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Abstract: The development of potent and selective therapeutic approaches to glioblastoma (GBM)
requires the identification of molecular pathways that critically regulate the survival and proliferation
of GBM. Glioblastoma stem-like cells (GSCs) possess stem-cell-like properties, self-renewal, and
differentiation into multiple neural cell lineages. From a clinical point of view, GSCs have been
reported to resist radiation and chemotherapy. GSCs are influenced by the microenvironment, espe-
cially the hypoxic condition. N-myc downstream-regulated gene 1 (NDRG1) is a tumor suppressor
with the potential to suppress the proliferation, invasion, and migration of cancer cells. Previous
studies have reported that deregulated expression of NDRG1 affects tumor growth and clinical
outcomes of patients with GBM. This literature review aimed to clarify the critical role of NDRG1
in tumorigenesis and acquirement of resistance for anti-GBM therapies, further to discussing the
possibility and efficacy of NDRG1 as a novel target of treatment for GBM. The present review was
conducted by searching the PubMed and Scopus databases. The search was conducted in February
2022. We review current knowledge on the regulation and signaling of NDRG1 in neuro-oncology.
Finally, the role of NDRG1 in GBM and potential clinical applications are discussed.

Keywords: N-myc downstream-regulated gene 1; glioblastoma; glioblastoma stem-like cells

1. Introduction

Glioblastoma (GBM) is the most malignant primary brain tumor in adults, with a
grade IV malignancy according to the World Health Organization (WHO) classification [1].
Although molecular biological studies have provided much insight into the tumorigenesis
of GBM, it remains a disease with a poor prognosis, with a median patient survival of
15 months, even with multimodality treatment consisting of surgery, radiation therapy, and
chemotherapy [1]. On the clinical side, the presence of glioblastoma stem cells (GSCs) that
share the characteristics of normal neural stem cells, i.e., neuroblastogenesis, self-renewal,
and differentiation into various neuronal cell lineages, is considered important [2–4]. GSCs
have been identified as a cause of efficient recurrence of GBM, are resistant to radiother-
apy and chemotherapy, and remain after multimodality treatment [5–8]. In addition, the
phenotypic profiles of the GBM cells in association with the oxygen gradient have been in-
vestigated. The model was indicated by three layers: an inner highly hypoxic/anoxic layer
characterized by GSCs with low proliferation; an intermediate layer—a mildly hypoxic
state with immature and proliferating tumor precursor cells; and a peripheral layer—a
more vascularized and oxygenated area with differentiated GBM cells [6,9,10] (Figure 1).
Different levels of hypoxia in the microenvironment may affect the activation of HIFs,
which may be a critical factor in the invasiveness and proliferation activity of GBM [6,9–12].
Hypoxia-inducible factor-1α (HIF-1α) is known to play an essential role in the regulation
of genes induced or upregulated by the hypoxic tumor microenvironment [9–11], which in
turn are important to the regulation of stemness [5,13,14].
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essential role in the regulation of genes induced or upregulated by the hypoxic tumor 
microenvironment [9–11], which in turn are important to the regulation of stemness 
[5,13,14]. 

 
Figure 1. Phenotypic and molecular characteristics of the three layers that comprise the glioblastoma 
tumor. 

Among the many genes whose expression are regulated by HIF-1α is N-myc down-
stream-regulated gene 1 (NDRG1). NDRG1 is a member of the NDRG family, and the 
others are NDRG2, NDRG3, and NDRG4 [15,16]. NDRG1 is strongly expressed in the cer-
ebral cortex; the other members of the NDRG family are also expressed in the spinal cord 
during development, in which the NDRG family plays a role in the differentiation of the 
central nervous system [17]. The expression of NDRG1 mRNA varies among human tis-
sues, with higher expression in the prostate, brain, kidney, placenta, and intestinal tissues 
[18,19]. NDRG1 is an intracellular protein whose expression is altered under the influence 
of various stress conditions and molecules [17,19–23]. Although the exact cellular func-
tions of this protein have not been elucidated, mutations in NDRG1 or aberrant expression 
of this protein have been associated with tumor-suppressive and oncogenic phenotypes, 
which collectively suggest that NDRG1 functions in a tissue-specific manner [19,24–28]. 
NDRG1 is regulated under stress conditions such as starvation or hypoxia. Figure 2 shows 
the role of its function in normal physiology and its tumorigenesis in cancer cells. 

