso-

active agents were evaluated via isometric tension studies. Treatment of BCAs with NMPP

initiated a time- and dose-dependent attenuation of FECH activity without changes in its

protein expression, followed by significant reduction in the heme level. Moreover, ACh-

induced relaxation and ACh-stimulated release of NO were significant reduced, associated

with suppression of eNOS protein expression in NMPP-treated groups. Decreased relaxa-

tion to NO donor spermine-NONOate reached the statistical significance in BCAs incubated

with NMPP for 72 hours, concomitantly with downregulation of sGCβ1 expression that was

independent of heat shock protein 90 (HSP90), nor did it significantly affect BCA relaxation

caused by BAY 58–2667 that activates sGC in the heme-deficiency. Neither vascular

responses to non-NO/sGC-mediators nor production of superoxide was affected by NMPP-

treatment. In conclusion, deletion of vascular heme production via inhibiting FECH elicits

downregulation of eNOS and sGC expression, leading to an impaired NO-mediated relaxa-

tion in an oxidative stress-independent manner.

Introduction

Heme is an essential prosthetic group for hemoproteins that are involved in multiple physio-

logical processes, including oxygen transport and storage, oxidases and antioxidant defenses,

PLOS ONE | https://doi.org/10.1371/journal.pone.0200307 July 9, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zhang B, Alruwaili N, Kandhi S, Deng W,

Huang A, Wolin MS, et al. (2018) Inhibition of

ferrochelatase impairs vascular eNOS/NO and sGC/

cGMP signaling. PLoS ONE 13(7): e0200307.

https://doi.org/10.1371/journal.pone.0200307

Editor: Jens Schlossmann, Universitat

Regensburg, GERMANY

Received: January 26, 2018

Accepted: June 22, 2018

Published: July 9, 2018

Copyright: © 2018 Zhang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by grants NIH

HL070653 and HL129797. The funder had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0200307
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200307&domain=pdf&date_stamp=2018-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200307&domain=pdf&date_stamp=2018-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200307&domain=pdf&date_stamp=2018-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200307&domain=pdf&date_stamp=2018-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200307&domain=pdf&date_stamp=2018-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200307&domain=pdf&date_stamp=2018-07-09
https://doi.org/10.1371/journal.pone.0200307
http://creativecommons.org/licenses/by/4.0/


mitochondrial respiration and electron transport, drug metabolism and protein biosynthesis,

etc. [1,2]. Ferrochelatase (FECH) is an important rate-limiting enzyme in heme biosynthesis,

during which, FECH operates the last enzymatic reaction by inserting ferrous iron (Fe2+) into

protophorphyrin IX (PpIX) [3–5]. It has been demonstrated that increases in oxidative stress,

as a general consequence of a variety of pathological procedures, impair FECH/heme regula-

tory processes via first, disrupting iron-sulfur clusters on FECH [6,7] to decrease its activity

[8], followed by reduction of heme synthesis. Second, the oxidation of heme present in some

heme-containing enzymes inactivates their enzymatic activity. In this context, oxidation of

soluble guanylyl cyclase (sGC) via converting heme from the ferrous (Fe2+) to ferric (Fe3+)

form has been documented as a key mechanism responsible for the peroxynitrite-dependent

attenuation of sGC activity [9–11]. Furthermore, oxidation of the sGC-heme causes a loss of

NO-stimulated cGMP production, associated with a proteolytic depletion of sGC in some vas-

cular diseases [12]. Heme-containing enzymes of endothelial nitric oxide synthase (eNOS) and

sGC are crucially implicated in the regulation of cGMP-controlled processes by NO, a pathway

that physiologically controls many cellular functions in the cardiovascular system [2,13]. Since

there are differences in sensitivities to the impact of heme deficiencies on the expression of

some hemoproteins [14,15], changes in heme biosyntheses are hypothesized to significantly

interrupt components of eNOS/sGC/cGMP signal transduction. Moreover, we have demon-

strated that in vivo treatment of mice with δ-aminolevulinic acid (ALA), a heme-synthesis

precursor that promotes PpIX-elicited activation of sGC, attenuated hypoxia-induced pulmo-

nary hypertension via preserving sGC/cGMP-dependent vasodilation [16,17]. Additionally,

impaired NO-mediated vasodilator responses of bovine coronary arteries (BCAs), as a func-

tion of angiotensin II (Ang II)-induced up regulation of mitochondrial superoxide elicited

disruption of FECH activity, a response that was normalized by treatment of BCAs with ALA

