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Abstract: A new series of quinoline-based benzenesulfonamides (QBS) were developed as potential
carbonic anhydrase inhibitors (CAIs). The target QBS CAIs is based on the 4-anilinoquinoline
scaffold where the primary sulphonamide functionality was grafted at C4 of the anilino moiety as
a zinc anchoring group (QBS 13a–c); thereafter, the sulphonamide group was switched to ortho-
and meta-positions to afford regioisomers 9a–d and 11a–g. Moreover, a linker elongation approach
was adopted where the amino linker was replaced by a hydrazide one to afford QBS 16. All the
described QBS have been synthesized and investigated for their CA inhibitory action against hCA I,
II, IX and XII. In general, para-sulphonamide derivatives 13a–c displayed the best inhibitory activity
against both cancer-related isoforms hCA IX (KIs = 25.8, 5.5 and 18.6 nM, respectively) and hCA XII
(KIs = 9.8, 13.2 and 8.7 nM, respectively), beside the excellent hCA IX inhibitory activity exerted by
meta-sulphonamide derivative 11c (KI = 8.4 nM). The most promising QBS were further evaluated
for their anticancer and pro-apoptotic activities on two cancer cell lines (MDA-MB-231 and MCF-7).
In addition, molecular docking simulation studies were applied to justify the acquired CA inhibitory
action of the target QBS.

Keywords: sulfonamides; 4-anilinoquinoline; carbonic anhydrase IX inhibitors; anticancer agents;
hypoxic tumors

1. Introduction

Carbonic anhydrases (CA) are metalloenzymes that catalyze the reversable inter-
conversion between carbon dioxide and bicarbonate ion reaction [1]. Human carbon
anhydrases (hCAs) belong to the α-CA family, one of the eight discovered families of
carbon anhydrases [2]. Only twelve hCAs (hCAs I–VII, hCA IX and hCAs XII–XIV) out
of the sixteen isozymes discovered exhibit catalytic action [3]. CAs are involved in both
biological and pathological processes such as homeostasis of pH, respiration, bone resorp-
tion, epilepsy, tumorigenicity and obesity [4,5]. The role of CAs in various diseases has
been confirmed and several hCAs isoforms are, therefore, valuable targets for designing
inhibitors with clinical applications, such as anti-glaucoma, antiepileptic, anti-obesity,
anticancer, etc. [6–11].
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Tumor progression induces a hypoxic environment that triggers extracellular acidosis
as a result of anaerobic glycolysis in the tumor cell and this drop in pH further stimulates the
tumor growth [12,13]. hCA IX and hCA XII isoforms are generally called “cancer-associated”
CA isoforms. The hCA IX isoform is upregulated in nearly all hypoxic tumors so that it can
maintain the intracellular pH and promote the acidic extracellular environment required
for promoting tumor growth and metastasis [13,14]. In addition, hCA IX is involved in cell
proliferation as well as cell to cell communication. Overexpression of hCA IX isoform is
strongly correlated with poor prognosis in many cancers [15]. Moreover, hCA XII is also
accompanied with many tumor types, but it is less associated to a hypoxic tumor when
compared with hCA IX [16].

Quinoline-based small molecules have been reported to exhibit diverse biological ac-
tivities including anticancer activity [17]. Bosutinib and Lenvatinib (Figure 1) are quinoline-
based kinase inhibitors approved for chronic myelogenous leukemia and thyroid cancer,
respectively [18]. Moreover, Bosutinib has been investigated in clinical trials for the treat-
ment of breast cancer [19–21]. In addition, Neratinib (Figure 1), a tyrosine kinase inhibitor, is
FDA approved for metastatic HER2-positive breast cancer [22], whereas, Pelitinib (Figure 1)
is a second generation irreversible epidermal growth factor receptor tyrosine kinase (EGFR
TK) inhibitor that is currently examined in phase II clinical trials for the treatment of
non-small cell lung cancer and colorectal cancer [23].
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investigational drug Pelitinib, as well as CAIs quinolines I and II.

To the best of our knowledge, few studies have reported on the development of
quinoline-based sulfonamides as carbonic anhydrase inhibitors. In 2019, a novel series
of 3-(quinolin-4-ylamino)benzenesulfonamides was reported as hCA I and II inhibitors.
These derivatives, with general structure I (Figure 1), displayed weak inhibitory activity
against the hCA I isoform (KI range: 0.96 µM–9.09 µM) and moderate activity toward
the hCA II isoform (KI range: 83.3 nM–3.59 µM) [24]. In the same year, another series of
quinoline-2-carboxamides (general structure II, Figure 1) was reported as a novel hCA
inhibitor [25]. Quinolines II exerted moderate inhibitory activity against hCA II and IV
isoforms, whereas they did not display any significant activity against the cancer-associated
hCA IX isoform.

Resuming the efforts to create effective hCA IX and hCA XII inhibitors, here we
describe the design and synthesis of novel 4-aminoquinoline-based sulfonamides (Figure 2).
The design of the herein reported target QBS CAIs is based on the incorporation of 6-
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substituted quinoline as a lipophilic tail. The fused lipophilic quinoline tails are anticipated
to achieve significant hydrophobic interactions within the roomier hCA IX and XII binding
sites. The substitutions on a quinoline ring including -CH3, -OCH3, -Cl and di-CF3 span
different electronic properties. Furthermore, different positional isomers “ortho, meta and
para” of aminobenzenesulfonamide moieties were incorporated to provide the target series
QBS 9a–d, 11a–g and 13a–c, Figure 2. In addition, a linker elongation approach was
adopted where the amino linker was replaced by a hydrazide one to afford QBS 16.
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Figure 2. Design of target QBS (9a–d, 11a–g, 13a–c and 16).

All the herein designed quinolines were synthesized, characterized and explored for
their CA inhibitory action against hCA I, II, IX and XII. Then, the anti-proliferation and the
apoptosis induction effects of the most efficient hCA IX inhibitors were in vitro investigated.
Molecular docking simulation studies were applied to justify the CA inhibitory action of
the target quinolines.

