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Abstract

Recent evidence suggested that the mRNA vaccine has been effective for many
tumors, but its progress in gliomas was slow. In this study, we screened potential
tumor antigens and suitable populations for mRNA vaccine to develop mRNA
vaccine for glioma. We integrated the normalized RNA sequencing expression
data and somatic mutation data from TCGA-GBM, TCGA-LGG, and CGGA
datasets. Putative antigens in glioma were identified by selecting highly mutated
genes with intimate correlation with clinical survival and immune infiltration.
An unsupervised partition around medoids algorithm was utilized to stably clus-
ter the patients into five different immune subtypes. Among them, IS1/2 was cold
tumor with low tumor mutation burden (TMB), immunogenic cell death (ICDs),
and immune checkpoints (ICPs), and IS4/5 was hot tumor with high TMB, ICDs,
and ICPs. Monocle3 package was used to evaluate the immune status similar-
ity and evolution in glioma, which identified cluster IS2A/2B within IS2 subtype
to be more suitable vaccination receivers. Weighted gene co-expression network
analysis identified five hub immune genes as the biomarkers of patients’ im-
mune status in glioma. In conclusion, NAT1, FRRS1, GTF2H2C, BRCA2, GRAP,
NR5A2, ABCB4, ZNF90, ERCC6L, and ZNF813 are potential antigens suitable for
glioma mRNA vaccine. IS1/2A/2B are suitable for mRNA vaccination.
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1 | INTRODUCTION

As one of the most common primary intracranial tumors
in adults, glioma is characterized by rapid cell prolifer-
ation and angiogenesis and represents 81% of intracra-
nial malignant tumors. The latest statistics show that the

prevalence of glioma is 3.2 per 100,000,' and although
with a relatively rare prevalence, glioma causes signif-
icant mortality and morbidity. According to malignant
behaviors, glioma can be divided into WHO grade I-IV.
Glioblastoma is the most malignant tumor, namely grade
IV, accounting for about 45% of gliomas, and the 5-year
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relative survival rate is about 5%. Glioblastoma has a poor
prognosis because its stem cell-like cells (GSCs) are resis-
tant to conventional treatment.” At present, the effect of
targeted therapy for glioma is not significant.’ For those
glioma patients in low-level grade, they are sensitive to
radiotherapy, chemotherapy, and other treatments, which
lead to good prognosis.*® However, those who are in high
grade urgently need a new treatment strategy to improve
their survival rate.

As early as the 1990s, Acsadi (1991),° Jiao (1992)’dis-
covered and demonstrated the therapeutic potential of
mRNA. But because mRNA is unstable and easily de-
graded by RNA enzymes, it has not attracted much at-
tention. When it came to 1999, the discovery of RNA
interference (RNAI) revealed the therapeutic potential of
RNA, leading to a boom in RNA vaccine research.® The
global spread of the Novel Coronavirus SARS-COV-2 in
late 2019 has accelerated the development of mRNA vac-
cine, making it a third-generation nucleic acid vaccine
based on first-generation attenuated/inactivated vaccines
and second-generation subunit vaccines. The purpose of
mRNA vaccines is to transfer RNA into cells for expres-
sion and produce protein antigens, thereby inducing an
immune response to the antigens to expand the body's
immune capacity. mRNA vaccines show high potential in
the treatment of tumors. Compared with known tumor
vaccines that use peptides, tumor cells, dendritic cells
(DCs), and DNA as antigens, mRNA vaccines have many
advantages. First, they are easy to design and produce.
We can easily modify the mRNA sequence to encode the
desired protein and attain faster production.”™ Second,
mRNA vaccines do not require genetic analysis of cancer,
which can reduce much cost.”* The third point is safety.
mRNA vaccines are not made from pathogen particles or
inactivated pathogens, and they do not have the irrele-
vant sequence rejection and gene integration that often
occurs in DNA vaccines. What is more, we can even
regulate the half-life of mRNA through RNA sequence
modification or delivery system.'®!'3!* Besides, mRNA
vaccines are more immunogenic in human body and can
trigger stronger and longer-lasting immune responses."
The final one is efficacy, current clinical applications
have demonstrated the reliability and low side effects
of mRNA vaccine. Meanwhile, its simplicity of design
makes personalized treatment possible.'®* More impor-
tantly, mRNA vaccines have been shown to be effective
against other types of cancer, such as melanoma and liver
cancer. Preclinical trials have shown that vaccines encod-
ing tumor-specific antigens can promote antitumor im-
munity and inhibit the growth of various cancers.'®'*"2
In conclusion, we believe that mRNA vaccines have great
potential in immunotherapy targeting tumor-specific
antigens.

