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G R A P H I C A L A B S T R A C T
� Classification modeling can be used to
estimate Cd concentrations in leafy
greens.

� Neural network model was the best al-
gorithm in this study for classifying
plants.

� Cadmium induced changes in wave-
lengths linked with chlorophyll and leaf
structure.
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Cadmium (Cd) is a toxic element that can accumulate in edible plant tissues and negatively impact human health.
Traditional Cd quantification methods are time-consuming, expensive, and generate a lot of toxic waste, slowing
development of methods to reduce uptake. The objective of this study was to determine whether hyperspectral
imaging (HSI) and machine learning (ML) can be used to predict Cd concentrations in plants using kale (Brassica
oleracea) and basil (Ocimum basilicum) as model crops. The experiments were conducted in an automated phe-
notyping facility where all environmental conditions except soil Cd concentration were kept constant. Cd con-
centrations were determined at harvest using traditional methods and used to train the ML models with data
collected from the imaging sensor. Visible/near infrared (VNIR) images were also collected at harvest and pro-
cessed to calculate reflectance at 473 bands between 400 to 998 nm. All reflectance spectra were subject to the
feature selection algorithm ReliefF and Principal Component Analysis (PCA) to generate data and provide input to
evaluate three ML classification models: artificial neural network (ANN), ensemble learning (EL), and support
vector machine (SVM). Plants were categorized according to Cd concentrations higher or lower than the safety
threshold of 0.2 mg kg�1 Cd. Wavelengths with the highest ranks for Cd detection were between 519 and 574, and
692 and 732 nm, indicating that Cd content likely altered the plants’ chlorophyll content and altered leaf internal
structure. All models were able to sort the plants into groups, though the model with the best F1 score was the
ANN for the validation subset that utilized reflectance from all wavelengths. This study demonstrates that HSI and
ML are promising technologies for the fast and precise diagnosis of Cd in leafy green plants, though additional
studies are needed to adapt this approach for more complex field environments.
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1. Introduction

Dietary exposure to the heavy metal cadmium (Cd) can harm human
health (Ismael et al., 2019). The Food and Agriculture Organization
(FAO) determined that Cd concentrations greater than just 0.2 mg kg�1

in leafy vegetables pose a serious human health risk (FAO and WHO,
2015). For example, vegetables such as kale (Brassica oleracea) and basil
(Ocimum basilicum) can accumulate high concentrations of Cd in their
edible tissues when grown in contaminated soil (Zea et al., 2022).
Identifying fields that are contaminated and developing management
practices that can prevent leafy greens from accumulating Cd at levels
that exceed this safety threshold are critical to protecting human health.
For example, some soil amendments can bind Cd in soil, reducing
bioavailability and uptake into plants (Zea et al., 2022). There are also
mechanisms within plants that can be exploited to prevent uptake of
heavy metals like Cd into edible plant tissues. For example, Tang et al.
(2017) recently used CRISPR/Cas9 to knock out a metal transport gene in
rice, allowing for the creation of new lines that minimize Cd risk in
grains. Others are using more traditional breeding strategies to develop
improved varieties that restrict heavy metal uptake (Zea et al., 2022).
However, the challenge in identifying contaminated fields and/or
developing remediation solution is that while Cd is toxic to most plant
species, plants generally display few visible symptoms of stress (Ismael
et al., 2019; S�anchez-Pardo et al., 2013; Zea et al., 2022). This makes it
difficult to determine if plants have accumulated dangerous levels of this
element.

Currently, the most common way to quantify Cd in plant tissues is
using destructive, post-harvest wet chemical methods that rely on
analytical tools such as inductively coupled plasma mass spectrometry
(ICP-MS). While highly effective, these methods are time consuming and
expensive, and they also generate a lot of toxic waste since plant tissues
must be digested in concentrated acid prior to quantification of Cd using
ICP-MS. This is particularly problematic when trying to screen thousands
of plants in a breeding program to advance those with low heavy metal
uptake. Alternatively, new technologies such as hyperspectral imaging
(HSI) could be explored to quantify Cd-induced stress responses and
predict uptake. For example, we previously demonstrated that it is
possible to quantify Cd-induced stress responses in basil and kale using
HSI that were impossible to detect with the human eye (Zea et al., 2022).
HSI combines digital imaging techniques with spectroscopic analysis
algorithms that allow for faster and more accurate non-destructive plant
physiological process measurements. This technique analyzes a broad
spectrum of light instead of just assigning primary colors (red, green,
blue) to each pixel. It works in the visible (VIS) and Near Infrared (NIR)
bands, which cover 400 nm–1400 nm. Changes in reflectance in these
wavelengths have been explored to capture differences in leaf pigmen-
tation (400–700 nm) and mesophyll cell structure (700–1300 nm) in
plants (Knipling, 1970), which can be altered by toxic heavy metals like
Cd (He et al., 2015; Ruffing et al., 2021).