2. Results and Discussion
2.1. Chemistry

The preparation of QBS (9a–d, 11a–g, 13a–c and 16) is illustrated in Schemes 1–3.
Meldrum’s acid 2 was prepared from malonic acid and acetone according to the

reported procedures [26]. Then, heating 2 with triethyl orthoformate under gentile reflux
followed by the addition of substituted anilines 4a–d, afforded 5-(phenylaminomethylene)
meldrum’s acids 5a–d. The cyclization of 5a–d was achieved via microwave irradiation for
10–15 min at 250 ◦C to produce 6-substiuted 4-hydroxyquinolines 6a–d in 66–70% yield [27].
Heating Meldrum’s acid at temperatures greater than 200 ◦C leads to a pericyclic reaction
that produces the highly reactive ketene, which was subjected to nucleophilic addition by
the phenyl ring [28,29]. Thereafter, 6-substiuted 4-hydroxyquinolines 6a–d were converted
to the corresponding 4-chloroquinoline derivatives 7a–d in 70–75% yield by heating with
an excess of phosphorus oxychloride for 4 h. (Scheme 1).
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In Scheme 2, the 4-chloroquinoline derivatives 7a–d were reacted with different
aminobenzenesulfonamide derivatives (8, 10a–b and 12) in refluxing isopropanol in the
presence of a catalytic amount of HCl to furnish the corresponding target QBS derivatives
(9a–d, 11a–g and 13a–c) with a 65–78% yield.

The methyl 4-sulfamoylbenzoate 14 was subjected to hydrazinolysis to afford hy-
drazide 15, through refluxing with hydrazine hydrate in isopropyl alcohol. Thereafter, 6-
methoxy-4-chloroquinoline 7b was reacted with 4-(hydrazinecarbonyl)benzenesulfonamide
15 in refluxing isopropanol to furnish the corresponding target QBS 16 with a 69% yield
(Scheme 3).

Postulated structures for the newly synthesized QBS compounds were in full agree-
ment with their spectral analyses data (Supporting Information).

2.2. Biological Evaluation
2.2.1. Carbonic Anhydrases Inhibition

The potential CA inhibition activity of the newly synthesized QBS (9a–d, 11a–g, 13a–c
and 16) were assessed applying the stopped flow carbon dioxide hydrase assay [30] for
both the ubiquitous CA isoforms hCA I and II, and the cancer-related isoforms hCA IX and
XII. The tested CA isoforms were suppressed to varying degrees by the herein reported
QBS, and the inhibition data are displayed in Table 1.
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Table 1. Inhibition data for the target sulfonamides on human CA isoforms hCA I, II, IX and XII
using AAZ as a reference drug.
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The cytosolic hCA I isoform was inhibited by all the quinoline-based sulfonamides
reported in this study with inhibition constants (KIs) ranging from low nanomolar to low mi-
cromolar concentrations, between 55.4 nM and 1.56 µM, apart from 4-methyl-3-sulfonamide
bearing counterparts 11e–g, which exerted lower inhibitory actions (KI = 3.498, 2.256 and
4.521 µM, respectively). In particular, all the para-sulphonamide analogous 13a–c and 16
were found to be the most effective hCA I inhibitors with two-digit nanomolar inhibition
constants (KIs = 78.4, 92.1, 55.4 and 81.4 nM, respectively). Moreover, meta-sulphonamide
analogous 11a–d and ortho-sulphonamide analogous 9a–b displayed moderate submiclo-
molar hCA I inhibitory activity with KIs spanning in the range 105.3–864.4 nM.

It is worth stressing that shifting the primary sulphonamide functionality from the or-
tho-position (9a–d; KIs: 558.3–1562.0 nM) to the meta-position (11a–d; KIs: 105.3–663.1 nM),
as well as shifting from the meta- to para-position (13a–c; KIs: 55.4–92.1 nM) dramatically
enhanced the inhibitory activity towards hCA I. In addition, incorporation of the hydrazide
linker in compound 16 (KI = 81.4 nM) slightly improved hCA I inhibitory activity in com-
parison to its analogue 13b (KI = 92.1 nM). In contrast, grafting a 4-methyl group within the
meta-sulphonamide derivatives 11a–c led to compounds 11e–g with much lower inhibitory
activity (KIs: 2.256–4.521 µM, respectively).

The in vitro kinetic data demonstrated in Table 1 revealed that the physiologically
dominant off-target hCA II isoform has been inhibited by the herein prepared QBS (9a–d,
11a–g, 13a–c and 16) with KIs in the nanomolar range (from 7.3 to 998.2 nM), except
compounds 11e and 11g, which displayed inhibitory activity in the low micromolar con-
centration (KIs = 1.503 and 2.356 µM, respectively). The para-sulphonamide derivative 13c
emerged as the most efficient hCA II inhibitor, in this study, with a single-digit nanomolar
inhibition constant (KI = 7.3 nM). Additionally, compounds 9a–c, 13a, 13b and 16 exerted
potent activities with KI values equal 78.4, 49.7, 86.8, 36.5, 58.4 and 31.1 nM, respectively.

It is noteworthy that switching the sulphonamide functionality from the ortho-position
(9a–d; KIs: 49.7–112.4 nM) to the meta-position (11a–d; KIs: 154.8–365.7 nM) elicited a wors-
ening of effectiveness toward the hCA II isoform, whereas shifting to the para-position led
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to compounds 13a–c with an enhanced hCA II inhibitory activity. Moreover, incorporation
of the 4-methyl group in compounds 11e–g resulted in a decrease in the inhibitory activity
(KIs: 998.2 nM–2.356 µM) in comparison to their analogues 11a–c (KIs: 154.8 nM–365.7 nM),
whereas the linker elongation approach (compound 16) improved the inhibitory activity
from 58.4 nM (for anilino derivative 13b) to 31.1 nM, Table 1.

The examined quinoline-based sulfonamides displayed potent to moderate inhibitory
activity towards the target tumor-associated hCA IX isoform (KI values spanning between
5.5 and 116.2 nM, Table 1), except compound 11f (KI = 853.4 nM). In particular, QBS 11c
and 13b emerged as excellent single-digit nanomolar hCA IX inhibitors (KIs = 8.4 and
5.5 nM, respectively). Additionally, sulfonamides 9d, 13a, 13c and 16 exerted better or
equipotent inhibitory activity (KIs = 25.9, 25.8, 18.6 and 21.7 nM, respectively) compared to
the reference AAZ (KI = 25 nM).

Further analysis of the obtained results showed that grafting the sulfamoyl group at
the para-position (13a–c; KIs: 5.5–25.8 nM) was more beneficial for hCA IX inhibitory activity
than the ortho-substitution (9a–d; KIs: 25.9–65.6 nM) and the meta-substitution (11a–d; KIs:
8.4–86.5 nM), except for 6-chloro bearing derivative 11b. Dissimilar to the inhibitory profile
of target sulfonamides toward hCA I and II isoforms, the linker elongation approach failed
to improve the hCA IX inhibitory activity (anilino derivative 13b; KI = 5.5 nM vs. hydrazido
derivative 16; KI = 21.7 nM). It is worth noting that, appending a methyl group at C4 within
the benzenesulfonamide moiety of QBS 11a–c resulted in QBS 11e–g analogues with about
a 1.5- to 13.8-fold decreased potency, Table 1.