Unfortunately, there are few studies on mRNA vac-
cines for glioma, and most of them only focused on find-
ing tumor-specific antigens and immunizing patients
against subtypes.*'** Based on these findings, we further
investigated mRNA vaccines for glioma. By screening
potential glioma antigens, we found 10 potential mRNA
vaccine antigens. Then we divided glioma patients into
five immune subtypes and analyzed the association of im-
mune subtypes with survival, clinical features, and mark-
ers of tumor immune microenvironment. Subsequently,
we analyzed the molecular characteristics and cell infil-
tration of the five subtypes. In addition, we also mapped
the immune landscape of glioma and identified the co-
expression modules and central genes of glioma immune
genes. Our work will pave the way for the development of
mRNA vaccine for glioma and the selection of appropriate
patients for vaccination.

2 | RESULTS
2.1 | Screening of potential tumor
antigens of glioma

In order to find potential tumor antigens for mRNA vac-
cine development, differential expression analysis was
first performed using the TCGA data. A total of 1739
genes were upregulated in glioma compared with normal
tissues. The distribution of upregulated genes in human
chromosomes was displayed in Figure 1A. Upregulated
genes existed in almost all chromosomes except chromo-
some Y, and were highly clustered in chromosome 2, 19,
and X. Next, mutation analysis was conducted by assess-
ing fraction genome alteration and mutation count and a
total of 14,732 mutant genes were identified (Figure 1B
and C). Genes with the highest mutation rates, includ-
ing IDHI1, TP53, ATRX, PTEN, etc., were displayed in
Figure 1D. Notably, gene mutation was quite frequent in
glioma and 815 (90.96%) of 896 tumor samples had at least
one gene mutation. Finally, 919 potential tumor antigens
were identified after the intersection of 1739 upregulated
genes and 14,732 mutant genes (Figure 1E).

2.2 | Identification of tumor antigens
associated with glioma prognosis and
infiltration of antigen-presenting cells
(APCs)

Survival analysis was then conducted to further screen
tumor antigens that might be suitable for mRNA vaccine
development. In total, 17 genes were significantly cor-
related with the overall survival (OS) of glioma patients,
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FIGURE 1 Identification of
potential tumor antigens of glioma. (A)
Chromosomal distribution of up- and
downregulated genes in glioma. (B-E)
Identification of potential tumor-specific
antigens in glioma. Overlapping mutated
genes distributed in the fraction genome
altered group (B) and mutation count
group (C) are shown. (D) Genes with the
highest mutant frequency are shown. (E)
Intersection of upregulated genes and
mutant genes
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among which 14 genes were also significantly associated
with the progression-free survival (PFS) of glioma pa-
tients (Figure S1A). Subsequently, associations between
gene expression and infiltration of APCs were further
analyzed and 10 candidate tumor antigens were finally
selected, including NAT1, FRRS1, GTF2H2C, BRCA2,
GRAP, NR5A2, ABCB4, ZNF90, ERCC6L, and ZNF813.
The distribution of the 10 candidate genes in human
chromosomes is displayed in Figure S1B. High expression
levels of all these genes were significantly associated with
poor OS of glioma patients (Figure S1C-L). Positive asso-
ciations between expression of these candidate genes and
tumor infiltration of macrophages, dendritic cells, and B
cells were observed and NAT1 was best correlated with
APCs infiltration (Figure S2A-J). The associations be-
tween expression of candidate genes and APCs infiltration
were more significant in lower grade glioma (LGG) com-
pared with that in glioma multiforme (GBM), indicating

= Translation_Start_Site

mut

that mRNA vaccine might exert better treatment effects
toward LGG than GBM.

2.3 | Identification of potential immune
subtypes of glioma

Immunotyping was conducted to identify glioma patients
with proper tumor immune microenvironment (TIME)
that might benefit more from mRNA vaccine. Expression
profiles of 1126 immune-related genes were extracted
from the TCGA and CGGA dataset. By evaluating the
consensus matrix and the consensus cumulative distri-
bution function, we chose k = 5 where immune-related
genes seemed to be well clustered (Figure 2A-D) and ob-
tained five immune subtypes, namely IS1-IS5 (Figure 2H
and J, Table S1, S2). In the TCGA cohort, IS1, IS2, and 1S3
showed better prognosis while IS4 and IS5 were associated
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FIGURE 2