With the right training, HSI has potential to go beyond simply
quantifying plant stress responses to estimating concentrations of
potentially toxic elements (PTEs) like Cd in plant tissues and even soils.
For example, Liu et al. (2011) used hyperspectral reflectance data to
monitor copper (Cu) (ranging from 20.4 to 68.2 mg kg�1) and Cd
(ranging from 0.093 to 0.465 mg kg�1) in rice crops using Vegetation
Indices (VI), which were developed using reflectance at two or more
wavelengths (Liu et al., 2011). Tan et al. (2020) used aerial hyperspectral
images to estimate the spatial distribution of PTEs in agricultural soils
(Tan et al., 2020). In both cases, authors took advantage of machine
learning algorithms for predicting PTE occurrence. Their data showed
that the Random Forest method had the best results in predicting con-
centrations of chromium (Cr), Cu, or lead (Pb). More recently, Liu et al.
(2019) used a combination of Particle Swarm Optimization (PSO) with a
backpropagation neural network (BPNN) to create an integrated method
called PSO-BPNN to estimate Cd, mercury (Hg), and arsenic (As) in soil
(Liu et al., 2019). The model achieved R2 values between 0.742 to 0.811,
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which was a significant improvement compared to other standard
regression models. These examples demonstrate that combining HSI with
modern machine learning algorithms has potential to estimate heavy
metal concentration accurately. However, to our knowledge, these
methods have not yet been tested for their potential to estimate heavy
metal contamination in edible leafy green vegetables, which have high
particularly high food safety risks (Baldantoni et al., 2016). In addition,
most existing studies to date have been conducted in the field using
unmanned arial vehicles (UAV's) equipped with cameras, or hand-held
spectroscopic sensors that are in direct contact with plant samples.
While the results have clearly been valuable in developing models to
predict the uptake of PTE's, we predict that by conducting studies in
highly controlled environments and state-of-the-art, high-resolution
cameras, it will be possible to develop models with much greater
accuracy.

The primary goal of this study was to determine whether HSI can be
used as a non-destructive method to classify plants according to the Cd
concentration in two distinct types of leafy greens crops: kale and basil.
Secondly, different machine learning algorithms were compared with the
aim of identifying an optimal classification model for detecting kale and
basil plants with Cd concentrations higher than the FAO safety threshold
value of 0.2 mg kg �1 of fresh plant weight (FAO and WHO, 2015).

2. Materials and methods

2.1. Experimental design

A total of 64 pots were prepared using an artificial “soil” mix with
equals parts in volume (1:1:1) of field soil, sand, and BM8 potting mix
(Berger, Saint-Modeste, Quebec, Canada). Initial concentrations of the
followingmetals were determined at theMidwest Soil Testing Laboratory
in Omaha, NE, using the EPA 6010b protocol and ICP-MS: arsenic (As),
Cd, Cr, cobalt (Co), Cu, mercury (Hg), molybdenum (Mo), nickel (Ni), Pb,
selenium (Se) and zinc (Zn). The lab report indicated that these metals
were either not detectable or present at low concentrations verifying that
artificial soil was not contaminated.

The experiment was conducted using pots without drainage holes to
prevent contamination and related hazards. For irrigation, each pot
received a certain amount of fertigation solution (see below) to maintain
the target weight of 5 kg and keep the pots near field capacity. As the
plants grew over time, the target weight was slightly increased to
compensate for the increase in plant biomass. For more details, see (Zea
et al., 2022).