NDRG1 expression is correlated inversely the with survival of GBM patients and is 
therefore considered a cancer suppressor gene in GBM [29–32]. Furthermore, NDRG1 is a 
molecule that is affected under hypoxia, and the protein expression was significantly in-
creased in GBM cells in the hypoxic state [33]. Since the tumor microenvironment, espe-
cially hypoxia, is thought to be one of the causes of GBM cells acquiring resistance to ther-
apy, it is important to elucidate the function of this molecule and the regulatory mecha-
nism of its expression. In this review, we examine the literature on NDRG1 in the area of 

Figure 1. Phenotypic and molecular characteristics of the three layers that comprise the glioblastoma
tumor.

Among the many genes whose expression are regulated by HIF-1α is N-myc downstream-
regulated gene 1 (NDRG1). NDRG1 is a member of the NDRG family, and the others are
NDRG2, NDRG3, and NDRG4 [15,16]. NDRG1 is strongly expressed in the cerebral cortex;
the other members of the NDRG family are also expressed in the spinal cord during
development, in which the NDRG family plays a role in the differentiation of the central
nervous system [17]. The expression of NDRG1 mRNA varies among human tissues, with
higher expression in the prostate, brain, kidney, placenta, and intestinal tissues [18,19].
NDRG1 is an intracellular protein whose expression is altered under the influence of
various stress conditions and molecules [17,19–23]. Although the exact cellular functions of
this protein have not been elucidated, mutations in NDRG1 or aberrant expression of this
protein have been associated with tumor-suppressive and oncogenic phenotypes, which
collectively suggest that NDRG1 functions in a tissue-specific manner [19,24–28]. NDRG1
is regulated under stress conditions such as starvation or hypoxia. Figure 2 shows the role
of its function in normal physiology and its tumorigenesis in cancer cells.
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gliomas including GBM cells and GSCs and suggest the potential of novel therapies fo-
cusing on NDRG1 for GBM. 

 
Figure 2. Schematic diagram of the putative functions of NDRG1 in normal or cancer cells. The 
NDRG1 protein responds to stress and induces genome stability, differentiation, myelination, 
maintenance of T cell clonal anergy, lipid synthesis, and vesicle transport. In cancer cells, NDRG1 
has an inhibitory action on cell proliferation, invasion, migration, metastasis, and angiogenesis, and 
promotes apoptosis and differentiation. Abbreviations: AP1, activator protein 1; VEGF, vascular en-
dothelial growth factor; IL-8, interleukin-8. 

2. Literature Analysis Methods 
The present review was conducted by searching the Scopus and PubMed databases 

using the key terms “N-myc downstream-regulated gene 1” and “glioma” or “glioblas-
toma” in the title abstract or keywords. The search was conducted in February 2022. Pub-
licly available, peer-reviewed literature written in English was included and limited to 
original articles, except reviews and book chapters. The literature was systematically re-
trieved using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
guidelines; however, relevant data were extracted to help readers’ understanding. 

3. Results 
A total of 26 articles were identified using the search algorithm on Scopus and Pub-

Med. The full manuscript of 21 articles was reviewed and five articles (one proceeding, 
two review articles, and two book chapters) were excluded due to the type of literature.  

3.1. NDRG1 Expression in Glioma and GBM 
Previous studies investigated the association between the expression of NDRG1 pro-

tein in surgical tissue sections using immunohistochemistry and the survival duration of 
patients with GBM. We demonstrated by Kaplan−Meier analysis that patients with high 
expression of NDRG1 in specimens of tumor tissue had significantly longer overall sur-
vival (OS) than those with low expression of NDRG1 [29]. Furthermore, the rates of 

Figure 2. Schematic diagram of the putative functions of NDRG1 in normal or cancer cells. The
NDRG1 protein responds to stress and induces genome stability, differentiation, myelination, main-
tenance of T cell clonal anergy, lipid synthesis, and vesicle transport. In cancer cells, NDRG1 has
an inhibitory action on cell proliferation, invasion, migration, metastasis, and angiogenesis, and
promotes apoptosis and differentiation. Abbreviations: AP1, activator protein 1; VEGF, vascular
endothelial growth factor; IL-8, interleukin-8.