[18]. Moreover, miR-210 was reported to be able to compromise cardiac heme production by

targeting and inhibiting FECH [5], the study however, did not evaluate responsible functional

changes. Thus, while disrupting heme synthesis by oxidative stress to alter sGC/cGMP signal-

ing has been has been documented by our previous study [18], evidence is lacking indicating

the heme depletion-caused an interruption of eNOS synthesis/expression, as a function of

directly inhibiting FECH to deplete heme. While an in vivo inhibition of heme synthesis initi-

ated significant reductions in systemic nitrite/nitrate excretion and renal NOS activity of rats

[19], it is worth noting that the in vivo intervention of heme synthesis can initiate systemic

changes in multiple signal pathways and/or molecules involved, such as oxidations and anti-

oxidative defense or iron-sulfur cluster scaffold proteins and components of the electron trans-

port chain, etc., all of which may not necessarily be direct consequences of FECH inhibition or

heme loss, but rather a biological complexity that links multiple events operating in concert to

elicit responses observed. Additionally, most previous studies were focused on oxidative stress

that disrupts heme/NO/sGC/cGMP signaling involving both FECH/heme-dependent and

-independent mechanisms. To this end, the present study aimed to test the hypothesis that the

inhibition of FECH, followed by heme deficiency [14] directly downregulates eNOS and sGC

expression to alter NO/cGMP-mediated responses.

Materials and methods

Vessel culture

Freshly isolated bovine hearts were kept in ice-cold PBS and transported to the laboratory

within three hours from a local slaughterhouse (Cohen Max Insel Animal Organs & Tissues

for Research Inc, Livingston, NJ). BCAs were isolated from the branches of left anterior

descending arteries and cut into rings of 2 mm length under a dissecting microscope. BCAs
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were then placed in a 12-well dish filled with DMEM (Cellgro), supplemented with 10%

fetal bovine serum (v/v) and 1% antibiotics (Antimycin solution 100x), and incubated in the

absence (as controls) and presence of different concentrations of N-methyl protoporphyrin

(NMPP; 10−7–10-5M; a selective FECH antagonist) (Frontier Scientific, Logan, UT, USA)

under a 5% CO2 atmosphere at 37˚C for 24 and 72 hours respectively. DMEM containing

NMPP was prepared fresh and replaced every 12 hours.

Measurement of ferrochelatase (FECH) activity by HPLC-based assay

BCA rings were pulverized in liquid nitrogen. The crushed samples were mixed with a sam-

ple buffer (0.25 M Tris�HCl buffer, pH 8.2, containing 1% Triton X-100 and 1.75 mM of pal-

mitic acid) in a concentration of 1 mg tissue per 100 μl buffer. Samples were incubated on

ice for 30 min and then centrifuged at 1000 g for 5 min. The supernatant was collected and

protein concentration was measured by Bio-Rad protein assay kit (Bio-Rad Laboratories,

Hercules, CA). 20 μl samples with protein concentration of 0.5 μg/μl were mixed with 5 μl of

protoporphyrin IX (PpIX; 250 μM). The reaction was initiated by adding 5 μl 200 μM zinc

acetate and incubated at 37˚C for 1 hour. After that, 170 μl dimethyl sulfoxide-methanol

(30:70) solution was added to stop the reaction. HPLC measurement of zinc protoporghyrin

(ZnPpIX) was used as an indicative of FECH activity with a Beckman ultrasphere C18 col-

umn (5 μm, 150 × 2 mm), a Jasco FP-1520 fluorescence detector, and 0.5 ml/min acetone-

methanol-water-formic acid (560:240:200:2) as the mobile phase. ZnPpIX was detected

based on the amount of fluorescence observed with excitation and emission wavelengths of

415 and 580 nm, respectively. Standard curves of ZnPpIX (0.1–5 picomole) were generated

using the sample buffer as a vehicle and used to calculate ZnPpIX formation, expressed as

picomoles per mg protein per minute.

Measurement of vascular heme

As described previously [20], BCA rings were washed several times with Krebs solution and

homogenized in 20 mM MOPS and 250mM sucrose buffer. Homogenates were centrifuged at

2,000 g for 5 min, and supernatant were assayed for protein content. 50 μl obtained from a 5

mg protein/ml supernatant were quantified for heme content using the QuantiChrom heme

assay kit (BioAssay Systems, Hayward, CA, USA). The absorbance at 400 nm was detected by

Synergy HT spectrophotometer (BIOTEK, Winooski, Vermont, USA). BCA heme levels were

reported as nanomoles per mg protein.