For the Cd application, pots were amended with an aqueous solution
of CdCl2 (99.995% purity, Sigma Aldrich) to reach total soil Cd con-
centrations of 0, 5, 10, and 15 mg kg�1, respectively. These rates were
selected because they represent realistic levels of Cd that can be found in
low to moderately contaminated agricultural soils. All of the pots were
then irrigated with 1200 ml of water and set aside to equilibrate for two
weeks, giving enough time for Cd to adsorb onto soil particles. After the
incubation period, 32 pots were planted with basil (cv. Genovese basil),
and the other half with kale (cv. Lacinato kale) that had been sown four
weeks earlier in potting media (Berger, Ca). For each Cd concentration
level, eight replicates were created for basil and kale, respectively.

The plants were cultivated at Purdue University's Ag Alumni Seeds
Controlled Environment Phenotyping Facility (AAPF) in West Lafayette
Indiana, U.S. during spring 2019. The facility has an automated growth
chamber, where the plants were randomly set up in conveyor belts,
where they were watered – as described above – and received 14 h of
light daily, at 25 �C and 60% of relative air humidity (RH). The fertiga-
tion regiment consisted of a mixture of water and 80mg kg-1 Peters 15-5-
15 Ca–Mg fertilizer. Basil plants matured earlier and were harvested 62
days after transplanting (when they started to flower), and kale plants
were harvested 84 days after transplanting for aboveground biomass
determination. All plant materials were dried in an oven at 60 �C for
approximately 3 days until no weight change was observed to obtain
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their dry biomass. Afterwards, the materials were ground to 1 mm in size
using a UDY cyclone sample mill (UDY Corp., Boulder, CO, USA) for
elemental analyses.

Total Cd concentrations in plant tissues were determined using ICP
optimal emissions spectroscopy (ICP-OES) (Shimadzu ICPE-9820, Tokyo,
Japan) following digestion using aMars 6 (CEM, Charlotte NC, USA) with
Xpress vessels. Briefly, 0.5 g samples were placed in 10 ml HNO3 and
subject to a temperature of 200 �C, a pressure of 800 psi, and a power of
900-1050W. The samples were run alongside periodic table mix 1 for ICP
(TraceCERT grade, Sigma Aldrich, St. Louis, MO, USA) as the reference
standard, and blanks and additional standard checks were run periodi-
cally as a quality assurance measure. Additional information regarding
quality control measures to quantify Cd concentrations in plant tissues
can be found in Zea et al. (2022).
2.2. Hyperspectral imaging set-up

The HSI imaging system at Purdue's AAPF has two Visible/Near
Infrared (VNIR) imagers in two different orientations: one scans from the
side of a plant and the other scans from the top (Figure S1). Each imager
assembly comprises an MSV-500 VNIR scanner (Middleton Spectral
Vision, Middleton, WI) with a 2000-pixel linear sensor which scans in
473 bands between 400 to 998 nm. These cameras work as a linear
scanner, where they sweep the plant from the bottom to the top (for the
side-view camera), or from the back to the front (for the top-view
camera).

White and dark calibration reference tests must be done to calculate
the relative light reflectance spectra for any scanned object. The white
reference was done using a proper board with known spectral charac-
teristics (High Reflectance White PVC VNIR Reference, Middleton WI,
USA) and halogen lights on, while the dark reference test was done
without any lights and the camera shutter closed. The relative light
reflectance for a single wavelength was calculated using Eq. (1).

Rcorð%Þ¼ R� Rw

Rw � Rd
� 100 (1)

where, Rcor is the relative light reflectance for the scanned object, R is the
raw digital number acquired from the object, Rw is the raw digital
number acquired from the white reference test, Rd is the raw digital
number acquired from the dark calibration reference test.

Scans were made on the same days that the plants were harvested for
biomass and Cd determination. Both side and top-view scans of each
plant were made. The acquired scans were later processed using a script
developed in MATLAB. Following similar methods introduced by Zhang
et al. (2019), the script first segments the plant out of the background and
then calculates the mean reflectance spectrum of the plant.
2.3. Spectral feature selection and spectral data dimension reduction:
ReliefF and Principal Component Analysis

For some wavelengths in a plant's reflectance spectrum, especially in
the beginning and end of the VNIR light spectrum, the signal to noise
ratios were low. Therefore, these wavelengths were not included in the
following analysis, leaving a spectrum of 441 wavelengths from 418.9 to
978.9 nm.