NDRG1 expression is correlated inversely the with survival of GBM patients and is
therefore considered a cancer suppressor gene in GBM [29–32]. Furthermore, NDRG1 is
a molecule that is affected under hypoxia, and the protein expression was significantly
increased in GBM cells in the hypoxic state [33]. Since the tumor microenvironment,
especially hypoxia, is thought to be one of the causes of GBM cells acquiring resistance
to therapy, it is important to elucidate the function of this molecule and the regulatory
mechanism of its expression. In this review, we examine the literature on NDRG1 in the
area of gliomas including GBM cells and GSCs and suggest the potential of novel therapies
focusing on NDRG1 for GBM.

2. Literature Analysis Methods

The present review was conducted by searching the Scopus and PubMed databases
using the key terms “N-myc downstream-regulated gene 1” and “glioma” or “glioblastoma”
in the title abstract or keywords. The search was conducted in February 2022. Publicly
available, peer-reviewed literature written in English was included and limited to original
articles, except reviews and book chapters. The literature was systematically retrieved
using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines;
however, relevant data were extracted to help readers’ understanding.

3. Results

A total of 26 articles were identified using the search algorithm on Scopus and PubMed.
The full manuscript of 21 articles was reviewed and five articles (one proceeding, two review
articles, and two book chapters) were excluded due to the type of literature.
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3.1. NDRG1 Expression in Glioma and GBM

Previous studies investigated the association between the expression of NDRG1 pro-
tein in surgical tissue sections using immunohistochemistry and the survival duration of
patients with GBM. We demonstrated by Kaplan−Meier analysis that patients with high
expression of NDRG1 in specimens of tumor tissue had significantly longer overall survival
(OS) than those with low expression of NDRG1 [29]. Furthermore, the rates of positive cells
of NDRG1 were positively correlated with the longer survival time in GBM patients [29].
Additionally, a large study in 168 patients with glioma with different WHO grade identified
that decreased NDRG1 expression was negatively correlated with WHO grade; moreover,
low expression of NDRG1 was associated with significantly lower OS, independent of any
prognostic factors [30]. Recently, Yang et al. investigated the polymorphisms of the NDRG1
gene in 1061 participants, including 558 patients with glioma and 503 healthy individuals,
and identified a certain relationship between the polymorphism and the risk of glioma
development [31]. Furthermore, experiments using human glioma cell lines found NDRG1
overexpression inhibits cell proliferation and invasion and suppresses tumorigenesis in the
subcutaneous tumor mouse model [32]. From these findings, NDRG1 has been considered
a potent tumor suppressor in gliomas.

Meanwhile, a study showed that high-grade glioma had the higher expression of
NDRG1 mRNA and protein compared with grade II glioma [20]. Furthermore, when the
target was limited to grade II glioma, post-surgically untreated grade II gliomas showed
that moderate-to-high expression of the NDRG1 protein was correlated with growth delay
and improved progression-free survival, but not OS [34].

Collectively, although these investigations showed that NDRG1 might be suggested to
have the potential of a tumor suppressor gene in glioma, several factors might lead to poor
prognosis and reduced OS, such as tumor environment (e.g., hypoxia, stress condition) and
genotoxic changes by chemotherapy. Furthermore, in the NDRG family, NDRG2 acts in a
tumor-suppressive manner similar to NDRG1, while NDRG4 is lowly expressed in gliomas
and is considered as a poor prognostic factor. The function of NDRG1 in gliomas may be
affected by the balance with other NDRG family genes and requires further study.

3.2. NDRG1, Cancer-Related Genes and Pathway
3.2.1. NDRG1 and p53 Associated Apoptosis

NDRG1 shows the biphasic expression through the cell cycle, which has a peak in the
G1 and G2/M phases and decreased to the lowest level in the S phase [35]. Overexpression
of NDRG1 is known to downregulate the expression of cyclin D1, a Wnt-responsive gene,
and to suppress cell cycle progression [36].