Western blot analysis

Frozen BCAs were pulverized in liquid N2. Equal amounts of total protein (25 μg) extracted

from samples were loaded on and separated by a 10% SDS-PAGE gel and transferred to a

PVDF membrane. The membrane was probed with specific primary antibodies for FECH

(Abcam, MA), eNOS (Santa Cruz Biotechnology, CA), sGCβ1 (Sigma, MO), vasodilator-

stimulated protein (VASP), phospho-VASP serine 239 (p-VASP) and heat shock protein 90

(HSP90) (Cell Signaling Technology, Danvers, MA), followed by appropriate secondary

antibodies conjugated with horseradish peroxidase. Specific bands were visualized with a

chemiluminescence kit and normalized to GAPDH. For mitochondrial FECH expression, the

mitochondrial protein of voltage-dependent anion channel (VDAC) was used as loading con-

trol. The X-ray film was scanned into a computer and band densitometry was digitalized with

UN-SCAN-IT software.

FECH and heme-containing enzymes
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Isometric tension experiments

The method was described in detail previously [21]. Briefly, isolated BCA rings were mounted

on Danish myograph setups (DMT620M; Danish Myo Technology, Aarhus, Denmark) using

200 μm stainless steel pins and perfused with physiological salt solution (PSS) buffered with

95% air and 5% CO2 at 37˚C. The internal diameter and circumference of each ring was deter-

mined by the length of the ring and the known geometry of pins when the ring was stretched

to a level that generated the least stretching force. The average width (1.69 ± 0.07 mm and 1.61

± 0.06 mm for 24-h cultured groups, 1.55 ± 0.05 mm and 1.57± 0.06 mm for 72-h cultured

groups) and diameter (612.2 ± 46.2 μm and 654.5 ± 46.6 μm for 24-h cultured groups,

575.3 ± 38.9 μm and 583.6 ± 41.4 μm for 72-h cultured groups) of rings were comparable in

control and NMPP-treated rings. Based on the circumference, rings were further stretched in

a stepwise manner to establish a length-tension relationship. Using the length-tension curve, a

baseline force that was equivalent to a wall tension generated under 80 mmHg of intravascular

pressure was calculated and applied to the rings. The average baseline force (23.9 ± 2.9 mN

and 23.7 ± 2.8 mN for 24-h cultured rings, 20.6 ± 2.3 mN and 19.1 ± 2.7 mN for 72-h cultured

rings) and corresponding diameter of stretched rings (1429.4 ± 90.3 μm and 1406.0 ± 83.3 μm

for 24-h cultured vessels, 1248.2 ± 109.5 μm and 1178.1 ± 119.3 μm for 72-h cultured vessels)

were obtained from control and NMPP groups, respectively. All rings were equilibrated under

baseline force in PSS for one hour. In all studies, arterial rings were depolarized with 122 mM

KCl Krebs-bicarbonate buffer (high K+) to stabilize the reactivity of rings, followed by re-equil-

ibration with Krebs-bicarbonate buffer for additional 30 min. Then, the vessels were precon-

tracted with Krebs-bicarbonate containing 30 mM KCl (30K), and subsequently relaxed to

increasing cumulative concentrations of spermine-NONOate (10−8–10-5M), isoproterenol

(10−9–10-5M), acetylcholine (ACh, 10−8–10-5M) and Bay58-2627 (10−9–10-5M; Biovision Inc,

Atlanta, GA) respectively. Data were reported as percentage relaxation of the developed force

generated by 30K.

