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1  |  INTRODUCTION

As one of the most common primary intracranial tumors 
in adults, glioma is characterized by rapid cell prolifer-
ation and angiogenesis and represents 81% of intracra-
nial malignant tumors. The latest statistics show that the 

prevalence of glioma is 3.2 per 100,000,1 and although 
with a relatively rare prevalence, glioma causes signif-
icant mortality and morbidity. According to malignant 
behaviors, glioma can be divided into WHO grade I- IV. 
Glioblastoma is the most malignant tumor, namely grade 
IV, accounting for about 45% of gliomas, and the 5- year 
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Abstract
Recent evidence suggested that the mRNA vaccine has been effective for many 
tumors, but its progress in gliomas was slow. In this study, we screened potential 
tumor antigens and suitable populations for mRNA vaccine to develop mRNA 
vaccine for glioma. We integrated the normalized RNA sequencing expression 
data and somatic mutation data from TCGA- GBM, TCGA- LGG, and CGGA 
datasets. Putative antigens in glioma were identified by selecting highly mutated 
genes with intimate correlation with clinical survival and immune infiltration. 
An unsupervised partition around medoids algorithm was utilized to stably clus-
ter the patients into five different immune subtypes. Among them, IS1/2 was cold 
tumor with low tumor mutation burden (TMB), immunogenic cell death (ICDs), 
and immune checkpoints (ICPs), and IS4/5 was hot tumor with high TMB, ICDs, 
and ICPs. Monocle3 package was used to evaluate the immune status similar-
ity and evolution in glioma, which identified cluster IS2A/2B within IS2 subtype 
to be more suitable vaccination receivers. Weighted gene co- expression network 
analysis identified five hub immune genes as the biomarkers of patients' im-
mune status in glioma. In conclusion, NAT1, FRRS1, GTF2H2C, BRCA2, GRAP, 
NR5A2, ABCB4, ZNF90, ERCC6L, and ZNF813 are potential antigens suitable for 
glioma mRNA vaccine. IS1/2A/2B are suitable for mRNA vaccination.
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relative survival rate is about 5%. Glioblastoma has a poor 
prognosis because its stem cell- like cells (GSCs) are resis-
tant to conventional treatment.2 At present, the effect of 
targeted therapy for glioma is not significant.3 For those 
glioma patients in low- level grade, they are sensitive to 
radiotherapy, chemotherapy, and other treatments, which 
lead to good prognosis.4,5 However, those who are in high 
grade urgently need a new treatment strategy to improve 
their survival rate.

As early as the 1990s, Acsadi (1991),6 Jiao (1992)7dis-
covered and demonstrated the therapeutic potential of 
mRNA. But because mRNA is unstable and easily de-
graded by RNA enzymes, it has not attracted much at-
tention. When it came to 1999, the discovery of RNA 
interference (RNAi) revealed the therapeutic potential of 
RNA, leading to a boom in RNA vaccine research.8 The 
global spread of the Novel Coronavirus SARS- COV- 2 in 
late 2019 has accelerated the development of mRNA vac-
cine, making it a third- generation nucleic acid vaccine 
based on first- generation attenuated/inactivated vaccines 
and second- generation subunit vaccines. The purpose of 
mRNA vaccines is to transfer RNA into cells for expres-
sion and produce protein antigens, thereby inducing an 
immune response to the antigens to expand the body's 
immune capacity. mRNA vaccines show high potential in 
the treatment of tumors. Compared with known tumor 
vaccines that use peptides, tumor cells, dendritic cells 
(DCs), and DNA as antigens, mRNA vaccines have many 
advantages. First, they are easy to design and produce. 
We can easily modify the mRNA sequence to encode the 
desired protein and attain faster production.9– 11 Second, 
mRNA vaccines do not require genetic analysis of cancer, 
which can reduce much cost.12 The third point is safety. 
mRNA vaccines are not made from pathogen particles or 
inactivated pathogens, and they do not have the irrele-
vant sequence rejection and gene integration that often 
occurs in DNA vaccines. What is more, we can even 
regulate the half- life of mRNA through RNA sequence 
modification or delivery system.10,11,13,14 Besides, mRNA 
vaccines are more immunogenic in human body and can 
trigger stronger and longer- lasting immune responses.15 
The final one is efficacy, current clinical applications 
have demonstrated the reliability and low side effects 
of mRNA vaccine. Meanwhile, its simplicity of design 
makes personalized treatment possible.10,11 More impor-
tantly, mRNA vaccines have been shown to be effective 
against other types of cancer, such as melanoma and liver 
cancer. Preclinical trials have shown that vaccines encod-
ing tumor- specific antigens can promote antitumor im-
munity and inhibit the growth of various cancers.10,16– 20 
In conclusion, we believe that mRNA vaccines have great 
potential in immunotherapy targeting tumor- specific 
antigens.

Unfortunately, there are few studies on mRNA vac-
cines for glioma, and most of them only focused on find-
ing tumor- specific antigens and immunizing patients 
against subtypes.21– 23 Based on these findings, we further 
investigated mRNA vaccines for glioma. By screening 
potential glioma antigens, we found 10 potential mRNA 
vaccine antigens. Then we divided glioma patients into 
five immune subtypes and analyzed the association of im-
mune subtypes with survival, clinical features, and mark-
ers of tumor immune microenvironment. Subsequently, 
we analyzed the molecular characteristics and cell infil-
tration of the five subtypes. In addition, we also mapped 
the immune landscape of glioma and identified the co- 
expression modules and central genes of glioma immune 
genes. Our work will pave the way for the development of 
mRNA vaccine for glioma and the selection of appropriate 
patients for vaccination.