ReliefF is a feature selection method that enables key feature identi-
fication from high-dimensional data sets (Kira and Rendell, 1992).
ReliefF takes into consideration the interaction between variables.
Therefore, if or when there is a difference in a feature value when
observing two close predictors, the weight (or the scores) of that feature
increases. Principal Component Analysis (PCA) is widely established as a
method for reducing the dimension of a data set while still preserving
innate information, thereby facilitating easier data visualization and
analysis (Müller et al., 2006).
3

In our study, the predictor variables were reflectance (dimensionless)
at specific wavelengths, while the response variable was the Cd concen-
tration in mg per kg of plant fresh weight. For model training in the next
step, we created three sets of spectral data sets: the original reflectance
spectra, the ReliefF spectra, and the ReliefF þ PCA combination. The
ReliefF spectra consisted of the key wavelengths identified using the
ReliefF algorithm. Using this calculation, the key wavelengths were iden-
tified as the ones with rankings >8 � 10�3. This score was pre-defined
from a preliminary analysis of implementing this algorithm and finding
this score led to a satisfactory selection of wavelengths. In the ReliefF þ
PCA scores combination, the ReliefF features were first identified in the
same way as in the ReliefF data set, then the PCA was conducted on the
ReliefF spectra. Scores from the first three principle components (PCs)
were used as predictor variables for classification modeling.

2.4. Training the classification models

Using the three reflectance datasets described above, we evaluated
the performance of three machine learning (ML) algorithms as classifiers
in categorizing plant tissue samples with high (greater than 0.20 mg
kg�1) or low Cd concentrations (lower than 0.20 mg kg�1) using data
generated using ICP-OES (Figure 1). The three ML algorithms evaluated
were Artificial Neural Networks (ANN), Support Vector Machines (SVM),
and Ensemble Learning (EL). The samples were divided into 75% for
training and 25% for testing for all three models.

ANN is a supervised-learning computational model inspired by the
functionality of the human brain. The ANN built in this study had five
hidden layers with ten nodes each. The validation test was used during
the training to minimizing overfitting, while the testing data was only
used to calculate metrics to measure the model success.

SVM is another supervised-learning model for prediction or classifi-
cation. This technique formulates a hyperplane that can separate data
points of two or more classes. This hyperplane can take several forms;
thus, this method is very useful for non-linear datasets. The hyperplane
chosen was a fourth-order polynomial and the data set was run as a
classification model.

EL is another machine learning technique that takes advantage of
several classification models, defined as weak learners, to obtain a single
well-correlated predictive model called strong learner. For this model,
one hundred random-forest decision trees were generated and LogitBoost
was used as a boost algorithm (Friedman et al., 2000).

Each of these models were generated and analyzed ten times with a
different and random division of the samples as the training or validation
data. For each trial and the three different data types (all wavelengths,
selected wavelengths, and PCA scores), Recall (R), Precision (P), and the
F1-Scores were calculated respectively (Eqs. (2), (3), and (4)), to assess
the performance of these models in Cd sample classification using the
spectral data sets as inputs. Comparing the result of these metrics be-
tween the training and validations subsets allowed us to determine if the
models were overfitting.

R¼ True Positives
True Postivesþ False Negatives

� 100 (2)

P¼ True Positives
True Positivesþ False Positives

� 100 (3)

F1¼2� P� R
Pþ R

� 100 (4)

3. Results and discussion

3.1. Cadmium concentrations in leaves and potential plant responses

As predicted, Cd concentrations in plant tissues generally increased
with soil Cd treatment levels (Figure 2). Using traditional wet-chemical



Figure 1. Flow diagram of the dataset processing used as input for training the classification models to quantify cadmium concentrations in kale and basil
fresh biomass.
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methods, we determined that most of the plants in the 0 mg kg�1 Cd soil
treatment group had Cd concentrations <0.20 mg kg�1 of fresh weight,
ranging from 0.01 to a little less than 0.20mg kg�1. A few samples had Cd
concentrations >0.20 mg kg�1, which could have been due to cross-
contamination during the Cd treatment or post-harvest quantification
process. All plants in the other three soil Cd treatments had Cd tissue
concentrations above 0.20 mg kg�1 (the concentration FAO considers to
pose a human health risk (FAO andWHO, 2015)). For the plants in the 15
mg kg�1 soil Cd treatment, the average Cd concentration was slightly
higher than 2.0 mg kg�1; however, some plants had concentrations as
high as 7.0 mg kg�1.