Basal and stimulated release of NO/nitrite in BCAs

The method was described in detail previously [22]. Briefly, the BCA rings were incubated in

96-well plates with 200 μl Krebs buffer (pH 7.4) with one segment of BCA rings in each well

for at 37˚C for 1 hour. The buffer was collected to assess the baseline level of nitrite. After that,

200 μl Krebs buffer containing 10-6M ACh were added into each well, followed by incubation

of the rings at 37˚C for 1 hour. After that, the buffer was once again collected to assess the

ACh-stimulated nitrite production. Nitrite formation was assessed using 2,3-diaminonaphtha-

lene (DAN) and a HPLC/fluorescence detector-based assay to determine 1-(H)-naphthotria-

zole, a fluorescent product upon the reaction of nitrite and DAN. 20 μl DAN dissolved in N,N-

dimethylformamide (5 mg/ml) and further diluted with 6 N HCl to 0.05 mg/mL, was added to

200 μl of the buffer and incubated for 10 min at room temperature. Then 20 μl of 10 N NaOH

was added. After a centrifugation, 20 μl of supernatant was separated by an HPLC system

(PU-2080 Plus; Jasco) with a C-18 reverse-phase column (Beckman Ultrasphere ODS, 5 μm,

4.6 × 250 mm). The mobile phase was composed of 35% acetonitrile and 50 mmol/L sodium

phosphate buffer (pH 8.5) and run at a flow rate of 0.5 ml/min. The fluorescent signal of 1-

(H)-naphthotriazole was detected at 375 nm (excitation) and 415 nm (emission) with a fluo-

rescence detector (FP2020 Plus; Jasco). The standard curve of sodium nitrite (0–640 μmol/L)

was generated and used to calculate nitrite formation in the sample, expressed as picomoles

per centimeter squared of the internal surface of vessels. The internal surface of BCA rings

were determined by mounting the rings on wire myograph apparatus and stretching rings to a

point that generates the least forces.

FECH and heme-containing enzymes
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Vascular superoxide production

As described previously [23], were incubated with dihydroethidium (DHE, 10−5 mol/l) for one

hour, during which the superoxide in the vessels reacted with DHE to form 2-hydroxyethi-

dium (EOH), which was detected by HPLC/fluorescence detector. After incubation with DHE,

the vessels were washed and homogenized in acetonitrile/water (1:1), and then centrifuged for

10 minutes. After centrifuging, the supernatant fraction was collected for HPLC analysis and

the precipitate was used for protein measurement using Bio-Rad Protein Assay (Bio-Rad, Her-

cules, CA). The final concentration of superoxide in each sample was normalized to the pro-

tein contents of their corresponding vessels, and expressed as picomoles of superoxide (EOH)

per microgram of protein.

Statistics

Data are represented as mean ± SEM, and n refers to the number of hearts. Statistical analyses

were performed using GraphPad Prism 6 software (Graph Pad Software Inc., San Diego, CA,

USA). Two-way ANOVA was used to compare dose-dependent vasodilator responses between

the control and NMPP-treated groups. Student’s t-test was used to compare the difference

between two groups. Statistical significance was accepted at a level of p< 0.05.

Results

Inhibition of FECH decreases heme content in BCAs

Fig 1a shows that the incubation of BCAs with NMPP for 24 hours (24-h) significantly reduced

their FECH activity in a dose-dependent manner, compared to control vessels. A time-depen-

dent inhibition of FECH activity by NMPP was also revealed, as indicated by the result that at

each concentration point, the reduced FECH activity was significantly greater in BACs treated

with NMPP for 72-hour (72-h) than those of 24-h. Additionally, 10-7M NMPP, did non-statis-

tically reduce FECH activity in the first 24 hours (P = 0.096), however, a statistically significant

inhibition was observed after extending incubation period to 72 hour (p = 0.031). Because our

preliminary results showed that the high dose of NMPP (10-5M) elicited an impaired vasocon-

strictor response after treating BCAs for 24-hour, whereas an effective inhibitory effect initi-

ated by the low dose of NMPP (10-7M) required a longer treating period. To this end, 10-6M

NMPP was selected as an optimal dose used in following experiments in order to ensure its

pharmacologically sufficient activity without interrupting with vascular contractility. As

shown in Fig 1b, in the presence of 10-6M NMPP, protein expression of FECH was not signifi-

cantly affected in the either group of vessels, suggesting a post-translational inhibition of

FECH. Fig 2 shows a time-dependent reduction in BCA heme levels in response to NMPP

treatment, suggesting the heme synthesis in a FECH-dependent manner.