2  |  RESULTS

2.1 | Screening of potential tumor 
antigens of glioma

In order to find potential tumor antigens for mRNA vac-
cine development, differential expression analysis was 
first performed using the TCGA data. A total of 1739 
genes were upregulated in glioma compared with normal 
tissues. The distribution of upregulated genes in human 
chromosomes was displayed in Figure  1A. Upregulated 
genes existed in almost all chromosomes except chromo-
some Y, and were highly clustered in chromosome 2, 19, 
and X. Next, mutation analysis was conducted by assess-
ing fraction genome alteration and mutation count and a 
total of 14,732 mutant genes were identified (Figure  1B 
and C). Genes with the highest mutation rates, includ-
ing IDH1, TP53, ATRX, PTEN, etc., were displayed in 
Figure 1D. Notably, gene mutation was quite frequent in 
glioma and 815 (90.96%) of 896 tumor samples had at least 
one gene mutation. Finally, 919 potential tumor antigens 
were identified after the intersection of 1739 upregulated 
genes and 14,732 mutant genes (Figure 1E).

2.2 | Identification of tumor antigens 
associated with glioma prognosis and 
infiltration of antigen- presenting cells 
(APCs)

Survival analysis was then conducted to further screen 
tumor antigens that might be suitable for mRNA vaccine 
development. In total, 17 genes were significantly cor-
related with the overall survival (OS) of glioma patients, 
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among which 14 genes were also significantly associated 
with the progression- free survival (PFS) of glioma pa-
tients (Figure S1A). Subsequently, associations between 
gene expression and infiltration of APCs were further 
analyzed and 10 candidate tumor antigens were finally 
selected, including NAT1, FRRS1, GTF2H2C, BRCA2, 
GRAP, NR5A2, ABCB4, ZNF90, ERCC6L, and ZNF813. 
The distribution of the 10 candidate genes in human 
chromosomes is displayed in Figure S1B. High expression 
levels of all these genes were significantly associated with 
poor OS of glioma patients (Figure S1C- L). Positive asso-
ciations between expression of these candidate genes and 
tumor infiltration of macrophages, dendritic cells, and B 
cells were observed and NAT1 was best correlated with 
APCs infiltration (Figure S2A- J). The associations be-
tween expression of candidate genes and APCs infiltration 
were more significant in lower grade glioma (LGG) com-
pared with that in glioma multiforme (GBM), indicating 

that mRNA vaccine might exert better treatment effects 
toward LGG than GBM.

2.3 | Identification of potential immune 
subtypes of glioma

Immunotyping was conducted to identify glioma patients 
with proper tumor immune microenvironment (TIME) 
that might benefit more from mRNA vaccine. Expression 
profiles of 1126 immune- related genes were extracted 
from the TCGA and CGGA dataset. By evaluating the 
consensus matrix and the consensus cumulative distri-
bution function, we chose k = 5 where immune- related 
genes seemed to be well clustered (Figure 2A- D) and ob-
tained five immune subtypes, namely IS1- IS5 (Figure 2H 
and J, Table S1, S2). In the TCGA cohort, IS1, IS2, and IS3 
showed better prognosis while IS4 and IS5 were associated 

F I G U R E  1  Identification of 
potential tumor antigens of glioma. (A) 
Chromosomal distribution of up-  and 
downregulated genes in glioma. (B- E) 
Identification of potential tumor- specific 
antigens in glioma. Overlapping mutated 
genes distributed in the fraction genome 
altered group (B) and mutation count 
group (C) are shown. (D) Genes with the 
highest mutant frequency are shown. (E) 
Intersection of upregulated genes and 
mutant genes



2714 |   CHEN et al.

with worse prognosis (Figure 2E and G). Similarly, in the 
CCGA cohort, IS3, IS4, and IS5 exhibited worse prognosis 
while IS1 and IS2 showed better prognosis (Figure 2F and 
I). Subtype distribution across different grades suggested 
that patients at different stages were unevenly clustered 
(Figure S3A- D). In the TCGA cohort, grade 4 was asso-
ciated with IS5, while in the CGGA cohort, grade 2 and 
3 were associated with IS2. Previous studies have shown 
that mutations in isocitrate dehydrogenase 1 (IDH1) 
were significantly associated with longer OS of patients 
with GBM.24 Our results showed that patients with mu-
tant IDH or wild type IDH were also unevenly clustered 
(Figure S3E- H). In the TCGA cohort, IDH mutant group 
was associated with IS1 and IDH wild type group was as-
sociated with IS4 and IS5. In the CGGA cohort, IDH mu-
tations tended to be associated with IS2. Taken together, 

the immune subtypes can predict OS of glioma patients 
and are correlated with some clinical features as well.