Identification of potential immune subtypes of glioma. (A) Cumulative distribution function curve and (B) delta area of

immune-related genes in the TCGA cohort. (C) Cumulative distribution function curve and (D) delta area of immune-related genes in the
CGGA cohort. Sample clustering heat map in the TCGA cohort (H) and the CGGA cohort (J). (G) Kaplan-Meier curves showing OS of
glioma immune subtypes in the TCGA cohort. (E) Hazard ratio of TCGA immune subtype. (I) Kaplan-Meier curves showing OS of glioma

immune subtypes in the CGGA cohort. (F) Hazard ratio of CGGA immune subtype

with worse prognosis (Figure 2E and G). Similarly, in the
CCGA cohort, IS3, IS4, and IS5 exhibited worse prognosis
while IS1 and IS2 showed better prognosis (Figure 2F and
I). Subtype distribution across different grades suggested
that patients at different stages were unevenly clustered
(Figure S3A-D). In the TCGA cohort, grade 4 was asso-
ciated with IS5, while in the CGGA cohort, grade 2 and
3 were associated with IS2. Previous studies have shown
that mutations in isocitrate dehydrogenase 1 (IDH1)
were significantly associated with longer OS of patients
with GBM.?* Our results showed that patients with mu-
tant IDH or wild type IDH were also unevenly clustered
(Figure S3E-H). In the TCGA cohort, IDH mutant group
was associated with IS1 and IDH wild type group was as-
sociated with IS4 and IS5. In the CGGA cohort, IDH mu-
tations tended to be associated with IS2. Taken together,

the immune subtypes can predict OS of glioma patients
and are correlated with some clinical features as well.

2.4 | Association of immune subtypes
with tumor mutational status

Former studies have established that tumor mutational
burden (TMB) is linked with immune status and can
predict response to immunotherapies.*>*’ Hence, TMB
and number of mutated genes in different immune sub-
types were analyzed using the TCGA data. As shown in
Figure S4A, TMB in IS4 and IS5 was significantly higher
than that in IS1, IS2, and IS3. Consistently, IS4 and IS5
also had a significantly higher number of mutated genes
than IS1, IS2, and IS3 (Figure S4B). Ten genes with the
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highest mutation frequencies in all immune subtypes
are shown in Figure S4C. The most frequently mutated
gene was IDH1 (24%), followed by TP53 (21%) and ATRX
(14%). These results demonstrated that immune sub-
types can predict mutational status in glioma patients,
with IS4 and IS5 having higher TMB and mutated genes
than IS1, IS2, and IS3, indicating that patients in IS4 and
IS5 may be more suitable for anti-immune checkpoint
therapies.

2.5 | Association of immune subtypes
with immune modulators

Immune checkpoints (ICPs) and immunogenic cell
death (ICD) modulators play a crucial role in anticancer
immunity and thus might affect the efficacy of mRNA
vaccine. Therefore, we analyzed the expression of ICPs
and ICD modulators in different immune subtypes. In
the CGGA dataset, a total of 43 ICPs were analyzed and
41 (95.3%) of them were differentially expressed across
the immune subtypes (Figure 3A). CD274, CD276,
CD44, CD70, NRP1, TNFRSF9, TNFSF15, and TNFSF4
were highly expressed in IS4. In the TCGA dataset, 47
ICPs were analyzed and all of them were differentially
expressed across the immune subtypes (Figure 3B).
CD244, CD276, CD40, CD44, CD48, CD80, NRPI,
and TNFRSF14 were highly expressed in IS4 and ISS5.
The expressions of ICD modulators was also different
across the immune subtypes. In the CGGA dataset, 20
(95.2%) of 21 ICD modulators were distinctly expressed
between the immune subtypes (Figure 3C). ANXAI,
CALR, FPR1, IFNARI1, IFNAR2, and MET were highly
expressed in IS4. In the TCGA dataset, 25 (96.2%) of 26
ICD modulators showed significantly different expres-
sion between the immune subtypes (Figure 3D). CALR,
FPR1, IFNAR2, EIF2AK1, and ANXA1 were highly ex-
pressed in IS4 and IS5. Overall, these results suggest
that the immune subtypes were associated with the ex-
pression of most ICPs and ICD modulators and that IS1
and IS2 with low expression of ICPs and ICD modula-
tors might show better response to mRNA vaccine.

2.6 | Cellular and molecular
characteristics of the immune subtypes

Since the tumor immune status has a nonnegligible in-
fluence on the effectiveness of mRNA vaccine, we used
sSGSEA to characterize the immune cell components
of the five immune subtypes by scoring 28 previously
reported signature genes in both TCGA and CGGA co-
horts. In CGGA and TCGA cohorts, we found that IS1

.. 2715
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and IS2 showed similar immune cell scores, while IS4
and IS5 showed similar immune cell scores (Figure 4A
and B). More interestingly, the immune cell composi-
tion was significantly different among IS1, IS2 and IS4,
IS5. As shown in Figure 4C, except for effector memory
CD4 T cells, the scores of other 27 immune cells in-
cluding activated CD8 T cells, activated B cells, central
memory CD8 T cells were significantly higher in IS4 and
IS5 compared to IS1 and IS2 in CGGA cohort. Thus, IS1
and IS2 are immunological “cold” while IS4 and IS5 are
immunological “hot” phenotypes. Similar tendency was
seen in TCGA cohort (Figure 4D). These results proved
that the immune subtype can reflect the immune sta-
tus of glioma so as to screen suitable patients for mRNA
vaccination treatment. Our conjecture that IS1 and IS2
might benefit more from mRNA vaccine treatment is
confirmed.