Activation of NDRG1 occurs due to the binding of p53 to its promoter [37]. NDRG1
is also a protein located at the centromeres associated with a microtubule corresponding
with a p53-dependent spindle checkpoint [18,19]. Furthermore, following DNA damage
agents, NDRG1 expression is induced and dependent on p53 [18,37]. In colon cancer cell
lines, NDRG1 was required to induce p53-mediated apoptosis [37]. Conversely, studies
using lung cancer cell lines showed no association between NDRG1 expression and DNA
damage, although p53 was elevated [38]. The regulation of NDRG1 via p53 indicates
the potential of cell- and tissue-specific manners. In experiments with glioma cell lines,
when NDRG1 overexpression was enforced using retroviral constructs expressing NDRG1,
the percentage of apoptotic glioma cells increased relatively higher than in untransfected
cells [32]. Similarly, NDRG1 knockdown using small interfering (si)RNA targeting human
NDRG1 was shown to decrease glioma cell apoptosis [32,39], following a decrease in
cleavage of caspase 3 [39]. Although a high percentage of GBM are known to have mutated
p53, there have been no studies on the association between mutant p53 and NDRG1. To
develop new NDRG1-mediated GBM therapies, further studies will be required.
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3.2.2. NDRG1 and Phosphatase and Tensin Homolog (PTEN), Phosphoinositide 3-Kinase
(PI3K)/AKT Pathway

The PTEN/PI3K/AKT signaling pathway is validated to be involved in the develop-
ment and growth of multiple cancers by many previous studies [40–43]. The growth of
glioma cells is facilitated by inhibition of PTEN, through the regulation of the PI3K/AKT
pathway [43,44]. Overexpression of PTEN induces downregulation of PI3K/AKT signaling
and reduces the migration in glioma cells [45]. Previous in vitro and in vivo studies of
gliomas also showed that the phosphorylation of AKT expression was elevated, and its
expression was reversed in correlation with the expression of PTEN [43,44].

The NDRG1 protein regulates the negative feedback loop that links the PI3K/AKT
pathway and PTEN [28]. In cancer cells, the balance in the PI3K/PTEN feedback loop
is frequently lost, leading to increased PI3K signaling and reduced PTEN levels [28].
NDRG1 knockdown by siNDRG1 in U87 MG showed induction of AKT phosphorylation,
suggesting that NDRG1 represses the cell proliferation and invasion through the PI3K/AKT
pathway [32]. The study of the microrchidia family CW-type zinc finger 2 (MORC2),
which was a chromatin modifier, reported that MORC2 binding to the NDRG1 promotor
inactivated PTEN/PI3K/AKT signaling and promoted the growth of glioma cells [41].
Furthermore, glycogen synthase kinase 3ß (GSK3ß), involved in the regulation of cell
proliferation, is a key downstream target of the PI3/AKT pathway [46]. Our previous
study indicated that NDRG1 and GSK3ß promoted each other’s protein degradation and
destabilization and negatively regulated their expressions [29].

3.2.3. NDRG1 and Myc

The overexpression of the N-myc and c-myc binds to the N-myc binding motif close
to the initiation promoter and induces the suppression of NDRG1 expression [47,48].
The expression of NDRG1 and Myc was investigated in 168 cases of glioma, and the
expression was compared with the WHO grade and survival rate of the patients [30].
NDRG1 expression of mRNA and protein was decreased in gliomas compared with a
normal brain. Both mRNA and protein expression of Myc were higher in gliomas, and the
expression increased from WHO grade I to WHO grade IV, which was a reverse expression
of NDRG1 [30]. The transcriptional repression of human NDRG1 by Myc may be involved
in glioma progression.

3.3. NDRG1 and Epithelial−Mesenchymal Transition (EMT) in Glioma Invasion

NDRG1 protein-bound in the membrane was discovered mainly alongside the adher-
ent junctions [49]. In cancer, the NDRG1 gene is considered to engage in the suppression of
metastasis to negatively associate with the migration of metastatic cancer cells [26,50,51].
Thus, NDRG1 reduces metastatic potential by the formation of adherent bounds, increased
adhesion of the cell to cell, and inhibition of migration and invasion.

In glioma cells and specimens of surgical resection, EMT-associated proteins, includ-
ing vimentin, N-cadherin, and E-cadherin as an invasive marker, have been known to
show a marked elevation of expression [52]. Ma et al. studied the expression of vimentin,
N-cadherin, and E-cadherin in NDRG1 overexpressed U87MG using retroviral constructs
and in the knockdown expression of NDRG1 using siNDRG1 [32]. Negative associations
were shown between vimentin, N-cadherin, and NDRG1 expression; moreover, E-cadherin
showed a positive correlation with NDRG1 expression. This result suggests the possibil-
ity that NDRG1 overexpression inhibits glioma cells invasion by modulating vimentin,
N-cadherin, and E-cadherin [32]. Furthermore, the results of in vivo experiments such as
in tumorous tissue of U251 tumor-bearing mice also showed that the acquisition of NDRG1
function repressed expression of EMT-related proteins and inhibited the development
of tumor, proliferation, and migration (Figure 3) [41]. These results have indicated that
NDRG1 may play a significant role in regulating the growth and invasion of glioma cells.
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CW-type zinc finger 2. 
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Figure 3. Simplified schematic showing the interaction of NDRG1 with EMT-related genes in refer-
ences [32,41]. Elevated protein expression of NDRG1 in the cytoplasm is stimulatory to E-cadherin,
whereas vimentin and N-cadherin are repressively regulated through the PTEN/AKT pathway in
both references. MORC2, which is an oncogene that binds with histone deacetylase 4 and acts as a
transcriptional repressor, is studied in reference [41]. Abbreviations: MORC2, microrchidia family
CW-type zinc finger 2.