As shown in Table 1, the second cancer-related isoform here examined hCA XII has
been potently inhibited by all the newly prepared quinoline-based sulfonamides 9a–d,
11a–g, 13a–c and 16 (KIs range: 8.7–88.12 nM), except compound 11f, which moderately
affected the hCA XII isoform (KI = 152.2 nM). Interestingly, grafting the zinc anchoring
sulfamoyl group at the para-position achieved the best hCA XII inhibitory action in this
study (QBS 13a–c; KIs = 9.8, 13.2 and 8.7 nM, respectively). Moreover, ortho-sulphonamide
derivatives 9a and 9d, as well as the hydrazido derivative 16 possessed efficient inhibitory
activity against the hCA XII isoform (KIs = 22.8, 26.5 and 25.4 nM, respectively).

In conclusion, for both cancer-related isoforms hCA IX and hCA XII, grafting the
sulfamoyl functionality at the para-position was more advantageous for inhibitory activity
than the ortho-position, which, in turn, was more advantageous than meta-substitution.
Furthermore, C4 substitution of the benzenesulfonamide moiety by a methyl group, as
well as the incorporation of the hydrazide linker, slightly decreased the inhibitory activities
toward both isoforms.

The selectivity index (SI) presented in Table 2 obviously displayed a good selectivity
profile for target QBS toward hCA IX over hCA I with 9d, 11c, 11e and 11g having the
highest SIs (60.3, 52.7, 33.8 and 38.9, respectively). In addition, the QBS showed good
selectivity toward hCA IX over hCA II, with 11c, 11e, 11g and 13b exhibiting the best SIs
(18.4, 14.4, 20.3 and 10.6, respectively). Similarly, excellent selectivity toward hCA XII over
hCA I was demonstrated by all the QBS except 11b, 11d and 16; also, QBS showed a good
selectivity towards hCA XII over hCA II with 11e and 11g being the highest (SIs: 17.1 and
25.4, respectively).
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Table 2. Selectivity ratios for the inhibition of hCA IX and XII over hCA I and II for target compounds
9a–d, 11a–g, 13a–c and 16.

cmpd I/IX II/IX I/XII II/XII

9a 15.3 2.2 24.5 3.4
9b 22.1 1.3 20.5 1.2
9c 18.9 1.3 32.3 2.3
9d 60.3 4.3 58.9 4.2
11a 9.5 3.8 16.1 6.4
11b 3.0 4.2 3.5 5.0
11c 52.7 18.4 8.0 2.8
11d 2.0 4.2 3.1 6.5
11e 33.8 14.5 39.7 17.1
11f 2.6 1.2 14.8 6.6
11g 38.9 20.3 48.8 25.4
13a 3.0 1.4 8.0 3.7
13b 16.7 10.6 7.0 4.4
13c 3.0 0.4 6.4 0.8
16 3.8 1.4 3.2 1.2

AAZ 10.0 0.5 43.9 2.2

2.2.2. Anticancer Activity
In Vitro Anti-Proliferative Activity

The CA inhibition data presented in Table 1 revealed that not only was an efficient
single-digit nanomolar inhibition of CA IX isoform exerted by QBS 11c and 13b (KIs = 8.4
and 5.5 nM, respectively), but also, both compounds demonstrated good selectivity toward
the hCA IX isoform over the off-target isoforms hCA I (S.I. = 52.7 and 16.7, respectively) and
hCA II (S.I. = 18.4 and 10.6, respectively), Table 2. Therefore, QBS 11c and 13b were further
screened for their potential in vitro anti-proliferative action against two breast cancer cell
lines (MDA-MB-231 and MCF-7) under hypoxic conditions, exploiting a 72 h MTT assay
protocol [31] and using Doxorubicin as a positive control drug. The IC50 values for the
examined derivatives are listed in Table 3.

Table 3. Anti-proliferative action of QBS 11c and 13b against breast MDA-MB-231 and MCF-7 cancer
cell lines.

Compound
IC50 (µM) 1

MDA-MB-231 MCF-7

11c 1.03 ± 0.05 0.43 ± 0.02
13b 2.24 ± 0.1 3.69 ± 0.17

Doxorubicin 1.67 ± 0.08 3.04 ± 0.14
1 IC50 values are the mean ± S.D. of three separate experiments.

The results of the MTT assay are ascribed to both QBS 11c and 13b potent anti-
proliferative action toward the tested MDA-MB-231 and MCF-7 cell lines (IC50 range:
from 0.43 ± 0.02 to 3.69 ± 0.17). Interestingly, QBS 11c showed submicro-molar activity
against the MCF-7 cancer cell line (IC50 = 0.43 ± 0.02 µM). It is worth noting that QBS 11c
displayed slight better activity (IC50 = 1.03 ± 0.05 µM and 0.43 ± 0.02 µM) than QBS 13b
(IC50 = 2.24 ± 0.1 µM and 3.69 ± 0.17 µM) against MDA-MB-231 and MCF-7 cell lines,
respectively (Table 3).

Effect of QBS 11c and 13b on Apoptotic Markers Bax, Bcl-2, and Active Caspase-3

The levels of two members of Bcl-2 family proteins, the anti-apoptotic Bcl-2 protein,
and the counteracting pro-apoptotic Bax protein, as well as the level of active caspase-3
(a key executioner protease) in MDA-MB-231 and MCF-7 cells have been assessed after
incubation with QBS 11c and 13b for 24 h. The obtained results (Tables 4 and 5) revealed
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that the expression levels of the examined proteins (Bax, Bcl-2, and active caspase-3) have
been significantly affected upon treatment with QBS 11c and 13b.

Table 4. Effect of QBS 11c and 13b on the expression levels of Bax, Bcl-2 and active Caspase-3 in
breast cancer MDA-MB-231 cells.

Compound

MDA-MB-231

BAX
(Pg/mg of Total

Protein)

Bcl-2
(Pg/mg of Total

Protein)

Active Caspase-3
(Pg/mg of Total

Protein)

11c 420.9 ± 8.24
(7.1) 1

6.45 ± 0.17
(0.45) 1

12.69 ± 1.14
(4.93) 1

13b 373.5 ± 10.4
(6.3) 1

5.304 ± 0.13
(0.37) 1

9.32 ± 0.73
(3.62) 1

Control 59.43 ± 24.8 14.29 ± 0.10 2.57 ± 0.35
1 Numbers given between parentheses are the numbers of folds of control.

Table 5. Effect of QBS 11c and 13b on the expression levels of Bax, Bcl-2 and active Caspase-3 in
breast cancer MCF-7 cells.