Previously, Thorsson et al. discovered six immune
categories (C1-C6) through the immunogenomic anal-
ysis of tumor samples among 33 cancer types, which
could define immune response patterns and predict
prognosis.”® To further confirm the reliability of the
immune subtypes in screening patients suitable for
mRNA vaccine, we explored the association between
the immune subtypes and the six immune categories.
As shown in Figure 4E, the distribution of the six im-
mune categories in IS1, IS2, and IS3 was different from
that in IS4 and IS5. Specifically, IS1, IS2, and IS3 were
mainly composed of C4 (lymphocyte depleted) and C5
(immunologically quiet) while IS4 and IS5 were mainly
composed of C4. Given that C4 has worse OS than C5,
this result was in accordance with our previous finding
that IS4 and IS5 were associated with worse prognosis.
C5 was mainly clustered into IS1, IS2, and IS3, confirm-
ing that IS1 and IS2 are immunologically cold. Overall,
these findings further confirm the efficacy and prognos-
tic value of our immune subtypes. Next, we explored the
association between the immune subtypes and 56 previ-
ously defined molecular features and identified 36 mo-
lecular features with FDR <0.01. As shown in Figure 4F,
IS1 and IS2 showed lower scores in most immune cells,
except for T follicular helper cell and lymphocytes. 1S3
was associated with lower Th2 cells but higher stromal
fraction and monocytes. Notably, IS4 and IS5 had higher
scores in number of segments, neutrophils, prolifera-
tion, wound healing, lymphocyte infiltration, IFN-y re-
sponse, fraction altered, TCR shannon, TCR richness,
macrophage M2, and TGF-f response, indicating an im-
munologically hot phenotype. In summary, our immune
subtypes can reflect immune status in glioma patients
and predict response to mRNA vaccine. IS1 and IS2 with
an immunologically cold phenotype might be suitable
candidates for mRNA vaccine.
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FIGURE 3 Association of immune
subtypes with ICPs and ICD modulators.
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2.7 | The immune landscape of glioma

Immune gene expression profiles extracted from CGGA
were used to construct the immune landscape of glioma
(Figure 5A and B). As shown in Figure 5D, the horizontal
axis was positively correlated with many immune cells,
such as activated CD8 T cell, activated CD4 T cell, T fol-
licular helper cell, y8T cell, Th1 cell, regulatory T cell, acti-
vated B cell, natural killer cell, activated DC, macrophage,

mast cell, etc. On the contrary, the vertical axis was nega-
tively correlated with effector memory CD4 T cell, Thl
cell, and CD56dim natural killer cell. To take a further
view on the cellular pathways that might contribute to
the differences between the immune states, pseudotime
analysis was then conducted where each patient was con-
sidered as a single cell (Figure 5C). Subsequently, we con-
ducted GO analysis for the differentially expressed genes
of the patients in different directions behind each branch
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FIGURE 4 Cellular and molecular
characteristics of immune subtypes.
Differential enrichment scores of 28
immune cell signatures among glioma
immune subtypes in (A) CGGA and (B)
TCGA cohorts. Differential immune cell
composition in (C) CGGA and (D) TCGA
cohorts. (E) The association between the
immune subtypes and the six immune
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point, three times in total (Table S3-S5). Differentially ex-
pressed genes between different immune states at three
branch points were clustered into five types according to
their expression pattern and subsequent gene enrichment
analysis was conducted (Figure 5E-G). The differentiation
direction toward different immune states at branch point
1 might be contributed to pathways associated with hor-
mone secretion, cell growth, immune cell response, anti-
virus, and immune cell activation. Pathways associated
with immune regulation, cell growth, and immune cell
proliferation might impact the differentiation direction at
branch point 2, while pathways associated with cell prolif-
eration, cell migration, hormone, immune response, and
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immune activity might affect the differentiation direction
at branch point 3.

As shown in Figure 5A, heterogeneity was observed
not only across different subtypes, but also within the
same subtype as well, especially IS2 and IS5. Therefore,
1S2 was further classified into IS2A, IS2B, and IS2C and
IS5 was classified into IS5A and IS5B based on the dis-
tribution location (Figure 6A). Survival analysis revealed
that the OS was significantly different among the eight
immune subtypes, with IS1 and IS2A showing better
prognosis and IS5B showing worse prognosis (Figure 6B).
Next, the difference between IS2A, IS2B, and IS2C was
explored (Figure 6C-E). The OS of IS2A, IS2B, and IS2C
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FIGURE 5 Immune landscape of
glioma. (A) Immune landscape of glioma.
Each point represents a patient and

