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ABSTRACT
Nuclear pore proteins interact dynamically with chromatin to regulate gene activities. A key
question is how nucleoporin interactions mechanistically alter a gene’s intranuclear position and
transcriptional output. We reported recently on a direct interaction between the nuclear pore-
associated TREX-2 complex and promoter-bound Mediator. This highlights how nuclear-pore
associated adaptors gain regulatory access to the core transcription machinery. In this Extra View,
we discuss an additional implication that arises from our work and the recent literature: how
promoter elements may regulate mRNA metabolism beyond transcription initiation.

KEYWORDS
mediator; nuclear pore
complex; transcription
coupled mRNA export;
TREX-2

Introduction

Nuclear pore complexes (NPCs) are gatekeepers at
the nuclear envelope mediating traffic between the
nucleus and cytoplasm. Beyond transport, NPCs
dynamically interact with chromatin to regulate its
architecture and activity. Genome-wide studies in
yeast, flies and humans have shown that nuclear
pore proteins (nucleoporins) interact with numerous
active genes, but also with heterochromatin bound-
aries and repressed genes.1 The TREX-2 (Transcrip-
tion-coupled Export) complex is conserved from
yeast to humans and associates with the NPC via the
NPC basket structure.2,3 The S.cerevisiae TREX-2
complex was found to regulate a surprisingly diverse
number of chromatin-associated processes including
transcription4,5 and mRNA export,2,6 targeting of
activated genes to NPCs,7 DNA replication,8 and
genome stability.9 Yeast TREX-2 is composed of
Sac3, Thp1, Sem1, Sus1 and Cdc31 and can be
divided into a PCI domain part (a protein scaffold
also found in the Proteasome lid, CSN, and eIF3
complexes) and an NPC-basket anchor element
(Fig. 1). This general domain architecture is con-
served between yeast and human TREX-2.10,11 Like
in yeast, metazoan TREX-2 plays a role in mRNA

export,12 although its role in transcription remains to
be fully explored. The molecular mechanism by
which TREX-2 impacts on gene expression was a
major question in the field, because of its implica-
tions for understanding how nucleoporins regulate
chromatin architecture and function.

Mediator, on the other hand, is the central scaffold
for transcription initiation in eukaryotes. Transcrip-
tion initiation at protein-coding genes requires RNA
Pol II, general transcription factors, and Mediator.
Assembly of these factors on promoter DNA results in
a core initiation complex, which recruits the TFIIH
complex to unwind DNA and to phosphorylate the
RNA Polymerase (Pol) II C-terminal domain (CTD)
at Ser5. Mediator is recruited by transcription activa-
tors, stabilizes the initiation complex and stimulates
TFIIH kinase activity.13,14

We recently reported that TREX-2 (1) interacts
directly with Mediator via a specific interface of its
PCI domain, (2) regulates Mediator association with
the Cdk8 kinase, a central activity switch on Mediator
and (3) influences RNA Pol II phosphorylation at
Ser5, the defining mark of transcription initiation
(Fig. 1).15 This has been a major advance in elucidat-
ing the biological function of TREX-2, as it uncovered
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a direct role of TREX-2 in modulating the core tran-
scription machinery. TREX-2 and Mediator were
shown to co-regulate a distinct subset of constitutive
(e.g. the superpathway of sulfur amino acid biogene-
sis) and highly inducible (e.g., GAL1 and HXK1) genes
in yeast. Moreover, the interaction between the 2 com-
plexes is required for the dynamic targeting of acti-
vated genes to NPCs. In essence, Mediator is a relay
for communication between TREX-2 and Pol II. Here,
we discuss the emerging role of promoters in regulat-
ing different aspects of mRNA metabolism and how

promoter-bound Mediator and TREX-2 could impact
on these transactions.

RNA Pol II-dependent coupling events during
early transcription

The biogenesis of eukaryotic mRNAs involves not
only pre-mRNA synthesis by RNA Pol II, but also
cotranscriptional RNA processing comprising 50 cap-
ping, intron splicing, 30 RNA cleavage and polyadeny-
lation (30 processing). The mature mRNA is packaged

Figure 1. Mechanism for a relay between TREX-2, Mediator, and Pol II. Model depicts the putative overall topology of the NPC-associ-
ated TREX-2 complex and its interaction with Mediator. Mediator cartoon follows the outline of the yeast Mediator cryo-EM structure.
TREX-2 is subdivided into an NPC-anchor domain (upper part) and a PCI domain part (lower part). (1) Docking to Mediator involves a
conserved pair of basic Sac3 residues (red sticks) and the Med31 submodule. (2) TREX-2 regulates Cdk8 kinase module association. (3)
TREX-2 impacts on RNA Pol II CTD Ser5 phosphorylation (S5; yellow). (4) TREX-2 also influences mRNA export via the same PCI surface
used for interacting with Mediator. Other mRNA adaptor/export proteins are indicated. Transition between Pol II initiation and early
elongation is shown. Act : transcription activator; CBC: Cap Binding Complex.
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with RNA-binding proteins into messenger ribonu-
cleoprotein particles (mRNPs), which is essential for
its export to the cytoplasm and protein synthesis.16,17

The prevailing view is that, in contrast to a simple lin-
ear assembly line, gene expression machines are exten-
sively coupled to ensure that each step in gene
expression is timely, accurate and efficient. Coupling
is a term that generally refers to the enhancement of
one step in gene expression by another and can reflect
physical and/or functional interactions between fac-
tors. This topic has been the subject of several excel-
lent reviews.18-20 Here, we will focus on Pol II-
dependent coupling events that accompany the earli-
est steps of transcription.