Compound

MCF-7

BAX
(Pg/mg of Total

Protein)

Bcl-2
(Pg/mg of Total

Protein)

Active Caspase-3
(Pg/mg of Total

Protein)

11c 512.9 ± 11.7
(5.36) 1

7.29 ± 0.15
(0.79) 1

17.83 ± 0.62
(3.64) 1

13b 443.9 ± 10.2
(4.64) 1

5.72 ± 0.13
(0.62) 1

14.82 ± 0.43
(3.02) 1

Control 95.6 ± 11.6 9.14 ± 0.21 4.895 ± 0.66
1 Numbers given between parentheses are the numbers of folds of control.

Regarding MDA-MB-231 cells, their treatment with QBS 11c and 13b resulted in
significant elevation in the expression levels for Bax protein (by 7.1-fold and 6.3-fold,
respectively) and active caspase-3 (by 4.93-fold and 3.62-fold, respectively), whereas such
treatment led to a decrease in the expression levels for the anti-apoptotic Bcl-2 protein (by
55 and 63%, respectively) in comparison to the untreated control (Table 4).

On the other hand, treatment of MCF-7 cells with QBS 11c and 13b led to an increase
in the expression levels for Bax protein (by 5.36-fold and 4.64-fold, respectively) and active
caspase-3 (by 3.64-fold and 3.02-fold, respectively); in addition, it resulted in a suppression
of the expression levels for Bcl-2 protein (by 21 and 38%, respectively) compared to the
untreated control (Table 5).

2.3. Molecular Modeling Studies

Molecular docking and MM-GBSA-based refinements inside hCA isozymes IX and XII
(PDB 5FL4 [32] and 4WW8 [33]) were employed to explore the binding modalities of the
synthesized compounds and to correlate their structural characteristics with the inhibition
activity. The co-crystalized ligands in both hCA isoforms IX and XII showed the usual
pattern of the sulfonamide moiety where it binds to the zinc(II) ion after the displacement
of the metal-bound water molecule to form the tetrahedral adduct with the zinc atom.
Both ligands are positioned toward the hydrophobic half of the active site and the ligand
binding is achieved mostly by van der Waals and hydrophobic interactions [32,33].

The benzenesulfonamide ring fit deeply inside the shallow CA active site for both
isoforms anchoring the zinc atom in a typical manner for sulfonamide CAIs through an
NH−—Zn2+ bond. In addition, in the active site of CA IX, two hydrogen bonds occurred
between the sulfamoyl NH—O (T200) and sulfamoyl S = O—HN (T201) for 11c, while
13b sulfamoyl S = O made two hydrogen bonds with T200 (NH) and T201(OH) alongside
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the π−π stacking between H94 and the sulfonamide benzene ring in both 11c and 13b
(Figure 3). Furthermore, 11c was a correct distance from the additional three hydrogen
bonds by its linker NH with Q71 (C = O) and by its halogen that made two interactions with
W9 (NH) and T201 (OH). On the other hand, 13b had only two additional hydrogen bonds
(linker NH—C = O of Q71 and CH3O—NH of W9) in concurrence with the hydrophobic
interaction of its quinoline ring with Q71, Q92 and P202.
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Similarly, docking of QBS into CAXII revealed two hydrogen bonds (sulfamoyl NH—
O (T198) and sulfamoyl S = O—HN (T198) for both 11b and 13c (Figure 4). Moreover,
the quinoline ring in both QBS engaged in a N-π interaction with N64 and hydrophobic
interaction with T88. Additionally, the sulfonamide benzene ring in 13b was observed to
make a π−π stacking interaction with H94.
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The target QBS showed a similar interaction to the co-crystalized ligand maintaining
the sulfonamide moiety interactions; in addition, the quinoline ring was similarly posi-
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tioned toward the hydrophobic half of the active site of hCA IX and XII, similar to the
co-crystalized ligands interaction.

The narrow range of docking scores and prime MMGBSA binding energy was in
accordance with the observed in vitro inhibitory activity of 11c and 13b on each isozyme,
as shown in Table 6.

Table 6. The docking scores and binding energy from MMGBSA for QBS 11c and 13b on hCA IX and XII.

Comp.
hCA IX hCA XII

Docking Score MMGBSA dG
Bind Docking Score MMGBSA dG

Bind

11c −6.029 −34.30 −6.029 −46.69
13b −6.046 −42.14 −6.441 −49.81

3. Materials and Methods
3.1. Chemistry

General
All reaction solvents and reagents were purchased from commercial suppliers; Sigma-

Aldrich (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) and Alfa Aesar(Thermo
Fisher GmbH, Kandel, Germany) and used without further purification. Melting points
were measured with a Stuart melting point apparatus and were uncorrected. The NMR
spectra were obtained on Bruker Avance 400 (400 MHz 1H and 100 MHz 13C NMR). 1H
NMR spectra were referenced to tetramethylsilane (δ = 0.00 ppm) as an internal stan-
dard and were reported as follows: chemical shift, multiplicity (b = broad, s = singlet,
d = doublet, t = triplet, dd = doublet of doublet, m = multiplet). IR spectra were recorded
with a Bruker FT-IR spectrophotometer. Reaction courses and product mixtures were
routinely monitored using thin layer chromatography (TLC) that was carried out using
aluminum sheets pre-coated with silica gel 60 F254 purchased from Merk (Merck Group,
Darmstadt, Germany) Compounds 5–7 and 15 were prepared according to the reported
methods [27,34,35].

General Procedures for Preparation of Target QBS (9a–d, 11a–g, 13a–c and 16)

To a heated solution of the appropriate 4-chloroquinoline derivative 7a–d (0.5 mmol)
in dry isopropanol (3 mL) in a round-bottom flask, a catalytic amount of HCl, then the
appropriate benzenesulfonamide derivatives 8, 10a–b, 12 and 15 (0.5 mmol) were added.
The reaction mixture was stirred under reflux temperature for 2 h. The precipitated solid
was collected by filtration while hot, washed with cold water, cold ethanol and petroleum
ether then recrystallized from methanol to produce the target QBS derivatives 9a–d, 11a–g,
13a–c and 16.