the immune subtypes are color-coded.
The horizontal axis represents the first
principal component and the vertical
axis represents the second principal
component. (B) Immune landscape of
samples from seven different locations
depending on branches. (D) Heat map
of two principal components with 28
immune cell signatures. (C) Pseudotime
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were significantly different, with IS2A and IS2B showing
better prognosis compared with IS2C (Figure 6D). There is
a growing trend in immune cell infiltration of IS2A, IS2B,
and IS2C (Figure 6E). IS2C had higher infiltration of acti-
vated CD4 T cell, y8T cell, Th2 cell, memory B cell, natu-
ral killer T cell, activated dendritic cell, macrophage, mast
cell, regulatory T cell, myeloid-derived suppressor cell,
and so on, suggesting that IS2C was an immunologically
hot and immune suppressive phenotype while IS2A and
IS2B were immunologically cold. Hence, IS2A and IS2B
might be more suitable candidates for the mRNA vaccine
than IS2C. The same analysis was conducted in IS5A and
IS5B (Figure 6F-H). IS5B had a significantly worse prog-
nosis compared with IS5B (Figure 6G). As for immune
cell infiltration, IS5A had higher scores of activated B cell
while IS5B had higher scores of y38T cell and memory B
cell (Figure 6H). In summary, these results indicate that
the immune landscape can identify immune components

of glioma patients, predict prognosis and uncover cellular
changes behind cancer evolution, which might help in se-
lection of patients that benefit from mRNA vaccine.

2.8 | Identification immune gene co-
expression modules and immune hub
genes of glioma

Immune gene co-expression modules were constructed
using weighted gene co-expression network analysis
(WGCNA)(Figure 7A) with a soft threshold of 6 in the
scale-free network (Figure 7B). A gene co-expression
network was constructed which was then converted to
an adjacency matrix to describe the correlation between
different nodes. The adjacency matrix was further con-
verted to a topological overlap matrix (TOM) to quantita-
tively calculate the similarity in nodes via comparing the
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weighted correlation among different nodes. Hierarchical
clustering with a deep split of four was used to identify
modules, in which the minimum module size was set as
30. Based on the hybrid dynamic shear tree, similar mod-
ules were merged with abline height as 0.25. The close
modules were merged into a new one. The eigengenes
of each module were also calculated to identify the ex-
pression pattern of each module in different patients
(Figure 7C). Therefore, we obtained six gene modules
which were respectively represented by yellow, red,
brown, blue, green, and gray (Figure 7D). Next, the as-
sociation between the six modules and clinical traits was
explored. As shown in Figure 7E, yellow module and gray
module were correlated with lower grade and longer sur-
vival, while blue module and green module were associ-
ated with higher grade and shorter survival. Besides, the
association of the six modules with IDH mutation and
the aforementioned immune subtypes was also observed.
We further analyzed the distribution of the five immune
subtypes in the eigengenes of six modules (Figure 7F). IS1

landscape of the subsets of IS5. (G) Survival analysis of the subsets

showed the highest eigengenes in yellow module and the
lowest in red module while IS4 and IS5 showed the high-
est eigengenes in blue and green module. Univariate sur-
vival analysis revealed that yellow, blue, green, and gray
modules were significantly associated with the survival
of glioma patients (Figure 8A). However, in the multi-
variate survival analysis, only yellow, blue, and gray mod-
ules were correlated with survival, among which yellow
and gray showed negative correlations with survival and
blue showed strong positive correlations with survival
(Figure 8B). Since the genes in the gray module did not
cluster with the others (Figure 7D), we only focused on
blue and yellow modules in the following analysis. Gene
enrichment analysis showed that blue module was as-
sociated with cytokine-cytokine receptor interaction,
Epstein-Barr virus infection, MAPK signaling pathway,
etc., while yellow module was associated with neuroac-
tive ligand-receptor interaction and multiple signaling
pathways including MAPK signaling pathway, cAMP
signaling pathway, T cell receptor signaling pathway,
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Ras signaling pathway, etc. (Figure 8C and D). As shown
in Figure 8E and F, blue module showed strong positive
correlation with component 1 of the immune landscape
(R > 0.9, p < 2.2e-16) while yellow module was negatively
correlated with component 1 (R = —0.63, p < 2.2e-16). In
the survival analysis, higher expression in the genes of
the blue module was significantly correlated with worse
prognosis while yellow module showed the opposite
(Figure 8G and H). Since blue module showed strong cor-
relation with component 1 and survival, we selected five

hub genes (S100A11, TYMP, IF130, PLAUR, and RAC2,
shown in Table S6) from blue module with module mem-
bership (MM) >0.90, which might serve as the marker for
selecting patients suitable for mRNA vaccine.