2.4 | Association of immune subtypes 
with tumor mutational status

Former studies have established that tumor mutational 
burden (TMB) is linked with immune status and can 
predict response to immunotherapies.25– 27 Hence, TMB 
and number of mutated genes in different immune sub-
types were analyzed using the TCGA data. As shown in 
Figure S4A, TMB in IS4 and IS5 was significantly higher 
than that in IS1, IS2, and IS3. Consistently, IS4 and IS5 
also had a significantly higher number of mutated genes 
than IS1, IS2, and IS3 (Figure S4B). Ten genes with the 

F I G U R E  2  Identification of potential immune subtypes of glioma. (A) Cumulative distribution function curve and (B) delta area of 
immune- related genes in the TCGA cohort. (C) Cumulative distribution function curve and (D) delta area of immune- related genes in the 
CGGA cohort. Sample clustering heat map in the TCGA cohort (H) and the CGGA cohort (J). (G) Kaplan– Meier curves showing OS of 
glioma immune subtypes in the TCGA cohort. (E) Hazard ratio of TCGA immune subtype. (I) Kaplan– Meier curves showing OS of glioma 
immune subtypes in the CGGA cohort. (F) Hazard ratio of CGGA immune subtype
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highest mutation frequencies in all immune subtypes 
are shown in Figure S4C. The most frequently mutated 
gene was IDH1 (24%), followed by TP53 (21%) and ATRX 
(14%). These results demonstrated that immune sub-
types can predict mutational status in glioma patients, 
with IS4 and IS5 having higher TMB and mutated genes 
than IS1, IS2, and IS3, indicating that patients in IS4 and 
IS5 may be more suitable for anti- immune checkpoint 
therapies.

2.5 | Association of immune subtypes 
with immune modulators

Immune checkpoints (ICPs) and immunogenic cell 
death (ICD) modulators play a crucial role in anticancer 
immunity and thus might affect the efficacy of mRNA 
vaccine. Therefore, we analyzed the expression of ICPs 
and ICD modulators in different immune subtypes. In 
the CGGA dataset, a total of 43 ICPs were analyzed and 
41 (95.3%) of them were differentially expressed across 
the immune subtypes (Figure  3A). CD274, CD276, 
CD44, CD70, NRP1, TNFRSF9, TNFSF15, and TNFSF4 
were highly expressed in IS4. In the TCGA dataset, 47 
ICPs were analyzed and all of them were differentially 
expressed across the immune subtypes (Figure  3B). 
CD244, CD276, CD40, CD44, CD48, CD80, NRP1, 
and TNFRSF14 were highly expressed in IS4 and IS5. 
The expressions of ICD modulators was also different 
across the immune subtypes. In the CGGA dataset, 20 
(95.2%) of 21 ICD modulators were distinctly expressed 
between the immune subtypes (Figure  3C). ANXA1, 
CALR, FPR1, IFNAR1, IFNAR2, and MET were highly 
expressed in IS4. In the TCGA dataset, 25 (96.2%) of 26 
ICD modulators showed significantly different expres-
sion between the immune subtypes (Figure 3D). CALR, 
FPR1, IFNAR2, EIF2AK1, and ANXA1 were highly ex-
pressed in IS4 and IS5. Overall, these results suggest 
that the immune subtypes were associated with the ex-
pression of most ICPs and ICD modulators and that IS1 
and IS2 with low expression of ICPs and ICD modula-
tors might show better response to mRNA vaccine.

2.6 | Cellular and molecular 
characteristics of the immune subtypes

Since the tumor immune status has a nonnegligible in-
fluence on the effectiveness of mRNA vaccine, we used 
ssGSEA to characterize the immune cell components 
of the five immune subtypes by scoring 28 previously 
reported signature genes in both TCGA and CGGA co-
horts. In CGGA and TCGA cohorts, we found that IS1 

and IS2 showed similar immune cell scores, while IS4 
and IS5 showed similar immune cell scores (Figure 4A 
and B). More interestingly, the immune cell composi-
tion was significantly different among IS1, IS2 and IS4, 
IS5. As shown in Figure 4C, except for effector memory 
CD4 T cells, the scores of other 27 immune cells in-
cluding activated CD8 T cells, activated B cells, central 
memory CD8 T cells were significantly higher in IS4 and 
IS5 compared to IS1 and IS2 in CGGA cohort. Thus, IS1 
and IS2 are immunological “cold” while IS4 and IS5 are 
immunological “hot” phenotypes. Similar tendency was 
seen in TCGA cohort (Figure 4D). These results proved 
that the immune subtype can reflect the immune sta-
tus of glioma so as to screen suitable patients for mRNA 
vaccination treatment. Our conjecture that IS1 and IS2 
might benefit more from mRNA vaccine treatment is 
confirmed.