Synthesis of 2-((6-methylquinolin-4-yl)amino)benzenesulfonamide (9a). QBS 9a was
obtained following the general procedure mentioned above using 7a (0.09 g, 0.50 mmol)
and 2-aminobenzenesulfonamide 8 (0.086 g, 0.50 mmol). A 78% yield; m.p. 264–265 ◦C;
IR (KBr, ν cm−1): 3369, 3249, 3146 (NH, NH2), and 1338, 1163 (SO2); 1H NMR (DMSO-d6)
δ ppm: 2.58 (s, 3H, CH3), 6.2 (d, 1H, Ar-H, H3 of quinoline, J = 6.4 Hz), 7.62 (d, 1H, Ar-
H, H3 of C6H4SO2NH2, J = 7.6 Hz), 7.73 (t, 1H, Ar-H, H5 of C6H4SO2NH2, J = 7.6 Hz),
7.78 (s, 2H, NH2, D2O exchangeable of -SO2NH2), 7.84 (t, 1H, Ar-H, H4 of C6H4SO2NH2,
J = 7.6, Hz), 7.89 (d, 1H, Ar-H, H7 of quinoline, J = 8.8 Hz), 8.02 (d, 1H, Ar-H, H8 of
quinoline, J = 8.8 Hz), 8.11 (d, 1H, Ar-H, H6 of C6H4SO2NH2, J = 7.6 Hz), 8.43 (d, 1H, Ar-H,
H2 of quinoline, J = 6.4 Hz), 8.98 (s, 1H, Ar-H, H5 of quinoline), 11.00 (s, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) δ ppm: 21.60, 101.02, 117.60, 120.23, 123.80, 129.58,
129.69, 131.11, 134.46, 134.69, 135.98, 136.81, 137.40, 141.44, 142.01, 156.46; Anal. Calcd. for
C16H15N3O2S: C, 61.32; H, 4.82; N, 13.41; found C, 61.44; H, 4.85; N, 13.32.

Synthesis of 2-((6-methoxyquinolin-4-yl)amino)benzenesulfonamide (9b). QBS 9b
was obtained following the general procedure mentioned above using 7b (0.1 g, 0.50 mmol)
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and 2-aminobenzenesulfonamide 8 (0.086 g, 0.50 mmol). A 65% yield; m.p. 275–277 ◦C;
IR (KBr, ν cm−1): 3457, 3218, 3124 (NH, NH2) and 1341, 1167 (SO2); 1H NMR (DMSO-d6)
δ ppm: 4.03 (s, 3H, -OCH3), 6.18 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.63 (d, 1H,
Ar-H, H3 of C6H4SO2NH2, J = 7.6 Hz), 7.66–7.75 (m, 2H, Ar-H, H7 of quinoline and H5 of
C6H4SO2NH2), 7.76 (s, 2H, NH2, D2O exchangeable of -SO2NH2), 7.85 (t, 1H, Ar-H, H4 of
C6H4SO2NH2, J = 7.0 Hz), 8.02 (d, 1H, Ar-H, H8 of quinoline J = 8.8 Hz), 8.11 (d, 1H, Ar-H,
H6 of C6H4SO2NH2, J = 7.0 Hz), 8.38 (s, 1H, Ar-H, H5 of quinoline), 8.49 (d, 1H, Ar-H, H2
of quinoline J = 6.8 Hz), 11.01 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ ppm:
57.26, 101.03, 104.21, 118.90, 122.18, 125.90, 129.57, 129.70, 131.32, 133.72, 134.49, 134.84,
140.72, 141.65, 156.10, 158.43; Anal. Calcd. for C16H15N3O3S: C, 58.35; H, 4.59; N, 12.76;
found C, 58.67; H, 4.62; N, 12.68.

Synthesis of 2-((6-chloroquinolin-4-yl)amino)benzenesulfonamide (9c). QBS 9c was
obtained following the general procedure mentioned above using 7c (0.1 g, 0.50 mmol)
and 2-aminobenzenesulfonamide 8 (0.086 g, 0.50 mmol). A 71% yield; m.p. 258–260 ◦C; IR
(KBr, ν cm−1): 3257, 3144, 3102 (NH, NH2) and 1335, 1163 (SO2); 1H NMR (DMSO-d6) δ
ppm: 6.22 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.63 (d, 1H, Ar-H, H3 of C6H4SO2NH2,
J = 7.6 Hz), 7.68–7.82 (m, 3H, Ar-H, H5 of C6H4SO2NH2, NH2, D2O exchangeable of -
SO2NH2), 7.85 (t, 1H, Ar-H, H4 of C6H4SO2NH2, J = 6.8, 7.6 Hz), 8.02–8.19 (m, 3H, Ar-H,
H2, H7 and H8 of quinoline), 8.5 (d, 1H, Ar-H, H6 of C6H4SO2NH2, J = 7.2 Hz), 9.31 (s, 1H,
Ar-H, H5 of quinoline), 11.01 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ ppm:
101.84, 118.59, 122.67, 124.38, 129.59, 129.98, 131.15, 131.99, 134.35, 134.57, 134.57, 137.29,
141.57, 143.01, 156.39; Anal. Calcd. for C15H12ClN3O2S: C, 53.98; H, 3.62; N, 12.59; found C,
54.21; H, 3.58; N, 12.51.

Synthesis of 2-((5,7-bis(trifluoromethyl)quinolin-4-yl)amino)benzenesulfonamide (9d).
QBS 9d was obtained following the general procedure mentioned above using 7d (0.15 g,
0.50 mmol) and 2-aminobenzenesulfonamide 8 (0.086 g, 0.50 mmol). A 78% yield; m.p.
240–242 ◦C; IR (KBr, ν cm−1): 3331, 3159, 3115 (NH, NH2), 1583 (C = N) and 1342, 1165
(SO2); 1H NMR (DMSO-d6) δ ppm: 6.84 (t, 1H, Ar-H, H5 of C6H4SO2NH2, J = 7.2, 7.6 Hz ),
7.01 (d, 1H, Ar-H, H3 of quinoline, J = 8.0 Hz), 7.33–7.47 (m, 7H, Ar-H, NH2, D2O ex-
changeable of -SO2NH2), 7.63 (d, 1H, Ar-H, H2 of quinoline, J = 8.0 Hz); Anal. Calcd. for
C17H11F6N3O2S: C, 46.90; H, 2.55; N, 9.65; found C, 47.05; H, 2.53; N, 9.73.

Synthesis of 3-((6-methylquinolin-4-yl)amino)benzenesulfonamide (11a). QBS 11a
was obtained following the general procedure mentioned above using 7a (0.09 g, 0.50 mmol)
and 3-aminobenzenesulfonamide 10a (0.086 g, 0.50 mmol). A 75% yield; m.p. 272–274 ◦C;
IR (KBr, ν cm−1): 3286, 3148, 3107 (NH, NH2) and 1348, 1156 (SO2); 1H NMR (DMSO-d6) δ
ppm: 2.58 (s, 3H, CH3), 6.91 (d, 1H, Ar-H, H3 of quinoline, J = 4.8 Hz), 7.61 (s, 2H, NH2, D2O
exchangeable of -SO2NH2), 7.77 (d, 2H, Ar-H, H4 and H6 of C6H4SO2NH2, J = 8.4 Hz),
7.84–7.96 (m, 3H, Ar-H, H7 of quinoline, H3 and H5 of C6H4SO2NH2), 8.08 (d, 1H, Ar-H,
H8 of quinoline, J = 8.4, Hz), 8.55 (d, 1H, Ar-H, H2 of quinoline, J = 6.8 Hz), 8.74 (s, 1H,
Ar-H, H5 of quinoline), 11.14 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ ppm:
21.69, 100.27, 117.87, 120.50, 122.51, 123.20, 124.51, 128.79, 131.18, 136.11, 137.01, 137.77,
138.42, 142.67, 146.11, 154.49; Anal. Calcd. for C16H15N3O2S: C, 61.32; H, 4.82; N, 13.41;
found C, 61.07; H, 4.86; N, 13.33.