3 | DISCUSSION

As the most common primary intracranial tumor, glioma
isresistant to traditional medical treatment for tumor such
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as radiotherapy, chemotherapy, and surgical excision be-
cause of its immunosuppressive properties.” Current
statistics show that the 10-year survival rate of low-grade
glioma is 47%, with a median survival time of 11.6 years.*
For HGG, the median overall survival time for grade 3 gli-
oma patients is approximately 3 years, while the median
OS time for grade 4 glioma is only 15 months.’! To date,
the conventional treatment for gliomas includes surgical
resection, temozolomide (TMZ), and radiation, but this
is far from enough to combat tumor development.** In
recent years, immunotherapy has given new impetus to
antitumor therapy for its ability to cross the blood-brain
barrier, but more research is needed to prove the feasibility
of immunotherapy in treating glioma.*® With the success
of the mRNA vaccine in clinical trials on other tumors, we

see another possibility for glioma treatment. But unfortu-
nately, the application of mRNA vaccine in glioma is still
being explored, so we hope our research can further open
a breakthrough.

To develop mRNA vaccine for glioma, the first step
is to find the appropriate tumor antigen. First of all, we
extracted potential tumor antigen gene from TCGA da-
tabase and got 1739 differentially expressed genes, and
then we performed mutation analysis and filtered 14,732
expressed mutant genes. By obtaining the intersection of
differentially expressed genes and mutant genes, we got
919 potential tumor antigens. Among these 919 poten-
tial tumor antigens, survival analysis was conducted to
screen out genes related to the OS and PFS of glioma pa-
tients. Finally, 10 candidate antigens that are expected to
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be used for glioma mRNA vaccine were obtained accord-
ing to the association with infiltration of APCs, includ-
ing NAT1, FRRS1, GTF2H2C, BRCA2, GRAP, NR5A2,
ABCB4, ZNF90, ERCC6L, and ZNF813. At the same time,
infiltration results showed that mRNA vaccine was more
suitable for LGG patients than GMB patients. Although
further clinical evaluation is needed, some studies have
shown the potential of these genes for immunotherapy.
Yang et al., for example, found that NR5A2 was highly
expressed in glioma tissues and cell lines, and its overex-
pression was associated with poor prognosis of glioma pa-
tients. Further studies showed that NR5A2 could promote
cell proliferation and tumor growth via Notch signaling
pathway, suggesting that it might be a novel target for im-
munotherapy in glioma.*® Besides, BRCA2 was essential
for homologous recombination (HR)-dependent double-
strand break (DSB) repairing pathway and thus partici-
pated in glioma resistance to alkylating agents. Therefore,
targeting BRCA2 might be a useful strategy to increase
sensitivity to alkylating anticancer drugs.****> Another
study reported that BRCA2 mRNA expression was sig-
nificantly associated with the overall survival and median
survival in patients with LGG.*

After screening for potential glioma antigens, we then
tried to screen suitable populations for mRNA vaccine.
Prior studies have shown that TIME can affect the treat-
ment effect of immunotherapy including mRNA vac-
cine.’”?® Therefore, we then tried to find a reliable method
to select patients with proper TIME for mRNA vaccine
treatment. Based on the expression profiles of immune-
related genes, glioma patients were classified into five
subtypes through consensus clustering. Among the five
subtypes, IS4 and IS5 showed worse prognosis compared
with IS1, IS2, and IS3, suggesting that immunotyping can
act as the predictor for survival of glioma patients. Besides,
the immune subtypes were also associated with clinical
features, such as tumor grade and IDH mutation. Next,
the association between immune subtypes and markers of
TIME was investigated. IS4 and IS5 had significantly higher
TMB, number of mutated genes and ICD modulators than
IS1, 1S2, and IS3, suggesting that IS4 and IS5 had higher
immune response. ICPs level were significantly higher in
IS4 and IS5, indicating that patients in IS4 and IS5 are not
suitable for mRNA vaccine alone but might benefit from
the combined treatment of immune checkpoint inhibitors
and mRNA vaccine. In contrast, IS1 and IS2 with low level
of ICPs might show better response to mRNA vaccine. To
compare the TIME of different immune subtypes, ssGSEA
was used to characterize the immune cell components.
With higher scores of most immune cells including acti-
vated CD8 T cells, activated B cells, regulatory T cells, etc.,
IS4 and IS5 were identified as immunologically “hot” and
immunosuppressive phenotype while IS1 and IS2 with

lower scores of immune cells were identified as immuno-
logically “cold” phenotype. The association between im-
mune subtypes and 56 molecular features also confirmed
this finding. Since mRNA vaccine can stimulate immune
response in cancer patients, it might be more beneficial
to patients with low immune cell infiltration. Hence, IS1
and IS2 were the candidates for mRNA vaccine while
IS4 and IS5 were not suitable for mRNA vaccine. To test
the reliability of our immune subtypes, we investigated
the association between previously reported six immune
categories and our immune subtypes and found different
distribution of C1-C6 in different immune subtypes. The
proportion of C5 (immunologically quiet) was signifi-
cantly higher in IS1, IS2, and IS3, confirming that IS1 and
IS2 are immunologically cold. In summary, the immune
subtypes can not only predict survival, but also help in se-
lecting suitable patients for mRNA vaccine. Specifically,
IS1 and IS2 with an immunologically cold phenotype are
the suitable candidates for mRNA vaccine.