NMPP reduces endothelium-dependent and –independent relaxation of

BCAs via impairing NO/sGC/VASP pathway

Next, functional evidence of the reduction in FECH activity is depicted in Fig 3. As indicated,

treatment of BCAs with NMPP for 72 hours (d-f) significantly attenuated ACh-induced relaxa-

tions (d), concomitantly associated with significant reductions in both basal and ACh-stimu-

lated release of nitrite/NO (e), verifying the failure of sufficient release of endothelial NO

leading to the impaired endothelium-dependent relaxation. Moreover, NMPP-treated BCAs

for 72-h displayed also, significant declines of spermine-NONOate (NO donor)-induced relax-

ations (f), suggesting impaired endothelium-independent responses attributed to reduction in

NO activating sGC. A similar responsive pattern was also presented in the group treated with

FECH and heme-containing enzymes
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Fig 1. (a) Changes in vascular ferrochelatase (FECH) activity in isolated bovine coronary arteries (BCAs) incubated

with difference doses of N-methyl protoporphyrin (NMPP;10−7, 10−6 and 10-5M) for 24 (24-h) and 72 hours (72-h),

respectively (n = 6–10). �significant difference from their controls. #significant difference from 24-h group. (b)

Original and summarized data for FECH protein expression, normalized to voltage-dependent anion channel (VDAC)

in isolated BCAs incubated with 10-6M NMPP for 24 and 72 hours respectively (n = 3 blots).

https://doi.org/10.1371/journal.pone.0200307.g001
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Fig 2. Changes in vascular heme levels in BCAs cultured with NMPP (10-6M) for 24 and 72 hours respectively

(n = 12). �significant difference from controls.

https://doi.org/10.1371/journal.pone.0200307.g002

Fig 3. Changes in vascular relaxations to Acetylcholine (ACh; a & d) and spermine-NONOate (c & f), as well as basal and stimulated release of

nitrite/NO (b & e) in BCA rings cultured with NMPP (10-6M) for 24 (a-c) and 72 (d-f) hours respectively. (n = 12–15). �significant difference from

their controls. #significant difference from baseline controls. † significant difference between the two curves.

https://doi.org/10.1371/journal.pone.0200307.g003
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NMPP for 24 hours (a-c), which however, did not reach statistical significance (p = 0.15 and

p = 0.07 by two-way ANOVA for ACh and NONOare-induced dilations, respectively), imply-

ing that a time-dependent treatment was required to observe this action of NMPP. Thus, the

inhibition of vascular FECH (Fig 1) sequentially followed by the decrease in heme production

(Fig 2) appears to alter the heme-containing synthase enzymatic activities of eNOS and sGC,

leading to impaired NO-release and -mediated responses (Fig 3). This conclusion was verified

by data in Fig 4 showing that the inhibition of FECH with NMPP directly suppresses the pro-

tein expression of eNOS (a) and sGC (b). Using phosphor-VASP (at Ser239) as an index of

upstream-located sCG activation confirms a downregulation of p-VASP expression being as a

consequence of sCG inactivation (Fig 3c). Alternatively, NMPP that inhibited heme synthesis

to downregulate sGC did not significantly affect HSP90 expression (Fig 5a), neglecting the

possibility of suppression of sGC expression attributed to an altered expression of HSP90,

which in turn, leads to failure of inserting heme group into the enzyme [24,25]. Moreover, in

order to verify the impaired sGC-mediated relaxation (Fig 3) and sGC downregulation (Fig 4)

being heme-dependent in nature, separate experiments were performed aimed to assess vascu-

lar relaxation to Bay 58–2627, a vasoactive agent that specifically activates heme-depleted form

of sGC [26,27]. As shown in Fig 5b, Bay 58–2627 elicited a comparable dose-dependent relaxa-

tion in the control and NMPP-treated BCAs, revealing a normal vascular response to the heme

deficient component of sGC.

Effects of NMPP on BCA responses to non-NO responsive agents

To document the specificity originating from changes in eNOS/NO/sGC/cGMP signaling as a

function of inhibiting FECH/heme by NMPP, the mechanical properties of BCAs were deter-

mined by assessing their length-tension relationship and vascular responses to NO/sGC-inde-

pendent mediators. Fig 5 summarizes that the control and NMPP-treated BCAs exhibited an

identical response to the mechanical stretch, as indicated by their overlapped length-tension

curves (a & d). Additionally, vascular contractions manifested by the force development to 122

mM and 30 mM KCL respectively, (b & e) and relaxations to isoproterenol (c & f; β-adrenergic

receptor activator of cAMP) were comparable between NMPP-treated and –untreated groups

of BCAs. These results indicate that NMPP-induced changes (Figs 1–3) impact specifically on

vascular FECH/heme/eNOS/sGC signaling. Moreover, NMPP did not elicit changes in BCA

Fig 4. Changes in protein expressions of endothelial nitric oxide synthase (eNOS; a), soluble guanylyl cyclase-subunit 1 (sGCβ1; b) and

phosphorylation of vasodilator-stimulated phosphor-protein (p-VASP; c) in BCAs cultured with NMPP (10-6M) for 24 and 72 hours respectively.