Differences in the mean VNIR reflectance spectra of samples with Cd
tissue concentrations below and above the 0.2 mg kg�1 Cd safety
threshold set by the FAO can be observed in both the visible (400–700
nm) and near-infrared (700–1000 nm) bands (Figure 3). Pigments,
Figure 2. Cadmium (Cd) concentration (mg kg�1 of plant fresh weight) in kale
and basil aboveground biomass in response to soil Cd treatments. The green
upside down triangles are plants with < 0.20 mg kg�1 Cd and the red triangles
are plants with> 0.20 mg kg�1. The black dashed line shows the FAO safety
threshold for leafy greens. The y-axis is a log 10 scale
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especially chlorophyll, absorb strongly in the visible band, while leaf
internal structure and canopy structure are the major factors driving
differences in green vegetation reflectance in the NIR band (Knipling,
1970). These differences in the plants’ reflectance indicate that the soil
Cd treatment may have altered the chlorophyll content and canopy
structure of the kale and basil plants in this study, which is consistent
with other studies evaluating plant stress responses to Cd (He et al., 2015;
Ruffing et al., 2021; Song et al., 2019). Results of SPAD readings reported
in our previous study (see Zea et al., 2022) and reported here in
Figures S2 and S3, support this assertion.

3.2. Spectral processing

To identify key spectral features (i.e. wavelengths) with strong cor-
relations to Cd induced stress responses, the ReliefF weight spectrumwas
computed using the spectra and Cd concentration measurements
(Figure 4). Two major wavelength ranges in the ReliefF weight spectrum
are above the assigned selection threshold. The first range is located in
the green band between 519 to 574 nm, while the second range is be-
tween 692 and 732 nm, which overlaps with the red-edge band (Pe~nuelas
and Filella, 1998). Within the visible band of light (380–700 nm), chlo-
rophyll absorption of light in the green band is relatively weaker than in
the blue and red bands (Greg Mitchell and Kiefer, 1988), indicating that
reflectance in the green wavelengths is more sensitive to minor changes
in chlorophyll content by Cd in these two plant species. Reflectance in the
red-edge has also been shown to be correlated with changes in chloro-
phyll concentration caused by biotic or abiotic plant stress (Mutanga and
Figure 3. Average reflectance spectrum for two cadmium concentration groups
(below and above the 0.2 mg kg�1 Cd safety threshold set by the FAO). The
shaded area represents the standard deviation for each wavelength.



Figure 4. ReliefF weights for the light reflectance responses at different wavelengths to cadmium concentration in kale and basil plants. The black line at 8 (�10�3)
ReliefF weight is the selection threshold. The green and red circles represent the wavelengths that were selected and not selected, respectively, for use in the analysis.
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Skidmore, 2007). Thus, spectral features identified by the ReliefF algo-
rithm in this study again seem to indicate that the Cd treatment likely
caused changes in the chlorophyll content of the plants.

The PCA conducted using wavelengths selected by the ReliefF indi-
cated that the first three PCs were candidates for deeper investigation.
The variation in data explained by each of the first three PCs was 63.2%,
20.1%, and 16.1%, respectively, totaling 99.4%. The PCA loadings depict
how much each predictor variable contributes to a principal component
(PC), and whether they have a positive or negative correlation. From the
results of the PC loadings shown in Figure 5, the wavelengths had a mix
of positive and negative effects in response to Cd contamination. For PC1,
some positive peaks are seen at 555 and 720 nm, which coincides with
peaks from the ReliefF results. PC2 had its highest loadings in the first
range of wavelengths, while PC3 loadings had maximum positive values
at 519 and 732 nm, and 706 nm for the maximum negative loading.