Previously, Thorsson et al. discovered six immune 
categories (C1- C6) through the immunogenomic anal-
ysis of tumor samples among 33 cancer types, which 
could define immune response patterns and predict 
prognosis.28 To further confirm the reliability of the 
immune subtypes in screening patients suitable for 
mRNA vaccine, we explored the association between 
the immune subtypes and the six immune categories. 
As shown in Figure 4E, the distribution of the six im-
mune categories in IS1, IS2, and IS3 was different from 
that in IS4 and IS5. Specifically, IS1, IS2, and IS3 were 
mainly composed of C4 (lymphocyte depleted) and C5 
(immunologically quiet) while IS4 and IS5 were mainly 
composed of C4. Given that C4 has worse OS than C5, 
this result was in accordance with our previous finding 
that IS4 and IS5 were associated with worse prognosis. 
C5 was mainly clustered into IS1, IS2, and IS3, confirm-
ing that IS1 and IS2 are immunologically cold. Overall, 
these findings further confirm the efficacy and prognos-
tic value of our immune subtypes. Next, we explored the 
association between the immune subtypes and 56 previ-
ously defined molecular features and identified 36 mo-
lecular features with FDR <0.01. As shown in Figure 4F, 
IS1 and IS2 showed lower scores in most immune cells, 
except for T follicular helper cell and lymphocytes. IS3 
was associated with lower Th2 cells but higher stromal 
fraction and monocytes. Notably, IS4 and IS5 had higher 
scores in number of segments, neutrophils, prolifera-
tion, wound healing, lymphocyte infiltration, IFN- γ re-
sponse, fraction altered, TCR shannon, TCR richness, 
macrophage M2, and TGF- β response, indicating an im-
munologically hot phenotype. In summary, our immune 
subtypes can reflect immune status in glioma patients 
and predict response to mRNA vaccine. IS1 and IS2 with 
an immunologically cold phenotype might be suitable 
candidates for mRNA vaccine.



2716 |   CHEN et al.

2.7 | The immune landscape of glioma

Immune gene expression profiles extracted from CGGA 
were used to construct the immune landscape of glioma 
(Figure 5A and B). As shown in Figure 5D, the horizontal 
axis was positively correlated with many immune cells, 
such as activated CD8 T cell, activated CD4 T cell, T fol-
licular helper cell, γδT cell, Th1 cell, regulatory T cell, acti-
vated B cell, natural killer cell, activated DC, macrophage, 

mast cell, etc. On the contrary, the vertical axis was nega-
tively correlated with effector memory CD4 T cell, Th1 
cell, and CD56dim natural killer cell. To take a further 
view on the cellular pathways that might contribute to 
the differences between the immune states, pseudotime 
analysis was then conducted where each patient was con-
sidered as a single cell (Figure 5C). Subsequently, we con-
ducted GO analysis for the differentially expressed genes 
of the patients in different directions behind each branch 

F I G U R E  3  Association of immune 
subtypes with ICPs and ICD modulators. 
Differential expression of ICP genes 
among the glioma immune subtypes 
in (A) CGGA and (B) TCGA cohorts. 
Differential expression of ICD modulator 
genes among the glioma immune 
subtypes in (C) CGGA and (D) TCGA 
cohorts
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point, three times in total (Table S3– S5). Differentially ex-
pressed genes between different immune states at three 
branch points were clustered into five types according to 
their expression pattern and subsequent gene enrichment 
analysis was conducted (Figure 5E- G). The differentiation 
direction toward different immune states at branch point 
1 might be contributed to pathways associated with hor-
mone secretion, cell growth, immune cell response, anti- 
virus, and immune cell activation. Pathways associated 
with immune regulation, cell growth, and immune cell 
proliferation might impact the differentiation direction at 
branch point 2, while pathways associated with cell prolif-
eration, cell migration, hormone, immune response, and 

immune activity might affect the differentiation direction 
at branch point 3.

As shown in Figure  5A, heterogeneity was observed 
not only across different subtypes, but also within the 
same subtype as well, especially IS2 and IS5. Therefore, 
IS2 was further classified into IS2A, IS2B, and IS2C and 
IS5 was classified into IS5A and IS5B based on the dis-
tribution location (Figure 6A). Survival analysis revealed 
that the OS was significantly different among the eight 
immune subtypes, with IS1 and IS2A showing better 
prognosis and IS5B showing worse prognosis (Figure 6B). 
Next, the difference between IS2A, IS2B, and IS2C was 
explored (Figure 6C– E). The OS of IS2A, IS2B, and IS2C 

F I G U R E  4  Cellular and molecular 
characteristics of immune subtypes. 
Differential enrichment scores of 28 
immune cell signatures among glioma 
immune subtypes in (A) CGGA and (B) 
TCGA cohorts. Differential immune cell 
composition in (C) CGGA and (D) TCGA 
cohorts. (E) The association between the 
immune subtypes and the six immune 
categories. (F) Differential enrichment 
scores of 36 immune signatures with 
FDR <0.01 among glioma immune 
subtypes
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were significantly different, with IS2A and IS2B showing 
better prognosis compared with IS2C (Figure 6D). There is 
a growing trend in immune cell infiltration of IS2A, IS2B, 
and IS2C (Figure 6E). IS2C had higher infiltration of acti-
vated CD4 T cell, γδT cell, Th2 cell, memory B cell, natu-
ral killer T cell, activated dendritic cell, macrophage, mast 
cell, regulatory T cell, myeloid- derived suppressor cell, 
and so on, suggesting that IS2C was an immunologically 
hot and immune suppressive phenotype while IS2A and 
IS2B were immunologically cold. Hence, IS2A and IS2B 
might be more suitable candidates for the mRNA vaccine 
than IS2C. The same analysis was conducted in IS5A and 
IS5B (Figure 6F– H). IS5B had a significantly worse prog-
nosis compared with IS5B (Figure  6G). As for immune 
cell infiltration, IS5A had higher scores of activated B cell 
while IS5B had higher scores of γδT cell and memory B 
cell (Figure 6H). In summary, these results indicate that 
the immune landscape can identify immune components 

of glioma patients, predict prognosis and uncover cellular 
changes behind cancer evolution, which might help in se-
lection of patients that benefit from mRNA vaccine.