To obtain an intuitive knowledge of the immune status
of glioma patients, immune landscape was constructed
using graph learning-based dimensionality reduction
analysis. From the immune landscape, patients can be
divided into seven immune states segmented by three
branch points. Next, we explored the important cellular
pathways that determine immune status shift. The result
showed that the differentiation at the three branch points
was affected by different pathways. Intervening in these
pathways might be a useful strategy for cancer immuno-
therapy. Overall, patients in the same immune subtype
seemed to cluster together while patients in different
immune subtypes were distributed in different regions,
suggesting the reliability of immune subtypes. However,
heterogeneity still existed within the same subtype, espe-
cially IS2 and IS5. Therefore IS2 was further classified into
IS2A, IS2B, and IS2C, and IS5 was further classified into
IS5A and IS5B. Survival analysis showed that IS2A and
IS2B showed better prognosis than IS2C, and that IS5B
had worse prognosis than IS5A, suggesting that our fur-
ther classification was reasonable. IS2C showed higher
immune cell infiltration than IS2A and IS2B, indicating
that IS2C was immune-hot while IS2A and IS2B were
immune-cold. Thus, IS2A and IS2B might show better re-
sponse to mRNA vaccine. This result suggests that patients
with higher immune cell infiltration tend to have shorter
OS, which was in line with above findings. One possible
explanation for this might be that patient survival is also
influenced by TIME and an immunosuppressive microen-
vironment contributes to reduced survival time. However,
infiltration of most immune cells was similar between
IS5A and IS5B. Overall, the immune landscape testified
the reliability of the immune subtypes and also allowed us
to obtain a more precise classification of glioma patients.
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Since immune subtype and immune landscape were
not stable across different patient populations, we then
conducted further research to find a more stable way that
can reflect response to mRNA vaccine. Immune gene co-
expression modules were constructed by WGCNA and six
gene modules were obtained, among which yellow, blue,
and green modules showed significant correlations with
survival. Blue module showed strong positive correlations
with component 1 of the immune landscape (R > 0.9,
p < 2.2e-16) and also significant correlations with survival
(p < 0.0001). Therefore, five hub genes (S100A11, TYMP,
IFI30, PLAUR, and RAC2) were selected from blue module
with MM > 0.90, which might serve as the marker for re-
sponse to mRNA vaccine.

Several studies also identified potential tumor anti-
gens and immune subtypes in glioma for mRNA vac-
cine development. Zhong et al. identified four potential
tumor antigens (ANXAS5, FKBP10, MSN, and PYGL)
which were significantly correlated with patient survival
and APCs infiltration.” They classified glioma patients
into three subtypes, IS1, IS2, and IS3, which were asso-
ciated with survival, ICPs and ICD modulators but not
associated with TMB. Further research showed that IS2
and IS3 were immunologically cold and therefore might
benefit from mRNA vaccine. From the immune land-
scape, IS2 was further classified into IS2A, 1S2B, and
IS2C, among which IS2A showed lower immune cell
infiltration and might show better response to mRNA
vaccine. Finally, immune gene co-expression modules
were constructed and hub genes of red and pink mod-
ules were selected. Similarly, Ye et al. identified tumor
antigens and immune subtypes in LGG for mRNA vac-
cine development.”> However, hub genes of immune
gene co-expression modules were not studied. Another
study also used similar methods to identify tumor an-
tigens and immune subtypes in GBM, but they did not
construct the immune landscape.”® Compared with
these studies, we took a further step in the branch point
analysis and identified cellular pathways that might im-
pact on the immune status of glioma patients.

In summary, we identified 10 potential tumor antigens
associated with survival and APC infiltration, which can
be utilized for mRNA vaccine development in glioma.
Besides, we classified glioma patients into five immune
subtypes which can not only predict prognosis, but also
reflect the immune status of glioma patients. IS1 and IS2
with an immunologically cold phenotype might show
better response to mRNA vaccine, while 1S4 and IS5
with an immunologically hot and immunosuppressive
phenotype might not be suitable for mRNA vaccine. In
addition, we constructed the immune landscape and iden-
tified cellular pathways that affect the immune status of
patients. Further classification of immune subtypes was
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done according to the immune landscape, in which IS2A
and IS2B were proved to be more suitable vaccination re-
ceiver than IS2C was. Eventually, we built immune gene
co-expression modules and selected five hub genes that
might serve as a biomarker indicating response to mRNA
vaccine. Overall, our research provided the theoretical
basis and would hopefully accelerate the development of
mRNA vaccine in glioma.