Using the PCA scores, it was possible to differentiate between samples
collected from the two Cd treatment groups (below and above the 0.2 mg
kg�1 Cd safety threshold set by the FAO) (Figure 6). For example, within
6 (a) and (b), clustering between scores for the plants in the two Cd level
groups can be observed. Furthermore, when analyzing the PC1 and PC3
(Figure 6c) or PC2 and PC3 (Figure 6d) scores, scores for plants with low
Cd concentration are positioned primarily in the quadrant where the PC3
scores are < zero, while the PC1 and PC2 scores are >0.2. While results
were promising, there was nonlinearity in separation using PCA. There-
fore, we chose a machine learning algorithm that can handle the
Figure 5. Principal Components’ Loadings for the wavelengths selected by the
ReliefF weight spectrum correlated with changes based on exposure of kale and
basil plants to cadmium.
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nonlinearity in the data and provide the clustering capability needed to
improve differentiation of spectral features between treatments.

3.3. Classification model training and avoiding false positives

Results of three metrics (Precision, Recall, and F1- core) for evalu-
ating the performance of the three ML classification models using the
three different data types (all wavelengths, PCA scores, selected wave-
lengths) are summarized in Figures 7, 8, and 9, respectively. These are
important calculations since they can help minimize issues related to
large, high-dimensional data sets. For example, too many predictor var-
iables in classificationmodels can lead to overfitting the data. In our case,
identifying spectral features with strong correlations with the variable of
interest (Cd concentration in kale and basil tissues) will allow us to
establish a better understanding of the relationship between a plant's
reflectance spectra, as well as its responses to changes in environmental
conditions, and possibly even the physiological mechanism driving the
plant stress responses.

During the training process, all three ML algorithms using the three
types of training data sets resulted in precisions with medians equaling
100% except for the ANN using all wavelengths, and the SVM using the
selected wavelengths (Figure 7a). The validation results indicated that
the classification precision decreased for almost all cases compared the
training runs (Figure 7b). Yet, all the ANN runs, trained using the three
data sets, still demonstrated amedian precision at 100%, even though the
variance in the predictions were. Furthermore, the SVM model trained
using the PCA dataset also seemed to be able to classify samples with very
high precision. The most considerable differences were for the EL
training with the range in precision including as low as 60% when using
all wavelengths. This indicates that the EL model was overfitting during
the training data set and cannot classify the validation data as precisely.
SVM precision also decreased when using all wavelengths with the me-
dian equaling 76.0%, the lowest median for all models and data set types.
This indicated the use of too many potentially autocorrelated features
reduced the predictive power of this model.

Recall is another critical metric for classification models since it is
related to false negatives. For this study, a false negative indicates that a
highly Cd contaminated plant will be classified as healthy, which is a
dangerous situation that should be avoided. Similar to the precision re-
sults, the EL runs had the best recall results in the training process
(Figure 8a). The SVM trained with all wavelengths also seemed to
perform well. The performance of the ANN models was worse than the
models trained using the other two. The only exception was the SVM
using the PCA scores. However, when analyzing the validation results
(Figure 8b), the best model regarding recall was the ANN using the PCA



Figure 6. PCA score for the first three principal components (a), for PC1 and PC2 (b), PC1 and PC3 (c), and PC2 and PC3 (d). The blue circles represent the scores of
the plants with Cd < 0.20 mg kg�1, while the red markers are for those plants with concentration > 0.20 mg kg�1.

Figure 7. Precision results for all three data sets and classification models using different training (left graph) and validation data subsets (right graph) to differentiate
between cadmium concentrations in kale and basil biomass.
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scores, while the worst was the SVM using all wavelengths. Overall, the
ANN was more consistent when comparing the training and validation
data sets since the recall median was similar between these two fractions
of the data. This result again indicated that there might be overfitting
issues in the models trained using the EL or the SVM.
6

Since avoiding false negatives is crucial in this study, the recall metric
is one of the most important to consider when deciding the best model to
use, but precision is also essential because it is also important to avoid
discarding healthy plants. The F1-score is a metric related to both Recall
and Precision that can help determine the best classification model. From



Figure 8. Recall results for all three data sets and three classification models using different training (left graph) and validation (right graph) data subsets.

Figure 9. F1-score results for all three data sets and three classification models using different training (left graph) and validation (right graph) data subsets.
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the training subset, EL was the best when using all data types together
and SVMwhen using all wavelengths (Figure 9a). However, performance
of these models was worse for the validation dataset than ANN and SVM
using the other two datasets (Figure 9b). The models with the highest F1
medians for the validation set were ANN using all selected wavelengths,
and SVM using the PCA scores.

