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ABSTRACT Husk has multiple functions such as protecting ears from diseases, infection, and dehydration
during development. Additionally, husks comprised of fewer, shorter, thinner, and narrower layers allow
faster moisture evaporation of kernels prior to harvest. Intensive studies have been conducted to identify
appropriate husk architecture by understanding the genetic basis of related traits, including husk length, husk
layer number, husk thickness, and husk width. However, marker-assisted selection is inefficient because the
identified quantitative trait loci and associated genetic loci could only explain a small proportion of total
phenotypic variation. Genomic selection (GS) has been used successfully onmany species includingmaize on
other traits. Thus, the potential of using GS for husk traits to directly identify superior inbred lines, without
knowing the specific underlying genetic loci, is well worth exploring. In this study, we compared four GS
models on a maize association population with 498 inbred lines belonging to four subpopulations, including
27 lines in stiff stalk, 67 lines in non-stiff stalk, 193 lines in tropical-subtropical, and 211 lines in mixture
subpopulations. Genomic Best Linear Unbiased Prediction with principal components as cofactor, performed
the best and was selected to examine the impact of interaction between sampling proportions and
subpopulations. We found that predictions on inbred lines in a subpopulation were benefited from excluding
individuals from other subpopulations for training if the training population within the subpopulation was
large enough. Husk thickness exhibited the highest prediction accuracy among all husk traits. These results
gave strategic insight to improve husk architecture.
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The husk is a leaf-like tissue covering the outside of a maize ear.
Similar to rice and coconut husks (Ali 2011; Ding et al. 2012; Johar
et al. 2012), maize husks recycle anthocyanins and provide fiber for
secondary uses such as bioethanol production(Li et al. 2008; Jalil et al.
2012; Ekhuemelo and Tor 2013). More specifically, the maize husk
performs three major physiological functions. First, the husk
performs limited photosynthesis to provide carbon with a C4-like
pathway(Pengelly et al. 2011; Wang et al. 2013). Second, the husk
protects the ear from pest damage and pathogen infection(Barry et al.
1986; Warfield and Davis 1996; Demissie et al. 2008). Particularly,
in subtropical or tropical areas, ear rot is a serious issue during
maize ear development (Renfro and Ullstrup 1976; Afolabi et al. 2007).
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Tight-husked maize is more resistant to ear rot than loose-husked
maize(Warfield and Davis 1996). Third, the husk prevents moisture
from penetrating the maize ear before harvest time(Sweeney et al.
1994). After physiological maturation of maize kernels, the husk is the
main pathway for kernel dehydration. In temperate areas, the tim-
ing of mechanical harvest requires fast dehydration of maize during
colder weather(Hicks et al. 1976). Thus, appropriate husk architec-
ture is essential to both ear development and kernel dehydration
prior to harvest.

Although much morphological and genetic research of the maize
husk has been conducted during the past decades, molecular breeding
studies of husk traits are still in their infancy. Husk development
initiates from the lateral meristem(Wang et al. 2013). The main traits
that influence the level of husk function are husk length (HL), layer
number (HN), thickness (HT) and width (HW). HN typically ranges
from 6 to 19 in hybrids and inbreds(Brewbaker and Kim 1979). HN
is highly correlated to tassel branch number(Brewbaker 2015). The
variance in husk traits is large across both natural populations and
recombinant inbred lines (RIL) (Brewbaker and Kim 1979; Zhou et al.
2016a; Cui et al. 2016, 2018). The husk traits are genetically controlled
by multiple genes. In our recent study(Cui et al. 2018), we dissected
the genetic architecture of HL, HN, and HW across three RIL
populations. We detected a total of 21 quantitative trait loci (QTL)
associated with the three husk traits. In most cases, the associations
included one or two large-effect QTL plus many small-effect QTL. In
another previous study in a maize association inbred population, we
detected 63 single nucleotide polymorphisms (SNPs) by genome-
wide association study(GWAS) that were significantly associated with
HL, HN, HT, and HW (P, 1.04·1025)(Cui et al. 2016). However,
none of these SNPs passed the classic, standard threshold of a = 0.01
after Bonferroni correction(Holm 1979). Similarly, another GWAS of
HN and husk weight did not find any associated loci under the same
threshold(Zhou et al. 2016a). Based on the evidence above, husk traits
are complex and governed by many genes, most with small effects
which are hard to detect through GWAS. Consequently, molecular
breeding using traditional marker-assisted selection (MAS) is in-
efficient for these polygenic, complex traits because MAS works best
with QTL that have large or moderate effects(Collard and Mackill
2008; Hayes et al. 2009).