Synthesis of 3-((6-methoxyquinolin-4-yl)amino)benzenesulfonamide (11b). QBS 11b
was obtained following the general procedure mentioned above using 7b (0.1 g, 0.50 mmol)
and 3-aminobenzenesulfonamide 10a (0.086 g, 0.50 mmol). A 69% yield; m.p. 244–246 ◦C;
IR (KBr, ν cm−1): 3349, 3152, 3111 (NH, NH2) and 1341, 1155 (SO2); 1H NMR (DMSO-d6) δ
ppm: 3.99 (s, 3H,-OCH3), 6.90 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.60 (s, 2H, NH2,
D2O exchangeable of -SO2NH2), 7.69 (d, 1H, Ar-H, H7 of quinoline, J = 9.2 Hz), 7.76–7.88
(m, 3H, Ar-H, H4, H5 and H6 of C6H4SO2NH2,), 7.94 (s, 1H, Ar-H, H3 of C6H4SO2NH2),
8.11 (d, 1H, Ar-H, H8 of quinoline, J = 9.2 Hz), 8.33 (s, 1H, Ar-H, H5 of quinoline), 8.50 (d,
1H, Ar-H, H2 of quinoline, J = 6.8 Hz), 11.18 (s, 1H, NH, D2O exchangeable); 13C NMR
(DMSO-d6) δ ppm: 57.11, 100.22, 103.48, 119.20, 122.42, 122.60, 124.43, 126.10, 128.95, 131.18,
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133.97, 138.55, 141.22, 146.11, 153.97, 158.60; Anal. Calcd. for C16H15N3O3S: C, 58.35; H,
4.59; N, 12.76; found C, 58.59; H, 4.63; N, 12.70.

Synthesis of 3-((6-chloroquinolin-4-yl)amino)benzenesulfonamide (11c). QBS 11c was
obtained following the general procedure mentioned above using 7c (0.1 g, 0.50 mmol) and
3-aminobenzenesulfonamide 10a (0.086 g, 0.50 mmol). A 70% yield; m.p. 272–274 ◦C; IR
(KBr, ν cm−1): 3291, 3159, 3100 (NH, NH2) and 1348, 1156 (SO2); 1H NMR (DMSO-d6) δ
ppm: 6.96 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.63 (s, 2H, NH2, D2O exchangeable
of -SO2NH2) 7.74–7.81 (m, 2H, Ar-H, H4 and H5 of C6H4SO2NH2), 7.87 (d, 1H, Ar-H,
H6 of C6H4SO2NH2, J = 4.4, Hz), 7.93 (s, 1H, Ar-H, H3 of C6H4SO2NH2), 8.10 (d, 1H,
Ar-H, H7 of quinoline, J = 9.2 Hz), 8.23 (d, 1H, Ar-H, H8 of quinoline, J = 9.2 Hz), 8.61 (d,
1H, Ar-H, H2 of quinoline, J = 6.8 Hz), 9.12 (s, 1H, Ar-H, H5 of quinoline), 11.37 (s, 1H,
NH, D2O exchangeable);13C NMR (DMSO-d6) δ ppm: 101.00, 118.92, 122.54, 122.91, 123.79,
124.79, 128.79, 130.82, 131.27, 134.66, 137.50, 138.08, 143.71, 146.15, 154.39; Anal. Calcd. for
C15H12ClN3O2S: C, 53.98; H, 3.62; N, 12.59; found C, 54.20; H, 3.59; N, 12.66.

Synthesis of 3-((5,7-bis(trifluoromethyl)quinolin-4-yl)amino)benzenesulfonamide (11d).
QBS 11d was obtained following the general procedure mentioned above using 7d (0.15 g,
0.50 mmol) and 3-aminobenzenesulfonamide 10a (0.086 g, 0.50 mmol). A 78% yield; m.p.
172–174 ◦C; IR (KBr, ν cm−1): 3331, 3159, 3115 (NH, NH2), 1583 (C = N) and 1342, 1165
(SO2); 1H NMR (DMSO-d6) δ ppm: 7.49 (d, 2H, Ar-H, H4 and H6 of C6H4SO2NH2, J = 7.6
Hz), 7.50 - 7.68 (m, 7H, Ar-H, NH2, D2O exchangeable of -SO2NH2), 7.71 (s, 1H, Ar-H, H6
of quinoline), 7.73 (s, 1H, NH, D2O exchangeable); Anal. Calcd. for C17H11F6N3O2S: C,
46.90; H, 2.55; N, 9.65; found C, 46.69; H, 2.60; N, 9.57.

Synthesis of 2-methyl-5-((6-methylquinolin-4-yl)amino)benzenesulfonamide (11e).
QBS 11e was obtained following the general procedure mentioned above using 7a (0.09 g,
0.50 mmol) and 5-amino-2-methylbenzenesulfonamide 10b (0.093 g, 0.50 mmol). A 66%
yield; m.p. 280–282 ◦C; IR (KBr, ν cm−1): 3324, 3205, 3144 (NH, NH2) and 1333, 1163
(SO2); 1H NMR (DMSO-d6) δ ppm: 2.57 (s, 3H, CH3 of quinoline), 2.66 (s, 3H, CH3 of
C6H4SO2NH2), 6.84 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.52–7.69 (m, 4H, Ar-H, H3
and H4 of C6H4SO2NH2, NH2, D2O exchangeable of -SO2NH2), 7.88 (d, 1H, Ar-H, H7 of
quinoline, J = 8.8, Hz), 7.94 (s, 1H, Ar-H, H6 of C6H4SO2NH2), 8.06(d, 1H, Ar-H, H8 of
quinoline, J = 8.8, Hz), 8.50 (d, 1H, Ar-H, H2 of quinoline, J = 6.8, Hz), 8.73 (s, 1H, Ar-H
H5 of quinoline), 11.07 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ ppm: 19.94,
21.67, 100.12, 117.73, 120.47, 123.18, 124.25, 128.89, 134.20, 135.20, 135.73, 136.03, 136.98,
137.66, 142.51, 143.80, 154.70; Anal. Calcd. for C17H17N3O2S: C, 62.37; H, 5.23; N, 12.83;
found C, 62.54; H, 5.26; N, 12.91.