3.4. Identifying the best classification model

The best model to use for a particular study depends on the dataset
used as input, as well as which metric is selected for the evaluation. For
this study, since false negatives are more important to avoid than false
positives, the recall metric turned out to be the most viable. Also, since
the validation set was not used during the models’ training, the results of
this metric reflect more on how these models would behave for other
7

basil and kale plants. Consequently, the best model overall in this study
was the ANN, especially the one trained using the PCA scores, since it had
one of the highest medians and lowest variations in F1-score compared to
SVM and EL. When considering the F1-score validation results, ANN also
showed some of the best results, even though SVM using the PCA scores
had lower variation compared to ANN using all wavelengths, and a
higher median than ANN using the PCA scores. The ANN runs also had
better recall results when using the same dataset, except when using
selected wavelengths data. This contradicts our prediction that SVM
would be the best classifier since the separation between the data points
is evident on some plants (Figure 6). When comparing the performance of
ANN and SVM for binary classification in a previous study, ANN had a
better result since it had a better learning rate compared to SVM (Kim
et al., 2010). The poor performance for the EL training in this study could
be explained by the overfitting of the data, since the validation results
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were much lower than the training subsets. Thus, using EL might not be
the best option for this purpose.

It is interesting to observe that the models that were trained using
specific wavelengths (with a lower data dimension), generally speaking,
performed as well as ones trained with all wavelengths when analyzing
the three metrics and two validation datasets. In fact, the selected
wavelength models had better predictive results for the validation data
set compared to the other model. This was also reported when using
Feature Selection algorithms to classify healthy and unhealthy plants due
to Cercospora and rust presence on sugar beet leaves (Alsuwaidi et al.,
2016). The F1 for the validation also indicates that the model chosen had
the best values, which indicates that these less inclusive models did not
overfit compared to the models that used all wavelengths. Thus, the
models did not lose predictive power when using only the wavelengths
identified in the feature selection (ReliefF) step.

In summary, the ANN model had the best results regardless of which
wavelengths were used, and therefore appears to be the best model for
predicting whether kale and basil plants are above critical safety thresh-
olds. The other models performed better when using only the selected
wavelengths, indicating how feature selection can improve prediction of
these models by using key predictor variables and taking steps to mini-
mize overfitting. It is important to emphasize that the frequency of false
negatives is a key factor in evaluating the accuracy of these models.
Training the model several times using different subsets of data and
comparing results with the validation data set helped reduced the po-
tential for false negatives in this study. However, future studies should
also consider validating the training models by measuring Cd concentra-
tions in new samples to further reduce the potential for false negatives. In
addition, other feature selection methods such as competitive adaptive
reweighted sampling (CARS), random frog (RF), and successive pro-
jections (SPA) could be evaluated to see if they could better fit the data.

4. Implications and future directions

All classification models and datasets evaluated in this study suc-
cessfully predicted which plants were above or below the Cd safety
threshold for safe consumption of leafy greens, demonstrating that HSIþ
ML are promising technologies for the fast and precise diagnosis of food
safety risks. Since we were able to identify spectral peaks correlated with
Cd-induced stress responses that have been linked with critical physio-
logical processes, we expect that this could also be a valuable tool in
helping researchers better understand how metals impact plants, thereby
leading to the development of more effective remediation strategies. We
acknowledge that many other stress factors such as heat, water deficits,
nutrient deficiencies, salinity and other PTE's can also influence leaf
pigmentation and mesophyll cell structure, and hence, hyperspectral
reflectance values, and these responses could vary among crop varieties.
Thus, future studies that combine Cd contamination with other types of
stress responses and include multiple crop varieties will be needed to
adapt the models and apply them under real-world conditions. In addi-
tion, while we expect that HSI and ML could someday provide a faster
and cheaper method to quantify the presence of PTE in plants, while also
generating less toxic waste relative to other detection methods, we
acknowledge that this is still a relatively expensive and intricate tech-
nology. Consequently, future efforts to design cheaper, custom-imaging
sensors that are more affordable and easier to implement, such as mul-
tispectral sensors widely used in remote sensing, will also be needed to
adapt this technology for PTE quantification.
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