3.4. NDRG1 in Stress Conditions
3.4.1. A Role of NDRG1 as the Substrate of Serum/Glucocorticoid-Regulated
Kinase 1 (SGK1)

NDRG1 plays a role in physiological stress conditions. NDRG1 is a substrate of
serum/glucocorticoid-regulated kinase 1 (SGK1) activated by corticosterone in plasma [53].
According to an elevation of corticosterone in plasma, SGK1 expression and activation
increase, specifically in oligodendrocytes, results in causing increased phosphorylation of
NDRG1 and leads to various effects for the molecules in downstream including increased
expression of adhesion molecules. SGK1 has physiological functions such as regulation
of ion channels, differentiation and proliferation of cells, and apoptosis. In GBM, the
expression of SGK1 increases significantly [21]. The overexpression of activated SGK1 and
phosphorylated NDRG1 implicated the morphologic alterations that were the result of the
pathway of SGK1 and NDRG1 induced by stress conditions [22,53].

3.4.2. NDRG1 in GBM Cells under Hypoxic Condition

Considering the microenvironment within the solid tumor, hypoxia is of great impor-
tance [20,33,54]. Tumor cells adapt to hypoxic environments and proliferate by activating
genes that encode proteins necessary for survival in these environments [6,55,56]. A com-
mon survival strategy in response to hypoxia is Pasteur-effect remission, in which HIFs
bind to hypoxia-responsive genes [57], which causes them to express proteins that are favor-
able for survival [10]. Transcription factor HIF-1α accumulates under hypoxic conditions
and induces the expression of NDRG1 as one of the hypoxia-inducible genes [6,20]. The
NDRG1 gene has three HIF-1 binding sites, one in its promoter and the remaining two in
its 3′ untranslated region [58], of which NDRG1 is possibly regulated by HIF-1 through its
binding sites in the untranslated region [23]. In hypoxia, NDRG1 regulation is associated
with HIF-1α-dependent and HIF-1α-independent pathways [23].

Since hypoxia is a very important environmental factor in GBM research, several
studies on alterations in NDRG1 expression in GBM cells under hypoxic conditions reported
significant upregulation of mRNA and/or protein NDRG1 expression [11,20,21,33,59,60].
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The molecular and phenotypic characteristics of tumors are characterized by three layers
according to a hypoxic concentric gradient: the inner core layer, the middle layer, and
the peripheral layer (Figure 1). The invasiveness and proliferation activity of GBM are
severely affected by differences in oxygen levels in the microenvironment that alter the
activation of HIFs [6,20,33,55]. Under prolonged moderate (1% O2) to severe (0.1% O2)
hypoxia, mRNA and protein NDRG1 expression generally increased and were regulated in
an oxygen-dependent manner [33]. In GBM cells, NDRG1 protein was also highly stable,
cell-specific, and dependent on the oxygen concentration [20]. The increased expression of
the NDRG1 protein in GBM cell lines was time-dependent during hypoxia [11,33,60]. HIF-
1α has been found to upregulate not only NDRG1 but also carbonic anhydrase IX (CA-IX),
which is a transmembrane N-glycosylated isoenzyme. Said et al. showed that NDRG1 was
also expressed in the acute phase of hypoxia, while CA-IX was expressed during the more
chronic phase [60]. Furthermore, NDRG1 mRNA expression was downregulated, while
its protein did not show downregulation after reoxygenation [33]. This result suggested
posttranscriptional regulation of NDRG1 expression.