4 | MATERIALS AND METHODS

4.1 | Acquisition of data

The normalized RNA sequencing expression data from
703 samples and 325 samples were collected from TCGA
(https://portal.gdc.cancer.gov/) and the CGGA (http://
www.cgga.org.cn/) database, respectively. Somatic mu-
tation data annotated by Varscan of TCGA datasets were
also downloaded from GDC repository to identify the po-
tential tumor antigens in glioma. A gene list encompass-
ing 1793 immune-related genes was acquired in ImmPort
database (https://www.immport.org/shared/genelists) to
identify the immune landscape of glioma. The functions
and gene ontology analyses of these immunologically rel-
evant genes were annotated as terms including Antigen
Processing and Presentation, Antimicrobials, BCR
Signaling Pathway, etc. To undercover the immune fea-
tures of different immune subtypes, 56 immune traits of
glioma samples were exploited from the previously pub-
lished research. In addition, clinical information regard-
ing the tumor grade, survival information, progression
free status, IDH mutation status, etc. of TCGA and CGGA
datasets was also extracted to determine the correlation
between the clinical parameters and novel antigens and
immune subtypes.

4.2 | Preprocessing of data

Samples from TCGA and CGGA with no clinical informa-
tion were excluded from the subsequent analyses, with
ultimately 444 TCGA samples and 325 CGGA samples
included in the following immune subtype identification.
Additionally, only 1126 immunologically relevant genes
were expressed simultaneously in TCGA and CGGA
datasets. To enhance the reliability of the immune sub-
type classification, only these 1126 genes were utilized
to construct different immune subtypes in both datasets.
Although not involving all the immunologically relevant
genes, the 1126 genes still have covered all the functional
and gene ontological annotation terms which guaranteed
their representativeness.
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4.3 | Identification of putative antigens
The putative antigens were considered as proteins that
were overexpressed and mutated in tumor samples with
poor prognosis, and that were highly correlated with
antigen-presenting cells infiltration. In this process, dif-
ferential expression analyses, univariate Cox regression
analyses, and product-limit method were first utilized.
Genes with false discovery rate (FDR) <0.01 and log fold
change >1.0 were considered significantly overexpressed;
while genes with a hazard ratio (HR) >2, p < 0.001 in
univariate Cox and log-rank test p < 0.001 were consid-
ered clinically relevant. R packages including Limma,*
Survminer, Survival were used.

4.4 | TIMER analyses

As mentioned above, to evaluate the correlation between
the putative antigens and antigen- presenting cells in-
filtration status, Tumor Immune Estimation Resource
(TIMER, http://timer.cistrome.org/) was utilized in both
Lower grade glioma (LGG) and glioma multiforme (GBM)
cohort.

4.5 | Single-sample GSEA
(ssGSEA) analyses

To quantitively predict the immune cells infiltration in
the tumor microenvironment, sSGSEA was utilized to
calculate the enrichment score of 28 immune cells with
different functional statuses (i.e., Activated CD8 T cell,
Central memory CD8 T cell, and Effector memeory CD8
T cell) of each patient. The principle of ssGSEA has been
described in the previous publication.*

4.6 | Immune subtypes classification

The intersected 1126 immune-related genes were ex-
ploited to cluster the patients and annotate their dif-
ferent immune statuses. Using the partition around
medoids algorithm which showed better stability, pa-
tients were successfully clustered into five immune sta-
tuses (IS) in both TCGA cohort and CGGA validation
cohort. Specifically, the distances between patients were
calculated using the “1-Pearson correlation” distance
metric. Five-hundred bootstraps were conducted to en-
hance the reproducibility of the clustering, with each
bootstrap involving 80% of patients in the discovery co-
hort. We observed the putative clustering number from

2 to 9. The consensus matrix, consensus cumulative dis-
tribution function (CDF), and relative change in area
under CDF curve were utilized to determine the optimal
clustering number.

4.7 | Construction of immune landscape

Monocle R package was exploited to construct the im-
mune landscape of patients using 700 highly variable
immune-related genes.*’ Monocle R package was ini-
tially designed to construct the evolution landscape of
each cell in single cell RNA sequencing. In our pre-
sent study, we considered individual patients as a sin-
gle “cell”. Using graph learning-based dimensionality
reduction analysis with a Gaussian distribution in
Monocle, the immune status of each “cell” was calcu-
lated and visualized. The immune landscape also in-
dicated the difference and correlation among different
patients. The maximum number of components were
set to four and the dimensional reduction method was
set as DDRTress. The immune landscape displayed the
patients with different immune subtypes using varied
colors. The pseudo-time analysis was implemented to
determine the similarity of immune status among pa-
tients. Furthermore, differentially expressed genes were
identified by comparing patients extended to different
directions from the branch points. KEGG analyses fur-
ther determined altered pathways contributing to the
immune subtype shift among glioma patients.
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