(n = 5 blots for each group). �significant difference from their controls.

https://doi.org/10.1371/journal.pone.0200307.g004
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superoxide production (Fig 6), suggesting that the observed changes in vascular function

caused by the NMPP-inhibition of FECH are independent of superoxide production.

Discussion

We provided direct evidence indicating that eNOS and sGC are two independent targets for

NMPP that inhibits FECH-dependent heme synthesis to downregulate eNOS and sGC expres-

sion, leading to impaired NO/sGC/cGMP-mediated vasodilator responses, which are indepen-

dent of vascular oxidative stress. Although accumulating evidence has indicated an oxidation-

dependent alteration of FECH/heme/sGC signaling in vasculatures, characterized as impaired

NO-mediated responses [12,16,18,24,28–30], two important points have not been unaddressed

yet, as what is direct effect of deleting FECH/heme on eNOS expression, and 2) whether an

alternative mechanism independent of oxidative stress is involved. Thus, the present study was

focused on direct correlation between the FECH/heme and two heme-dependent enzymes, via

assessing eNOS and sGC protein expression and activity, as a function of NMPP-inhibition of

FECH/heme without interruptions from oxidative stress.

Inhibition of vascular FECH/heme/eNOS/sGC/cGMP/relaxation by NMPP

We found that chronic incubation of BCAs with NMPP elicited a dose- and time-dependent

reduction in FECH activity, without significant changes in FECH protein expression (Fig 1),

suggesting a posttranslational-based event of NMPP, via most likely, instable of iron-sulfur

cluster assembly machinery of FECH [6]. As a result of inhibitory FECH activity, downstream

production of heme was concomitantly attenuated in a time-dependent manner (Fig 2),

revealing a FECH-specific suppression of heme biosynthesis. The dose of 10-6M NMPP was

selected because of its sufficiently inhibiting NMPP activity and heme production without

affecting normal vascular responsiveness. Functional changes in response to NMPP-induced

reductions in FECH activity and heme synthesis were evidenced by Fig 3 showing that after

Fig 5. Vascular protein expression of HSP90 (a; n = 8 for each group) and relaxation response to BAY58-2627 (b; n = 8 for each group) in BCAs in the

control condition and cultured with NMPP (10-6M) for 72 hours.

https://doi.org/10.1371/journal.pone.0200307.g005
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treatment of BCAs for 72 hours, endothelium-dependent ACh-induced vasodilation and

ACh-stimulated vascular release of NO were significantly attenuated. Moreover, endothelium-

independent relaxation by an exogenous NO donor that directly targets and activates sGC on

vascular smooth muscle to elicit cGMP-mediated relaxation, was also significantly reduced.

Thus, as downstream targets of FECH/heme, both eNOS and sGC are separately affected by

NMPP via inhibiting FECH to block heme synthesis. Noteworthy, functional alterations of

vessels (Fig 3) are correspondingly matched with changes in the heme level (Fig 2) and FECH

activity (Fig 1) as a function of NMPP, expressed as progressively declining relaxation during

24- to 72-hour incubation period, confirming the relationship among FECH, heme, eNOS,

sGC and cGMP in the signal transduction. In consistence with currently published findings

that FECH siRNA prevents ocular neovascularization via deleting FECH-induced angiogenesis

and also partially, suppressing eNOS expression [31], we indicated a direct downregulation of

eNOS expression (Fig 4a), accompanied with suppressing sGC protein expression (Fig 4b) by

NMPP, suggesting that while NMPP interferes with FECH activity at a post-translational level

(Fig 1), it initiates a post-transcritipnal downregulation of eNOS and sGC due perhaps, to

the result of deficient synthesis of heme (Fig 2). In this context, we provided explanations for

reductions in systemic nitrite/nitrate excretion and renal NOS and sGC activities, associated

with altered endothelium-dependent and –independent relaxations of aorta in response to in
vivo deleting heme synthesis of rats [19]. Of note, the significant downregulation of eNOS

in BCAs treated with NMPP for 24 hours (Fig 4a) elicited corresponding reductions in the

ACh-stimulated release of NO (Fig 4b), while vascular relaxation to ACh appeared to be pre-

served (Fig 3a). This phenomenon may attribute to the ACh compensatory release of non-NO

mediator(s), as a function of insufficient NO production, to maintain vascular relaxation [32].