A prime example for sequential coupling reactions
is the RNA Pol II C-terminal domain (CTD), which
undergoes dynamic phosphorylation as the Pol II pro-
gresses through initiation, elongation, and termina-
tion.21 CTD phosphorylation creates sequential
“landing pads” for numerous mRNP components.18

The first mark to appear on the Pol II CTD is the
phosphorylation of Ser5, which is catalyzed by yeast
Kin28 (human CDK7), a component of TFIIH. Medi-
ator stimulates Ser5 CTD phosphorylation,22 which is
thought to promote the eviction of Pol II from the
promoter-bound preinitiation complex and transition
to elongation.23-25 Beyond promoting Pol II promoter
escape, Ser5 phosphorylation is linked to the capping
of the pre-mRNA transcript, the very first event in co-
transcriptional RNA processing.26 Recruitment of the
capping enzyme (yeast Cet1/Ceg1) involves binding of
Ceg1 to the Ser5 phosphorylated CTD of Pol II, which
occurs during transcription initiation. Notably, the
capping enzyme docks onto the Pol II wall in immedi-
ate proximity of the mRNA exit tunnel of Pol II.
mRNA has to be at least 15 nucleotides in length to
reach the Pol II surface where capping can occur.
Thus, the first steps in pre-mRNA capping take place
when the nascent RNA reaches the polymerase sur-
face. The physical coupling of capping enzymes with
RNA Pol II nicely illustrates how cells achieve seam-
less protection of RNA from degradation by 50-exonu-
cleases right from the start of transcription.

A common model is that acquisition of export
competence begins with the recruitment of the con-
served TREX (Transcription-coupled Export) com-
plex.16,17 TREX also functions in various aspects of
co-transcriptional mRNP formation, yet, exhibits no
protein homology with TREX-2. In yeast, TREX is

continuously loaded onto emerging transcripts during
transcription elongation, which facilitates folding of
nascent transcripts into mRNPs and helps to recruit
additional RNA-binding proteins.27-29 When exactly
the first mRNA export adaptor binds to the nascent
mRNA is not well established in yeast, but intriguing
insights came from studies in Xenopus already in
1990, which showed that the 50 cap and the interacting
cap binding complex (CBC20/CBC80 in metazoa) are
required for mRNA export.30 Furthermore, the human
TREX complex is recruited in a cap- and splicing-
dependent manner to the 50 end of the mRNA. This
recruitment requires the cap binding subunit CBP80,
which interacts directly with human TREX.31 These
observations highlight the fact that the earliest steps of
transcription are characterized by several intercon-
nected events with the potential to imprint the desti-
nation of the transcript.

Our study revealed an unexpected link between
TREX-2 and Mediator and the phosphorylation status
of RNA Pol II. Specifically, we found that a loss of
TREX-2 function leads to an increase of Ser5 phos-
phorylation of the Pol II CTD, which indicated that
TREX-2 may have a regulatory impact when bound to
Mediator. In support of this notion, we found that
TREX-2 binds directly to the Med31/Med7 submod-
ule, which is positioned in proximity to the Pol II
CTD binding site on Mediator. Whether and how the
impact of TREX-2 on the Pol II “phospho-code” plays
a role in choreographing subsequent mRNA process-
ing events will require further analysis.