Synthesis of 5-((6-methoxyquinolin-4-yl)amino)-2-methylbenzenesulfonamide (11f).
QBS 11f was obtained following the general procedure mentioned above using 7b (0.1 g,
0.50 mmol) and 5-amino-2-methylbenzenesulfonamide 10b (0.093 g, 0.50 mmol). A 68%
yield; m.p. 248–250 ◦C; IR (KBr, ν cm−1): 3378, 3203, 3146 (NH, NH2) and 1331, 1155
(SO2); 1H NMR (DMSO-d6) δ ppm: 2.67 (s, 3H, CH3), 4.01 (s, 3H, -OCH3), 6.84 (d, 1H,
Ar-H, H3 of quinoline, J = 6.8 Hz), 7.49–7.74 (m, 5H, Ar-H, H7 of quinoline, H3 and
H4 of C6H4SO2NH2,NH2, D2O exchangeable of -SO2NH2), 7.94 (s, 1H, Ar-H, H6 of
C6H4SO2NH2), 8.09 (d, 1H, Ar-H, H8 of quinoline, J = 9.2, Hz), 8.31 (s, 1H, Ar-H, H5
of quinoline), 8.45 (d, 1H, Ar-H, H2 of quinoline, J = 6.8, Hz), 11.10 (s, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) δ ppm: 19.94, 57.09, 100.05, 103.51, 119.05, 122.38,
124.35, 125.98, 129.08, 133.91, 134.22, 135.14, 135.83, 141.09, 143.80, 154.21, 158.55; Anal.
Calcd. for C17H17N3O3S: C, 59.46; H, 4.99; N, 12.24; found C, 59.23; H, 5.03; N, 12.32.

Synthesis of 5-((6-chloroquinolin-4-yl)amino)-2-methylbenzenesulfonamide (11g). QBS
11g was obtained following the general procedure mentioned above using 7c (0.1 g,
0.50 mmol) and 5-amino-2-methylbenzenesulfonamide 10b (0.093 g, 0.50 mmol). A 77%
yield; m.p. 282–285 ◦C; IR (KBr, ν cm−1): 3277, 3204, 3174 (NH, NH2) and 1326, 1156 (SO2);
1H NMR (DMSO-d6) δ ppm: 2.66 (s, 3H, CH3), 6.89 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz),
7.54–7.69 (m, 4H, Ar-H, H3 and H4 of C6H4SO2NH2, NH2, D2O exchangeable of -SO2NH2),
7.94 (s, 1H, Ar-H, H6 of C6H4SO2NH2), 8.08 (d, 1H, Ar-H, H7 of quinoline, J = 9.2, Hz), 8.20
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(d, 1H, Ar-H, H8 of quinoline, J = 9.2 Hz), 8.57 (d, 1H, Ar-H, H2 of quinoline, J = 6.8 Hz),
9.09 (s, 1H, Ar-H, H5 of quinoline), 11.28 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-
d6) δ ppm: 19.94, 100.87, 118.81, 122.94, 123.69, 124.25, 128.83, 132.22, 134.28, 134.59, 135.40,
135.51, 137.51, 143.61, 143.85, 154.56; Anal. Calcd. for C16H14ClN3O2S: C, 55.25; H, 4.06; N,
12.08; found C, 54.96; H, 4.08; N, 11.99.

Synthesis of 4-((6-methylquinolin-4-yl)amino)benzenesulfonamide (13a). QBS 13a
was obtained following the general procedure mentioned above using 7a (0.09 g, 0.50
mmol) and 4-aminobenzenesulfonamide 12 (0.086 g, 0.50 mmol). A 70% yield; m.p. 270–
272 ◦C; IR (KBr, ν cm−1): 3335, 3216, 3159 (NH, NH2) and 1324, 1156 (SO2); 1H NMR
(DMSO-d6) δ ppm: 2.57 (s, 3H, CH3), 7.01 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.53 (s,
2H, NH2, D2O exchangeable of -SO2NH2), 7.73 (d, 2H, Ar-H, H3 and H5 of C6H4SO2NH2,
J = 8.4 Hz), 7.89 (d, 1H, Ar-H, H7 of quinoline, J = 8.8, Hz), 7.99 (d, 2H, Ar-H, H2 and H6 of
C6H4SO2NH2, J = 8.4 Hz), 8.07 (d, 1H, Ar-H, H8 of quinoline, J = 8.8 Hz), 8.55 (d, 1H, Ar-H,
H2 of quinoline, J = 6.8 Hz), 8.78 (s, 1H, Ar-H, H5 of quinoline), 11.18 (s, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) δ ppm: 21.67, 100.80, 118.07, 120.50, 123.30, 125.33,
125.33, 127.85, 127.85, 136.14, 137.04, 137.82, 141.09, 142.42, 142.69, 154.23; Anal. Calcd. for
C16H15N3O2S: C, 61.32; H, 4.82; N, 13.81; found C, 61.49; H, 4.86; N, 13.89.

Synthesis of 4-((6-methoxyquinolin-4-yl)amino)benzenesulfonamide (13b). QBS 13b
was obtained following the general procedure mentioned above using 7b (0.1 g, 0.50 mmol)
and 4-aminobenzenesulfonamide 12 (0.086 g, 0.50 mmol). A 67% yield; m.p. 250–252 ◦C;
IR (KBr, ν cm−1): 3333, 3192, 3107 (NH, NH2) and 1338, 1162 (SO2); 1H NMR (DMSO-d6)
δ ppm: 4.03 (s, 3H, -OCH3), 7.01 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.53 (s, 2H,
NH2, D2O exchangeable of -SO2NH2), 7.69 (dd, 1H, Ar-H, H7 of quinoline, J = 9.2 Hz), 7.75
(d, 2H, Ar-H, H3 and H5 of C6H4SO2NH2, J = 8.4 Hz), 7.99 (d, 2H, Ar-H, H2 and H6 of
C6H4SO2NH2, J = 8.4, Hz), 8.10 (d, 1H, Ar-H, H8 of quinoline, J = 9.2 Hz), 8.37 (s, 1H, Ar-H,
H5 of quinoline), 8.50 (d, 1H, Ar-H, H2 of quinoline, J = 6.8, Hz), 11.24 (s, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) δ ppm: 57.18, 100.77, 103.63, 119.44, 122.41, 125.44,
125.44, 126.16, 127.82, 127.82, 134.01, 141.21, 141.23, 142.34, 153.70, 158.61; Anal. Calcd. for
C16H15N3O3S: C, 58.35; H, 4.59; N, 12.76; found C, 58.61; H, 4.55; N, 12.83.