2.8 | Identification immune gene co- 
expression modules and immune hub 
genes of glioma

Immune gene co- expression modules were constructed 
using weighted gene co- expression network analysis 
(WGCNA)(Figure  7A) with a soft threshold of 6 in the 
scale- free network (Figure  7B). A gene co- expression 
network was constructed which was then converted to 
an adjacency matrix to describe the correlation between 
different nodes. The adjacency matrix was further con-
verted to a topological overlap matrix (TOM) to quantita-
tively calculate the similarity in nodes via comparing the 

F I G U R E  5  Immune landscape of 
glioma. (A) Immune landscape of glioma. 
Each point represents a patient and 
the immune subtypes are color- coded. 
The horizontal axis represents the first 
principal component and the vertical 
axis represents the second principal 
component. (B) Immune landscape of 
samples from seven different locations 
depending on branches. (D) Heat map 
of two principal components with 28 
immune cell signatures. (C) Pseudotime 
analysis of immune landscape of glioma. 
Analysis of branch point 1 (E), 2 (F), 3 (G)
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weighted correlation among different nodes. Hierarchical 
clustering with a deep split of four was used to identify 
modules, in which the minimum module size was set as 
30. Based on the hybrid dynamic shear tree, similar mod-
ules were merged with abline height as 0.25. The close 
modules were merged into a new one. The eigengenes 
of each module were also calculated to identify the ex-
pression pattern of each module in different patients 
(Figure  7C). Therefore, we obtained six gene modules 
which were respectively represented by yellow, red, 
brown, blue, green, and gray (Figure  7D). Next, the as-
sociation between the six modules and clinical traits was 
explored. As shown in Figure 7E, yellow module and gray 
module were correlated with lower grade and longer sur-
vival, while blue module and green module were associ-
ated with higher grade and shorter survival. Besides, the 
association of the six modules with IDH mutation and 
the aforementioned immune subtypes was also observed. 
We further analyzed the distribution of the five immune 
subtypes in the eigengenes of six modules (Figure 7F). IS1 

showed the highest eigengenes in yellow module and the 
lowest in red module while IS4 and IS5 showed the high-
est eigengenes in blue and green module. Univariate sur-
vival analysis revealed that yellow, blue, green, and gray 
modules were significantly associated with the survival 
of glioma patients (Figure  8A). However, in the multi-
variate survival analysis, only yellow, blue, and gray mod-
ules were correlated with survival, among which yellow 
and gray showed negative correlations with survival and 
blue showed strong positive correlations with survival 
(Figure 8B). Since the genes in the gray module did not 
cluster with the others (Figure 7D), we only focused on 
blue and yellow modules in the following analysis. Gene 
enrichment analysis showed that blue module was as-
sociated with cytokine– cytokine receptor interaction, 
Epstein– Barr virus infection, MAPK signaling pathway, 
etc., while yellow module was associated with neuroac-
tive ligand- receptor interaction and multiple signaling 
pathways including MAPK signaling pathway, cAMP 
signaling pathway, T cell receptor signaling pathway, 

F I G U R E  6  Analysis of the subsets of glioma immune subtypes. (A) Immune landscape of the subsets of glioma immune subtypes. (B) 
Survival analysis of eight immune subtypes. (C) Immune landscape of the subsets of IS2. (D) Survival analysis of the subsets of IS2 and 
other. (E) Immune cell infiltration of IS2A, IS2B, and IS2C. (F) Immune landscape of the subsets of IS5. (G) Survival analysis of the subsets 
of IS5 and other. (H) Immune cell infiltration of IS5A and IS5B
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Ras signaling pathway, etc. (Figure 8C and D). As shown 
in Figure 8E and F, blue module showed strong positive 
correlation with component 1 of the immune landscape 
(R > 0.9, p < 2.2e- 16) while yellow module was negatively 
correlated with component 1 (R = −0.63, p < 2.2e- 16). In 
the survival analysis, higher expression in the genes of 
the blue module was significantly correlated with worse 
prognosis while yellow module showed the opposite 
(Figure 8G and H). Since blue module showed strong cor-
relation with component 1 and survival, we selected five 

hub genes (S100A11, TYMP, IFI30, PLAUR, and RAC2, 
shown in Table S6) from blue module with module mem-
bership (MM) >0.90, which might serve as the marker for 
selecting patients suitable for mRNA vaccine.