Role of promoters in mRNA metabolism

Since TREX-2 is necessary for mRNA export, its inter-
action with promoter-bound Mediator raises the
interesting question whether the mRNA export func-
tion of TREX-2 is linked to Mediator’s role in initiat-
ing transcription. This would imply that cells connect
the earliest and latest steps of nuclear gene expression.
Notably, a growing number of studies has reported
promoter-dependent effects on downstream mRNA
metabolism, which altogether raise the question
whether transcription initiation is indeed a promoter’s
only task. In 2011, 2 studies showed that transcription
factors and DNA promoters can directly influence the
stability of the transcripts that they produce, indepen-
dent of the transcript sequence. One paper described
destabilization of SWI5 and CLB2mRNAs at the onset
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of metaphase in S.cerevisiae.32 This stability switch
requires promoter-dependent deposition of the
mitotic exit kinase Dbf2 on both mRNAs during tran-
scription. The second paper described a similar decay-
enhancing effect mediated by the transcription factor
Rap1.33 Rap1 stimulates both the synthesis and the
decay of a specific population of endogenous mRNAs
suggesting that Rap1 association with the promoter
affects the composition of the exported mRNP, which
in turn regulates mRNA decay in the cytoplasm. More
recently, yeast promoter sequences were shown to
direct both the localization of mRNAs and their trans-
lation during starvation.34 S.cerevisiae responds to glu-
cose starvation by translating a subset of
transcriptionally activated mRNAs while decreasing
translation of others. The information specifying the
differential localization and protein production of
these 2 classes of mRNAs was found to depend on
specific promoters targeted by heat-shock factor 1
(Hsf1). Last but not least, promoter-proximal pausing
was shown to be involved in regulating alternative
cleavage and polyadenylation of mRNAs in Drosophila
neurons.35 In flies, the RNA-binding protein ELAV
(Embryonic Lethal Abnormal Visual System) inhibits
RNA processing at proximal polyadenylation sites,
thereby promoting the formation of exceptionally
long 30UTRs. Paused Pol II promotes recruitment of
ELAV and leads to extended genes, and this effect is
regulated by the promoter. In sum, promoters can
influence gene expression by mechanisms other than
transcriptional control, perhaps through mediating
the loading of proteins onto mRNAs.

The emerging theme of all these studies is an
impact of promoters on gene expression that clearly
goes beyond transcription initiation. Promoters
appear to reach out to influence later steps of mRNA
processing and mRNP formation. A central assump-
tion underlying promoter-coupled mRNA processing
events is that promoter elements are somehow
brought into physical proximity with the nascent
mRNA to allow several types of molecular cross-talk.
However, the molecular details of these transactions
are largely unclear.

Mediator as an emerging regulator of mRNA
processing

Given the influence of promoter-bound Mediator on
Pol II Ser5 phosphorylation and the role of the CTD

in scaffolding various mRNA processing and packag-
ing events, it is conceivable that Mediator impacts on
the mRNA life cycle through setting the proper RNA
Pol II “phospho code.” But is there any evidence for a
direct role of Mediator in dictating mRNA fate? Sur-
prising insights came from a study, which reported
direct physical interactions between the Mediator sub-
unit MED23 and the hnRNP L protein, a regulator of
alternative splicing in metazoans.36 Functionally,
MED23 regulates a subset of alternative splicing and
alternative cleavage and polyadenylation events. These
results suggested a crosstalk between Mediator and
the splicing machinery and advanced the idea that
Mediator could be involved in coupling transcription
initiation with mRNA processing possibly by serving
as a stepping-stone for splicing-related factors.
Although yeast has no MED23 ortholog, the role of
Mediator in scaffolding diverse promoter-functions
could be a conserved property. We propose that Medi-
ator’s interaction with TREX-2 could similarly medi-
ate the coupling of transcription initiation and export
of specific mRNAs through the nuclear pore.

The role of TREX-2 in transcription and mRNA export

A surprising finding of our study was that TREX-2
employs identical Sac3 PCI domain residues to pro-
mote both transcription and mRNA export. TREX-2
directly interacts with the Mediator Med31/Med7 sub-
module via conserved polar residues on the Sac3 PCI
domain surface. Notably, TREX-2 uses the same polar
residues to contact Mediator and to regulate mRNA
export. This could indicate that TREX-2 is involved in
a sequential coupling reaction, in which binding to
Med31/Med7 is displaced by an interaction with a yet
unknown mRNP factor. TREX-2 could therefore
either promote the loading of factors onto the nascent
mRNA or become itself loaded onto RNA. These pos-
sibilities remain to be explored, but are conceivable
given that mutually exclusive protein-protein and pro-
tein-RNA interactions are a common feature of many
co-transcriptional events. Such handover reactions are
thought to impose directionality and a sequential
order to mRNP formation.20

TREX-2 also binds to the general mRNA exporter
Mex67/Mtr2 2 as well as DNA or RNA in vitro.11

Moreover, TREX-2 was suggested to undergo large-
scale conformational changes from extended to more
compact forms in vitro.37 The functional relevance of
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this structural plasticity and the spatiotemporal order
of TREX-2 interactions with Mediator, Mex67/Mtr2
and the NPC basket during gene expression will have
to be explored in detail. Such studies will be essential
to understand the precise mechanism by which
TREX-2 promotes the coupling of transcription and
mRNA export in cells.

Conclusion and perspective

We have recently described a direct link between the
TREX-2 complex and Mediator using structural biol-
ogy, in vitro biochemical reconstitution and various in
vivo functional analyses. These findings are key to
understanding how NPC-associated adaptors modu-
late transcription, mRNA export and nuclear gene
localization. This has revealed a molecular mechanism
of TREX-2 function and opens new avenues for
exploring how promoters can regulate multiple
aspects of mRNA biology beyond transcription
initiation.
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