Genomic selection (GS) was developed in 1990s (Bernardo 1994)
based on mixed linear model and expanded to Bayesian framework in
2000s (Meuwissen et al. 2001). Genotyping cost reduction due to
newly developed molecular technologies made GS more affordable
for breeding(Zhang et al. 2007; VanRaden 2008). GS is efficient in
improving polygenic traits controlled by small-effect genetic loci,
such as animal body size(VanRaden et al. 2009; Chesnais et al. 2016;
Mehrban et al. 2017) and plant yield(Crossa et al. 2013, 2014). GS
incorporates all marker effects across the whole genome to evaluate
genomic estimated breeding values (GEBVs). With a training set that
includes both genotypic and phenotypic data, a prediction model is
“trained” to calculate GEBVs for the validation set (also called the
testing set). GS was introduced in 1994 in format of the genomic Best
Linear Unbiased Prediction (gBLUP) and maize was used for the
demonstration. One study in a bi-parental maize population found
that estimates of stover and grain yield using GS were 14–50% higher
than withMAS(Massman et al. 2013). Another study in a multi-parental
maize population found that GS achieved genetic gains of�2% for grain
yield with two rapid cycles per year(Zhang et al. 2017a).

Prediction accuracy, defined as the correlation between the ob-
served and predicted breeding values, is commonly used to assess the
efficiency of GS(Combs and Bernardo 2013).Prediction accuracy in

plant breeding is dependent on statistical models used(Heffner et al.
2009; Ogutu et al. 2011; Spindel et al. 2015), training population
size(Heffner et al. 2011), the relationship between the training and
testing populations(Ly et al. 2013), marker density(Zhang et al.
2017b), rate of linkage disequilibrium decay(Calus and Veerkamp
2007), and trait heritability(Dong et al. 2018). Trait heritability can
be defined as broad-sense or narrow-sense. Broad-sense heritability
includes all genetic contributions, including additive, dominant,
and epistatic effects. Narrow-sense heritability includes only additive
effects, which is more important for breeding with selection based on
additive effects(Holland et al. 2010).

Population structure is also considered an essential factor influ-
encing prediction accuracy(Ly et al. 2013; Guo et al. 2014). Several
strategies have been compared to handle population structure in GS.
One cassava study evaluated prediction accuracy by comparing cross-
validation with close relatives (CV-CR) to cross-validation without
close relatives (Ly et al. 2013). In a similar comparison on a maize
association panel, three strategies were evaluated: within subpopu-
lations, across subpopulations, and combined subpopulations(Guo
et al. 2014). The closer genetic relationship among individuals of
CV-CR and individuals within subpopulations have closer genetic
relationships led to higher prediction accuracy.

Maize has a strong population structure, typically classified as Stiff
Stalk (SS), Non-Stiff Stalk (NSS), Tropical-SubTropical (TST), and
MIXED (MIXED) subpopulations. Our objectives are 1) to demon-
strate that MAS is less favorite for prediction on husk traits, 2) to
model population structure appropriately to increase prediction
accuracy, and 3) to investigate the interactions between training
population size and subpopulations. The results are expected to
provide the inside to improve husk traits through GS, especially to
make a strategic plan for selecting traits and establishing training
populations across subpopulations.

MATERIALS AND METHODS

Plant materials and husk trait observations
The maize association panel used in this study is comprised of
508 inbred lines, which were collected from tropical, subtropical,
and temperate germplasms(Yang et al. 2011; Li et al. 2012). Due to
germination issues, only 498 lines were measured in this experiment.
These inbred lines were categorized into four subpopulations based
on origins: 27 SS lines, 67 NSS lines, 193 TST lines, and remaining
211 MIXED lines. Detailed information about this panel is listed in
supplemental material (Table S4).