3  |  DISCUSSION

As the most common primary intracranial tumor, glioma 
is resistant to traditional medical treatment for tumor such 

F I G U R E  7  Identification of immune gene co- expression modules of glioma. (A) Sample clustering. (B) Scale- free fit index for various 
soft- thresholding powers (β) and mean connectivity for various soft- thresholding powers. (C) Dendrogram of all differentially expressed 
genes clustered based on a dissimilarity measure (1- TOM). (D) Gene numbers in each module. (E) Association between the six modules and 
clinical traits. (F) Differential distribution of feature vectors of each module in glioma subtypes
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as radiotherapy, chemotherapy, and surgical excision be-
cause of its immunosuppressive properties.29 Current 
statistics show that the 10- year survival rate of low- grade 
glioma is 47%, with a median survival time of 11.6 years.30 
For HGG, the median overall survival time for grade 3 gli-
oma patients is approximately 3 years, while the median 
OS time for grade 4 glioma is only 15 months.31 To date, 
the conventional treatment for gliomas includes surgical 
resection, temozolomide (TMZ), and radiation, but this 
is far from enough to combat tumor development.32 In 
recent years, immunotherapy has given new impetus to 
antitumor therapy for its ability to cross the blood– brain 
barrier, but more research is needed to prove the feasibility 
of immunotherapy in treating glioma.29 With the success 
of the mRNA vaccine in clinical trials on other tumors, we 

see another possibility for glioma treatment. But unfortu-
nately, the application of mRNA vaccine in glioma is still 
being explored, so we hope our research can further open 
a breakthrough.

To develop mRNA vaccine for glioma, the first step 
is to find the appropriate tumor antigen. First of all, we 
extracted potential tumor antigen gene from TCGA da-
tabase and got 1739 differentially expressed genes, and 
then we performed mutation analysis and filtered 14,732 
expressed mutant genes. By obtaining the intersection of 
differentially expressed genes and mutant genes, we got 
919 potential tumor antigens. Among these 919 poten-
tial tumor antigens, survival analysis was conducted to 
screen out genes related to the OS and PFS of glioma pa-
tients. Finally, 10 candidate antigens that are expected to 

F I G U R E  8  Identification of immune hub genes of glioma. (A) Forest maps of single factor survival analysis of six modules of glioma. 
(B) Forest maps of multiple factors survival analysis of six modules of glioma. Dot plot showing top 30 KEGG terms in blue (C) module 
and yellow (D) module. (E) Correlation between blue module feature vector and second principal component in immune landscape. (F) 
Correlation between yellow module feature vector and second principal component in immune landscape. (G) Differential prognosis in blue 
module with high and low mean. (H) Differential prognosis in yellow module with high and low mean
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be used for glioma mRNA vaccine were obtained accord-
ing to the association with infiltration of APCs, includ-
ing NAT1, FRRS1, GTF2H2C, BRCA2, GRAP, NR5A2, 
ABCB4, ZNF90, ERCC6L, and ZNF813. At the same time, 
infiltration results showed that mRNA vaccine was more 
suitable for LGG patients than GMB patients. Although 
further clinical evaluation is needed, some studies have 
shown the potential of these genes for immunotherapy. 
Yang et al., for example, found that NR5A2 was highly 
expressed in glioma tissues and cell lines, and its overex-
pression was associated with poor prognosis of glioma pa-
tients. Further studies showed that NR5A2 could promote 
cell proliferation and tumor growth via Notch signaling 
pathway, suggesting that it might be a novel target for im-
munotherapy in glioma.33 Besides, BRCA2 was essential 
for homologous recombination (HR)- dependent double- 
strand break (DSB) repairing pathway and thus partici-
pated in glioma resistance to alkylating agents. Therefore, 
targeting BRCA2 might be a useful strategy to increase 
sensitivity to alkylating anticancer drugs.34,35 Another 
study reported that BRCA2 mRNA expression was sig-
nificantly associated with the overall survival and median 
survival in patients with LGG.36

After screening for potential glioma antigens, we then 
tried to screen suitable populations for mRNA vaccine. 
Prior studies have shown that TIME can affect the treat-
ment effect of immunotherapy including mRNA vac-
cine.37,38 Therefore, we then tried to find a reliable method 
to select patients with proper TIME for mRNA vaccine 
treatment. Based on the expression profiles of immune- 
related genes, glioma patients were classified into five 
subtypes through consensus clustering. Among the five 
subtypes, IS4 and IS5 showed worse prognosis compared 
with IS1, IS2, and IS3, suggesting that immunotyping can 
act as the predictor for survival of glioma patients. Besides, 
the immune subtypes were also associated with clinical 
features, such as tumor grade and IDH mutation. Next, 
the association between immune subtypes and markers of 
TIME was investigated. IS4 and IS5 had significantly higher 
TMB, number of mutated genes and ICD modulators than 
IS1, IS2, and IS3, suggesting that IS4 and IS5 had higher 
immune response. ICPs level were significantly higher in 
IS4 and IS5, indicating that patients in IS4 and IS5 are not 
suitable for mRNA vaccine alone but might benefit from 
the combined treatment of immune checkpoint inhibitors 
and mRNA vaccine. In contrast, IS1 and IS2 with low level 
of ICPs might show better response to mRNA vaccine. To 
compare the TIME of different immune subtypes, ssGSEA 
was used to characterize the immune cell components. 
With higher scores of most immune cells including acti-
vated CD8 T cells, activated B cells, regulatory T cells, etc., 
IS4 and IS5 were identified as immunologically “hot” and 
immunosuppressive phenotype while IS1 and IS2 with 

lower scores of immune cells were identified as immuno-
logically “cold” phenotype. The association between im-
mune subtypes and 56 molecular features also confirmed 
this finding. Since mRNA vaccine can stimulate immune 
response in cancer patients, it might be more beneficial 
to patients with low immune cell infiltration. Hence, IS1 
and IS2 were the candidates for mRNA vaccine while 
IS4 and IS5 were not suitable for mRNA vaccine. To test 
the reliability of our immune subtypes, we investigated 
the association between previously reported six immune 
categories and our immune subtypes and found different 
distribution of C1- C6 in different immune subtypes. The 
proportion of C5 (immunologically quiet) was signifi-
cantly higher in IS1, IS2, and IS3, confirming that IS1 and 
IS2 are immunologically cold. In summary, the immune 
subtypes can not only predict survival, but also help in se-
lecting suitable patients for mRNA vaccine. Specifically, 
IS1 and IS2 with an immunologically cold phenotype are 
the suitable candidates for mRNA vaccine.