Together with HIFs, early growth response factor 1 (Egr-1), which is a transcription
factor activated by hypoxia, plays a major role in the survival of tumor cells under hypoxic
conditions [61]. Egr-1 is thought to activate and positively regulate NDRG1 in a variety of
cancers; however, in GBM, Egr-1 was not involved in the regulation of NDRG1 expression,
indicating that HIF might be the main regulator [59].

Furthermore, induction of NDRG1 expression via HIF1 under hypoxia requires an
increase in intracellular calcium (Ca2+) [19,62]. Intracellular Ca2+ elevation is not directly
related to induction of HIF-1α and promotion of HIF-1α-dependent transcription [19,62].
Intracellular Ca2+ upregulation may affect NDRG1 induction through signaling pathways
or transcriptional mechanisms, differing from HIF-1 [19,62]. Thus, the role of HIF-1α and
the increase of intracellular Ca2+ in regulation of NDRG1 is undetermined to date. At
this time, there are no studies on GBM regarding the relationship between elevation of
intracellular Ca2+ and NDRG1 expression, and future studies are needed.

In this way, the regulation of NDRG1 under hypoxia is highly complex, and its cellular
function is still a matter of debate.

3.5. Influence of NDRG1 on Resistance to GBM Treatment

3.5.1. O6-Methylguanine-DNA Methyltransferase (MGMT)

MGMT is a key enzyme responsible for the resistance of GBM to the alkylating agent
temozolomide (TMZ) [7,21,55,63]. Weiler et al. demonstrated that NDRG1 increases the
protein stability and promotes the activity of MGMT and that NDRG1 is a predictive
marker for responsiveness to chemotherapy with alkylating agents such as TMZ [21]. In
addition, NDRG1 is affected by not only the tumor microenvironment but also glioma
treatments such as radiation, chemotherapeutic agents, and steroids, and its pathway is the
mechanistic target of the rapamycin C2 (mTORC2)/SGK1 pathway [21]. From the point of
view of this report, NDRG1 may be a promising target for GBM therapy because NDRG1
expression and function are affected by conventional GBM therapies, if methods will be
developed to reduce these effects in the future.

3.5.2. Glioblastoma Stem-like Cells (GSCs)

The association with the microenvironment of GSCs has been studied, including
perivascular niches [12], periarteriolar niches [47,64], peri-hypoxic niches [65], peri-immune
niches [66], and extracellular matrix niches [6,55]. The hypoxic environment has induced the
expression of GSCs markers, including the sex-determining region Y-box2 (SOX2), octamer-
binding transcription factor 4 (OCT4), and CD133, resulting in the dedifferentiation of GBM
cells into GSCs [6,9,55,56,67]. HIF-1α is known to play an essential role in the regulating
stemness of GSCs [5,13,14]. HIF-1α was found to have a more general function in the
maintenance of GSCs [6,55,56], whereas, in contrast to HIF-1α, HIF-2α directly promoted
the phenotype of GSCs upregulating the expression of GSCs markers [6,9].
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According to genome-wide expression and methylation studies, GBM has classified
three types: proneural (PN), mesenchymal (MES), and classical. Each type of GSC is known
to show a different phenotype. In general, GSCs of MES are more aggressive and invasive
and have a poorer prognosis than GSCs of PN [68]. Few articles investigated the role of
NDRG1 in GSCs. The study of NDRG1 in GSCs investigated its expression by classifying
GBM subgroups [69]. In GSCs of PN, the decreased expression of NDRG1 suppressed self-
renewal, promoted differentiation, and significantly inhibited tumorigenesis. Conversely,
NDRG1 overexpression in GSCs induced the transition from PN to MES and improved
the highly malignant phenotype [69]. The results also indicated that the transition from
PN to MES was regulated by the balance between the expression of both NDRG1 and
achaete-scute homolog 1 (ASCL1), which is a specific gene of PN type of GBM and has a
relevant role in the neuronal differentiation of GSCs [69].

It is important to define the role of NDRG1 and its regulatory mechanisms in GSCs,
which are one of the causes of GBM resistance to multidisciplinary therapy. Further studies
are needed to determine whether the microenvironment affects GSCs and prevents effective
treatments to eradicate GSCs, as the interactions between GSCs and their niches have not
been clarified [2–4,34].