All the lines were planted as single row plots with three replica-
tions using a randomized complete block design in two locations in
China: Sanya (SY) city of Hainan (HN) province in southern China in
2013 and Beijing (BJ) city in northern China in 2014. All plants were
grown under open-pollination conditions. Four traits, HN, HL, HT,
and HW, were measured at the maturity stage from at least six well-
pollinated plants in each row in both locations. HN was counted from
the first (outer) layer of each husk to the last layer (inner). HL was
measured on the third layer of each husk (counting from the outside
to inside). HW was measured at the midpoint of the third layer of
each husk. HT was measured as total thickness by punching a disc
from the interior to the exterior of all husk layers. Husk phenotype
data are listed in supplemental material (Table S4). Detailed husk
measurement information is provided in the previous study (Cui et al.
2016). Mean trait values of all replications were calculated across all
environments. We used mean values instead of BLUPs for two
reasons. One is that mean values and BLUPs are similar in balanced
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data. The other is to avoid contamination of using information from
testing population. (Dong et al. 2018).

Genotypic markers
Genotypic markers for the 508 lines were downloaded from the
website of www.maizego.org/Resources, with the download link:
https://pan.baidu.com/s/1mhR1L1Y#list/path=%2F. The genetic markers
came from four genotyping platforms: the Illumina Maize SNP50 array,
RNA sequencing, reduced genome sequencing (GBS), and the Affymetrix
Axiom Maize 600K array. It took three steps to merge all SNP
markers for each platform. First, Yang et al. (2014)(Yang et al. 2014)
combined the 56,110 SNPs from the SNP array and the 556,809
SNPs from RNA sequencing(Fu et al. 2013), using identity by
descent based projection and the k-nearest neighbor algorithm.
Second, Liu et al. (2017)(Liu et al. 2017) conducted SNP allele calling
by GBS and the 600K SNP array. The missing genotypes were imputed
by Beagle v4.0(Browning and Browning 2007). Third, quality control was
applied to remove SNPs with minor allele frequencies below 5%. The
final dataset was composed of �1.25 M SNPs.

Estimates of heritability, genomic breeding values, and
genomic selection
The four husk traits were analyzed one at a time for each environment
and their mean values across environments separately in a fixed and
random effects mixed linear model. The first three principal com-
ponents (PCs) derived from all markers were fitted as fixed effects.
The additive genetic effects of individuals and the residuals were fitted
as random effects. The statistical model is as follows:

y ¼ mþ Xbþ Zu þ e (1)

where y is a vector (n�1) of observations, and n is the number of
lines; m is the overall mean; b is a vector (p�1) of fixed effects; u is a
vector (n�1) of random effects representing additive genetic effects of
individuals; X is a design matrix (n�p) for fixed effects, so p equals
3 when the first three PCs were used as cofactors; Z is a design matrix
(n�n) for random line effects, so Z is the identity matrix; and e is
the residuals. The random effects followed normal distributions:
u � N(0, Ksu

2) and e � N(0, Ise
2), where I is the identity matrix

and K is the additive relationship matrix (n�n) derived from all the
markers using Zhang algorithm in GAPIT(Lipka et al. 2012). su

2 is the
variance of individual additive genetic effects, and se

2 is the variance
of residuals. The estimation of u is the estimated genomic breeding
values. The proportion of su

2 over the total variance (su
2 + se

2) was
defined as the estimate of heritability. The analyses was conducted by
using the R software packages, GAPIT(Lipka et al. 2012; Tang et al.
2016). The phenotypes and genotypes of all individuals were used in
the analyses to estimate heritabilities and genomic breeding values.
Themodel was also used as genomic selection with the whole population
divided into training and testing populations.

Model selection
Four models were evaluated for accuracy of prediction. The evalu-
ations were conducted by randomly sampling 20% of whole pop-
ulation as testing population and the rest as training population.
The first model is a MAS. GWAS were conducted in the training
population using BLINK, a software implemented in C language
(Huang et al. 2018). The top ten most significant associated SNPs,
named as quantitative trait nucleotide (QTNs) were used to predict
the breeding values for the individuals in the testing population(Guo
et al. 2011); The second model is a fixed effect model containing the

first three PCs derived from all SNPs. The effects of the PCs were
estimated in the training population. The estimated effects were
used to predict the breeding values of individuals in the testing
population. The third model is a random effect mixed model con-
taining the additive genetic effect of the individuals with variance
structure defined by the kinship matrix derived from all SNPs. All
individuals in both training and testing populations were included in
the analyses. However, the phenotypes of the individuals from the
testing population were masked by setting them as “NA”. Breeding
values were estimated for all individuals. This model is commonly
referred as genomic Best Linear Unbiased Prediction (gBLUP). The
fourth model is a combination of the second and third in the format
of fixed and random effects mixed linear model. The analyses of
gBLUP were conducted using R package “rrBLUP v4.5”(Endelman
2011). Pearson correlation coefficient was calculated between observed
and predicted phenotypes. The random sampling was replicated
20 times.