To obtain an intuitive knowledge of the immune status 
of glioma patients, immune landscape was constructed 
using graph learning- based dimensionality reduction 
analysis. From the immune landscape, patients can be 
divided into seven immune states segmented by three 
branch points. Next, we explored the important cellular 
pathways that determine immune status shift. The result 
showed that the differentiation at the three branch points 
was affected by different pathways. Intervening in these 
pathways might be a useful strategy for cancer immuno-
therapy. Overall, patients in the same immune subtype 
seemed to cluster together while patients in different 
immune subtypes were distributed in different regions, 
suggesting the reliability of immune subtypes. However, 
heterogeneity still existed within the same subtype, espe-
cially IS2 and IS5. Therefore IS2 was further classified into 
IS2A, IS2B, and IS2C, and IS5 was further classified into 
IS5A and IS5B. Survival analysis showed that IS2A and 
IS2B showed better prognosis than IS2C, and that IS5B 
had worse prognosis than IS5A, suggesting that our fur-
ther classification was reasonable. IS2C showed higher 
immune cell infiltration than IS2A and IS2B, indicating 
that IS2C was immune- hot while IS2A and IS2B were 
immune- cold. Thus, IS2A and IS2B might show better re-
sponse to mRNA vaccine. This result suggests that patients 
with higher immune cell infiltration tend to have shorter 
OS, which was in line with above findings. One possible 
explanation for this might be that patient survival is also 
influenced by TIME and an immunosuppressive microen-
vironment contributes to reduced survival time. However, 
infiltration of most immune cells was similar between 
IS5A and IS5B. Overall, the immune landscape testified 
the reliability of the immune subtypes and also allowed us 
to obtain a more precise classification of glioma patients.
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Since immune subtype and immune landscape were 
not stable across different patient populations, we then 
conducted further research to find a more stable way that 
can reflect response to mRNA vaccine. Immune gene co- 
expression modules were constructed by WGCNA and six 
gene modules were obtained, among which yellow, blue, 
and green modules showed significant correlations with 
survival. Blue module showed strong positive correlations 
with component 1 of the immune landscape (R  >  0.9, 
p < 2.2e- 16) and also significant correlations with survival 
(p < 0.0001). Therefore, five hub genes (S100A11, TYMP, 
IFI30, PLAUR, and RAC2) were selected from blue module 
with MM > 0.90, which might serve as the marker for re-
sponse to mRNA vaccine.

Several studies also identified potential tumor anti-
gens and immune subtypes in glioma for mRNA vac-
cine development. Zhong et al. identified four potential 
tumor antigens (ANXA5, FKBP10, MSN, and PYGL) 
which were significantly correlated with patient survival 
and APCs infiltration.21 They classified glioma patients 
into three subtypes, IS1, IS2, and IS3, which were asso-
ciated with survival, ICPs and ICD modulators but not 
associated with TMB. Further research showed that IS2 
and IS3 were immunologically cold and therefore might 
benefit from mRNA vaccine. From the immune land-
scape, IS2 was further classified into IS2A, IS2B, and 
IS2C, among which IS2A showed lower immune cell 
infiltration and might show better response to mRNA 
vaccine. Finally, immune gene co- expression modules 
were constructed and hub genes of red and pink mod-
ules were selected. Similarly, Ye et al. identified tumor 
antigens and immune subtypes in LGG for mRNA vac-
cine development.22 However, hub genes of immune 
gene co- expression modules were not studied. Another 
study also used similar methods to identify tumor an-
tigens and immune subtypes in GBM, but they did not 
construct the immune landscape.23 Compared with 
these studies, we took a further step in the branch point 
analysis and identified cellular pathways that might im-
pact on the immune status of glioma patients.

In summary, we identified 10 potential tumor antigens 
associated with survival and APC infiltration, which can 
be utilized for mRNA vaccine development in glioma. 
Besides, we classified glioma patients into five immune 
subtypes which can not only predict prognosis, but also 
reflect the immune status of glioma patients. IS1 and IS2 
with an immunologically cold phenotype might show 
better response to mRNA vaccine, while IS4 and IS5 
with an immunologically hot and immunosuppressive 
phenotype might not be suitable for mRNA vaccine. In 
addition, we constructed the immune landscape and iden-
tified cellular pathways that affect the immune status of 
patients. Further classification of immune subtypes was 

done according to the immune landscape, in which IS2A 
and IS2B were proved to be more suitable vaccination re-
ceiver than IS2C was. Eventually, we built immune gene 
co- expression modules and selected five hub genes that 
might serve as a biomarker indicating response to mRNA 
vaccine. Overall, our research provided the theoretical 
basis and would hopefully accelerate the development of 
mRNA vaccine in glioma.