Synthesis of 4-((6-chloroquinolin-4-yl)amino)benzenesulfonamide (13c). QBS 13c was
obtained following the general procedure mentioned above using 7c (0.1 g, 0.50 mmol) and
4-aminobenzenesulfonamide 12 (0.086 g, 0.50 mmol). A 72% yield; m.p. 284–286 ◦C; IR
(KBr, ν cm−1): 3281, 3208, 3148 (NH, NH2) and 1330, 1166 (SO2); 1H NMR (DMSO-d6) δ
ppm: 7.04 (d, 1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.54 (s, 2H, NH2, D2O exchangeable of
-SO2NH2), 7.73 (d, 2H, Ar-H, H3 and H5 of C6H4SO2NH2, J = 8.0, Hz), 8.00 (d, 2H, Ar-H, H2
and H6 of C6H4SO2NH2, J = 8.0, Hz), 8.09 (d, 1H, Ar-H, H7 of quinoline, J = 8.8 Hz), 8.21 (d,
1H, Ar-H, H8 of quinoline, J = 8.8, Hz), 8.62 (d, 1H, Ar-H, H2 of quinoline, J = 6.8 Hz), 9.16
(s, 1H, Ar-H, H5 of quinoline), 11.18 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6)
δ ppm: 101.50, 119.07, 122.91, 123.85, 125.42, 125.42, 127.89, 127.89, 132.35, 134.67, 137.53,
140.73, 142.70, 143.73, 154.11; Anal. Calcd. for C15H12ClN3O2S: C, 53.98; H, 3.62; N, 12.59;
found C, 54.17; H, 3.66; N, 12.53.

Synthesis of 4-(2-(6-Methoxyquinolin-4-yl)hydrazine-1-carbonyl)benzenesulfonamide
(16). QBS 16 was obtained following the general procedure mentioned above using 7b
(0.1 g, 0.50 mmol) and 4-(hydrazinecarbonyl)benzenesulfonamide 15 (0.108 g, 0.50 mmol).
A 69% yield; m.p. 228–230 ◦C; IR (KBr, ν cm−1): 3345, 3208, 3119, 3066 (NH, NH2), 1685
(C = O) and 1333, 1162 (SO2); 1H NMR (DMSO-d6) δ ppm: 3.99 (s, 3H, -OCH3), 7.01 (d,
1H, Ar-H, H3 of quinoline, J = 6.8 Hz), 7.56 (s, 1H, Ar-H, H5 of quinoline), 7.63 (s, 2H,
NH2, D2O exchangeable of -SO2NH2), 7.72 (dd, 1H, Ar-H, H7 of quinoline, J = 8.4, Hz),
7.94 (d, 1H, Ar-H, H3 of C6H4SO2NH2, J = 8.8, Hz), 8.01–8.11 (m, 3H, Ar-H, H2, H5 and
H6 of C6H4SO2NH2,), 8.23 (d, 1H, Ar-H, H8 of quinoline, J = 8.4 Hz), 8.55 (d, 1H, Ar-H,
H2 of quinoline, J = 6.8 Hz), 11.23 (s, 1H, NH, D2O exchangeable), 11.66 (s, 1H, NHC=O,
D2O exchangeable); 13C NMR (DMSO-d6) δ ppm: 56.87, 98.96, 102.66, 116.73, 122.60, 126.28,
126.44, 128.54, 129.05, 133.52, 135.08, 147.25, 147.83, 155.92, 158.51, 165.27, 165.59; Anal.
Calcd. for C17H16N4O4S: C, 54.83; H, 4.33; N, 15.05; found C, 55.06; H, 4.31; N, 14.96.
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3.2. Biological Evaluation

All adopted procedures for the conducted in vitro biological assays were performed
as described earlier; CA (stopped-flow [4,30,36]), cytotoxicity (MTT [37,38]), and assess-
ment of apoptotic markers [39,40] assays, as well as induction of hypoxia with cobalt
chloride [41,42], and were mentioned in the Supporting Materials.

3.3. Molecular Modelling

The utilized procedures within the docking experiments for QBS 11c and 13b in
hCA IX (pdb: 5FL4, [32]) and hCA XII (pdb: 4WW8, [33]) active sites are provided in the
Supplementary Materials.

4. Conclusions

In this work, the design, synthesis and characterization of different novel series of
quinoline-based sulfonamides (QBS; 9a–c, 11a–h, 13a–c and 16) were reported, afterwards
their CA inhibition activity were examined against hCA I, II, IX and XII. Most of the
newly reported QBS efficiently inhibited the herein investigated hCA IX and XII (tumor-
related isoforms) with KIs in the ranges 5.5–853.4 nM and 8.7–152.2 nM, respectively.
Furthermore, QBS 9a, 9b, 9d, 13a, 13c and 16 showed KIs values in the nanomolar range
from 18.6–39.2 nM and compounds 11c and 13b were shown to be the most effective hCA
IX inhibitor in this investigation (KIs = 8.4 and 5.5 nM, respectively). Similarly, 13a and
13c showed one-digit nanomolar inhibition activity against hCA XII (KIs = 9.8 and 8.7 nM,
respectively). In addition, 11c and 13b showed good selectivity towards hCA IX over
the physiological isomer hCAI (SI = 52.7 and 16.7) and hCAII (SI = 18.4 and 10.6). SAR
analysis pointed out that grafting the sulfamoyl functionality at the para-position was more
advantageous for hCA IX and hCA XII inhibitory activities than the ortho-position, which,
in turn, was more advantageous than meta-substitution. Additionally, the C4 substitution
of the benzenesulfonamide moiety by a methyl group, as well as the incorporation of the
hydrazide linker, slightly reduced the inhibitory activities toward both the hCA IX and hCA
XII isoforms. Thereafter, a utilized MTT assay revealed that QBS 11c (IC50 = 1.03 ± 0.05 µM
and 0.43 ± 0.02 µM) and QBS 13b (IC50 = 2.24 ± 0.1 µM and 3.69 ± 0.17 µM) possessed
potent activity against MDA-MB-231 and MCF-7 cell lines, respectively, under hypoxic
conditions. Moreover, the incubation of MDA-MB-231 and MCF-7 cells with QBS 11b
and 13b enhanced the expression levels for pro-apoptotic markers Bax and active Caspase-
3 proteins, while the level of anti-apoptotic Bcl-2 protein was suppressed. Finally, the
molecular docking simulations have provided insights for the binding interactions of QBS
11b and 13b within hCA IX (pdb: 5FL4) and hCA XII (pdb: 4WW8) binding sites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222011119/s1.
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