3.6. Development of Anti-GBM Therapy Associated with NDRG1

The establishment of effective and selective novel therapies for GBM with the poorest
prognosis requires the investigation of regulating mechanisms of various gene expressions,
functions of proteins, and molecular pathways that critically control the survival and
growth of GBM cells. In addition, the microenvironment surrounding tumors and GSCs,
which are thought to contribute to recurrence, must be studied in detail in the development
of therapies for GBM. Various agents already used as treatments for other diseases have
been investigated on their effect of suppression in GBM cells. Table 1 shows the characteris-
tics of each agent and the consequences of NDRG1. In studies of these agents, it has been
considered that NDRG1 could be the target of an agent, alter its expression, and be involved
in mechanisms of efficiency in GBM cells [11,29,70–74]. Figure 4 shows the relationship
between agents reported previously and NDRG1.
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Table 1. Studies of novel anti-GBM therapies.

Agent Structure and Function Year of
Publication Effect on Tumor Alteration of

NDRG1 Ref.

SYSUP007 Combined rhein with the
HDAC inhibitor (SAHA) 2020

Inhibition of proliferation,
invasion, and migration

(in vitro)

Upregulated
expression [74]

DIF-1

One of the effector
molecules inhibiting

growth and promoting
differentiation

2019
Direct mediation of cell

growth suppression
(in vitro and in vivo)

Upregulated
expression [29]

SNAP Nitric oxide donor 2019

As combined with TMZ,
inhibition of tumor growth in

TMZ resistant GBM
(in vitro and in vivo)

Downregulated
phosphorylation [75]

CID613034 mTOR2 inhibitor
2017

Inhibition of proliferation and
invasion (in vitro)

Downregulated
phosphorylation [70]

JR-AB2-011 (CID613034 analog) Reduction in tumor
proliferation (in vivo)

CDX

A three-finger neurotoxin
purified from the venom

of the Malayan krait
(Bungarus candidus)

2012
Inhibition of cell proliferation

and promoting apoptosis
(in vitro)

Upregulated
expression [72]

MPA Inhibitor of IMPDH 2008 Antiangiogenic and
antifibrotic activity(in vitro)

Upregulated
expression [71]

Abbreviations: HDAC, histone deacetylase; SAHA, suberoylanilide hydroxamic acid; DIF-1, differentiation-
inducing factor-1; SNAP, S-nitroso-N-acetylpenicillamine; CDX, candoxin; MPA; mycophenolic acid; IMPDH,
inosine monophosphate dehydrogenase.

Three articles investigated and showed the antitumor effect of each agent in vivo study
using xenografts [29,70,75]. Interestingly, Tai et al. demonstrated that the nitric oxide donor,
S-nitroso-N-acetylpenicillamine, acted principally through posttranslational modification of
p53, phosphorylated NDRG1, and MGMT protein stability in TMZ resistant GBM cells [75].
Suppressions of tumor growth and proliferation in GBM cells and sphere formation of
GSCs were observed in vitro and in vivo after being treated with differentiation-inducing
factor-1 (DIF-1), which affects the Wnt/ß-catenin signaling pathway [29,46,76,77]. This
study also demonstrates a novel mechanism of DIF-1. The growth suppression by DIF-1
was significantly augmented by repressed NDRG1, followed by regaining of GSK3ß and
phosphorylated expression of AKT, indicating that upregulation of NDRG1 by DIF-1 has
implied the direct suppressio n of cell growth [29]. Based on these findings, NDRG1 may
contribute as a novel therapeutic targeting molecule in the treatment of GBM.

4. Conclusions

The present review summarized that NDRG1 plays a critical role in progression,
differentiation, and invasion in glioma and GBM, through its interaction with various key
molecules and signaling pathways. GBM is a heterogeneous tumor, and its cells adapt
to hypoxia and other microenvironments and alter various genetic abnormalities and
signaling pathways to survive against multimodal therapies. GSCs that are capable of
self-renewal and are resistant to conventional radiotherapy and chemotherapy, also existing
within the GBM tumor mass, form the heterogeneity of GBM. In addition, NDRG1 also
has a variety of physiological effects, and its expression is regulated by a wide range of
mechanisms. From the point of view of the heterogeneity of GBM tumors themselves and
the diversity of NDRG1 functions, it is not easy to study NDRG1 in GBM; however, some
kind of breakthroughs in NDRG1 research is expected to lead to the development of novel
therapies rapidly. In conclusion, further elucidation of the molecular mechanisms that
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underlie the anti-GBM effects of NDRG1 will facilitate the development of new therapies
that reduce resistance to radiation and chemotherapy and the stemness of GSCs.
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