4  |  MATERIALS AND METHODS

4.1 | Acquisition of data

The normalized RNA sequencing expression data from 
703 samples and 325 samples were collected from TCGA 
(https://portal.gdc.cancer.gov/) and the CGGA (http://
www.cgga.org.cn/) database, respectively. Somatic mu-
tation data annotated by Varscan of TCGA datasets were 
also downloaded from GDC repository to identify the po-
tential tumor antigens in glioma. A gene list encompass-
ing 1793 immune- related genes was acquired in ImmPort 
database (https://www.immpo rt.org/share d/genel ists) to 
identify the immune landscape of glioma. The functions 
and gene ontology analyses of these immunologically rel-
evant genes were annotated as terms including Antigen 
Processing and Presentation, Antimicrobials, BCR 
Signaling Pathway, etc. To undercover the immune fea-
tures of different immune subtypes, 56 immune traits of 
glioma samples were exploited from the previously pub-
lished research. In addition, clinical information regard-
ing the tumor grade, survival information, progression 
free status, IDH mutation status, etc. of TCGA and CGGA 
datasets was also extracted to determine the correlation 
between the clinical parameters and novel antigens and 
immune subtypes.

4.2 | Preprocessing of data

Samples from TCGA and CGGA with no clinical informa-
tion were excluded from the subsequent analyses, with 
ultimately 444 TCGA samples and 325 CGGA samples 
included in the following immune subtype identification. 
Additionally, only 1126 immunologically relevant genes 
were expressed simultaneously in TCGA and CGGA 
datasets. To enhance the reliability of the immune sub-
type classification, only these 1126 genes were utilized 
to construct different immune subtypes in both datasets. 
Although not involving all the immunologically relevant 
genes, the 1126 genes still have covered all the functional 
and gene ontological annotation terms which guaranteed 
their representativeness.

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://www.immport.org/shared/genelists
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4.3 | Identification of putative antigens

The putative antigens were considered as proteins that 
were overexpressed and mutated in tumor samples with 
poor prognosis, and that were highly correlated with 
antigen- presenting cells infiltration. In this process, dif-
ferential expression analyses, univariate Cox regression 
analyses, and product- limit method were first utilized. 
Genes with false discovery rate (FDR) <0.01 and log fold 
change >1.0 were considered significantly overexpressed; 
while genes with a hazard ratio (HR) >2, p  <  0.001 in 
univariate Cox and log- rank test p < 0.001 were consid-
ered clinically relevant. R packages including Limma,39 
Survminer, Survival were used.

4.4 | TIMER analyses

As mentioned above, to evaluate the correlation between 
the putative antigens and antigen-  presenting cells in-
filtration status, Tumor Immune Estimation Resource 
(TIMER, http://timer.cistr ome.org/) was utilized in both 
Lower grade glioma (LGG) and glioma multiforme (GBM) 
cohort.

4.5 | Single- sample GSEA 
(ssGSEA) analyses

To quantitively predict the immune cells infiltration in 
the tumor microenvironment, ssGSEA was utilized to 
calculate the enrichment score of 28 immune cells with 
different functional statuses (i.e., Activated CD8 T cell, 
Central memory CD8 T cell, and Effector memeory CD8 
T cell) of each patient. The principle of ssGSEA has been 
described in the previous publication.40

4.6 | Immune subtypes classification

The intersected 1126 immune- related genes were ex-
ploited to cluster the patients and annotate their dif-
ferent immune statuses. Using the partition around 
medoids algorithm which showed better stability, pa-
tients were successfully clustered into five immune sta-
tuses (IS) in both TCGA cohort and CGGA validation 
cohort. Specifically, the distances between patients were 
calculated using the “1- Pearson correlation” distance 
metric. Five- hundred bootstraps were conducted to en-
hance the reproducibility of the clustering, with each 
bootstrap involving 80% of patients in the discovery co-
hort. We observed the putative clustering number from 

2 to 9. The consensus matrix, consensus cumulative dis-
tribution function (CDF), and relative change in area 
under CDF curve were utilized to determine the optimal 
clustering number.

4.7 | Construction of immune landscape

Monocle R package was exploited to construct the im-
mune landscape of patients using 700 highly variable 
immune- related genes.41 Monocle R package was ini-
tially designed to construct the evolution landscape of 
each cell in single cell RNA sequencing. In our pre-
sent study, we considered individual patients as a sin-
gle “cell”. Using graph learning- based dimensionality 
reduction analysis with a Gaussian distribution in 
Monocle, the immune status of each “cell” was calcu-
lated and visualized. The immune landscape also in-
dicated the difference and correlation among different 
patients. The maximum number of components were 
set to four and the dimensional reduction method was 
set as DDRTress. The immune landscape displayed the 
patients with different immune subtypes using varied 
colors. The pseudo- time analysis was implemented to 
determine the similarity of immune status among pa-
tients. Furthermore, differentially expressed genes were 
identified by comparing patients extended to different 
directions from the branch points. KEGG analyses fur-
ther determined altered pathways contributing to the 
immune subtype shift among glioma patients.
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