Fig 6. Vascular wall tension in response to stretch-induced changes in radius (a & d), force development in response to stimulation with 122 mM

KCl (HK) and 30 mM KCl (30K) (b & e), and vascular relaxations to isoproterenol (c & f) in BCA rings cultured with NMPP (10-6M) for 24 (a-c)

and 72 (d-f) hours respectively. (n = 11–14).

https://doi.org/10.1371/journal.pone.0200307.g006
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Alternatively, the downregulation of sGC expression in response to NMPP treatment (Fig 4b)

did reflect corresponding impairment in its activity (Fig 3c). Consistently, a significant sup-

pression of vascular VASP phosphorylation by NMPP-treatement (Fig 4c) confirms the FECH

inhibition-dependent inactivation of sCG. Moreover, sufficient synthesis/level of heme is

essential for the maintenance of normal sGC function, which has been demonstrated in our

studies indicating a NMPP-induced reduction of heme synthesis, leading to the damage of

sCG function (Figs 1–4). Additionally, heme insertion also plays key roles during maturation

of sGC, a response that is driven by HSP90 [25,33], and inhibition of HSP90 is able to attenuate

sGC activity via increasing its degradation [34]. In our studies, the impaired sGC activity was

independent of HSP90-mediated pathway because NMPP did not change HSP90 expression

(Fig 5a) and activation of HSP90–associated heme-deficient (apo) sGC by BAY58-2627

remained normal in NMPP-treated BCAs (Fig 5b). This confirms our conclusions that the

impaired sGC is driven directly by NMPP inhibition of heme production.

NMPP-elicited changes in FECH/heme/eNOS/sGC/cGMP signaling

independent of oxidative stress, changes in vascular property and cAMP-

mediated pathway

As demonstrated (Fig 6), neither vessel responses to mechanical stretch (a & d) or smooth

muscle depolarization by high potassium (b & e), nor isoproterenol-induced cAMP-mediated

relaxation (c & f) was affected by NMPP treatment, verifying the specificity of NMPP-inhibi-

tion of vascular FECH/heme/eNOS/sGC/cGMP signaling. On the other hand, as a key player

in the mediation of cardiovascular dysfunction, oxidative stress potentially insults heme bio-

synthesis, via perhaps, disrupting FECH Fe-S cluster [7], a specific structure that is indispens-

able for maintaence of FECH stability and activity [6]. The consequences arising therefrom,

are characterized as the attenuation of heme-containing enzyme synthesis. Indeed, the one of

mechanisms responsible for oxidative stress-dependent deletion of sGC is considered to be

Fig 7. Vascular superoxide production, indicated by 2-hydroxyethidium levels in BCAs cultured with NMPP

(10-6M) for 24 and 72 hours respectively. n = 8.

https://doi.org/10.1371/journal.pone.0200307.g007
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due to an oxidation of sGC heme moiety-induced heme detachment from the enzyme, the

response that facilitates degradation of the enzyme by the ubiquitin-proteasome proteinlysis

pathway [35,36]. Moreover, the oxidant-dependent inactivate NO bioavailability has been well

documented [37]. Alternatively, aimed to identify a direct inhibition of FECH by NMPP in an

oxidative stress-independent manner, the present study was conducted on a physiologically-

based in vitro condition. The well preserved vascular responsiveness (Fig 6) and unchanged

vascular superoxide level (Fig 7) in BCAs treated with NMPP up to three days verify a specific

feature of the study, which differs from our, as well as others’ previous studies showing primar-

ily a superoxide-dependent deletion of sGC activity [9,10,16,18,29].

In conclusion, we provided direct evidence for the deletion of vascular heme production, as

a function of inhibiting EFCH without interference from oxidative stress, elicit deficiency of

downstream-located eNOS and sGC synthesis and activity, leading to impaired coronary vaso-

dilator responses specifically mediated by cGMP. Our findings shed light on the physiological

significance of FECH/heme involved in essentially operating vascular function. In addition,

during some pathological processes, FECH may serve as a therapeutic target with its activator

(s) to favor and/or preserve eNOS/sGC/cGMP-mediated vascular functions.
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