Assessment of gBLUP accuracy
The objective of the assessment was to evaluate the impact of training
population size and relationship between training and testing
populations on prediction accuracy using gBLUP model. Cross
validations were performed under three scenarios: 1) Subpopulations
ignored, where 10–90% of individuals from the whole population
were randomly selected as the testing population, with the remaining
individuals as the training population; 2) prediction within subpop-
ulations, where 10–90% of one subpopulation were randomly selected
treated as the testing set, with the remaining individuals of this same
subpopulation as the training population; and 3) prediction across
subpopulations, where 10–90% of individuals from one subpop-
ulation were randomly selected as the testing population, with the
remaining individuals of this subpopulation and the other sub-
populations as the training population. Prediction accuracy was
calculated as the Pearson correlation coefficient between predicted
values and true values of the testing population. Sampling were
repeated 100 times for each scenario.

Data availability
All phenotypic data and results data are included within the man-
uscript in supplementary. The genotypes (�1.25M) used in this study
are all publicly available at the website of Jianbing Yan (http://
www.maizego.org/Resources.html), or through the direct download
link (https://pan.baidu.com/s/1mhR1L1Y#list/path=%2F). Supple-
mental material available at figshare: https://doi.org/10.25387/
g3.11829177.

RESULTS

Husk trait heritability and phenotypic correlation
All husk traits in the whole association populations or each sub-
population showed continuous and approximately normal distribu-
tions (Figure 1). In each subpopulation, HN and HT showed the
highest correlation and the second were HL and HW. Within sub-
population, the highest correlation (r = 0.54) appeared in SS between
HN and HT. The Estimated genomic breeding values followed the
same trend (Figure S1).

The narrow-sense heritability of husk traits was evaluated in two
different locations separately and combined. In addition to residual
effects, random effects are the individual total additive genetic effects
with variance structure defined by an additive relationship matrix.
All the husk traits showed higher heritability in Beijing than Sanya
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Figure 1 Phenotypic correlation and frequency distributions of four husk traits in different subpopulations. (A) Admixed (MIXED) subpopulation.
(B) Non-stiff stalk (NSS) subpopulation. (C) Stiff stalk (SS) subpopulation. (D) Tropical-subtropical (TST) subpopulation. (E) Whole association panel.
The husk traits are husk length (HL), husk layer number (HN), husk thickness (HT), and husk width (HW). The unit of measure is cm for HL, HT, and
HW.The plots on the diagonal line exhibit the phenotypic distribution of the mean value for each husk trait. Displayed below the diagonal line, are
the scatter plots for mean value of each two husk traits; displayed above the diagonal line are Pearson correlation coefficients. The red line and red
dot represent the lowest regression fitting curve and the correlation ellipse, respectively.
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(Figure 2). The heritability of husk traits in Beijing ranged from
0.60 (HL) to 0.99 (HT). The heritability of husk traits in Sanya ranged
from 0.39 (HN) to 0.68 (HT). The heritability of the combined
locations ranged from 0.47 (HN) to 0.78 (HT). At each location,
HT exhibited the highest heritability, ranging from 0.68 to 0.99.

Model selection
The association panel of 498 inbred lines has a strong population
structure with four subpopulations. It was reasonable to have con-
cerns if major associated SNPs or principal components would be
close to sophisticated models such as gBLUP. Four models were
compared: 1) MAS with the top ten associated SNPs; 2) PCs only;
3) Kinship only, and 4) PCs + Kinship. The results suggested MAS
was far less accurate. PCs only were not as good as models with
kinship. Kinship with PCs performed better than kinship across traits.
The exception was HL, where the two models were similar (Figure 3).
The results suggested that incorporating population structure only
was not enough for prediction.

Cross-validation by random sampling across
whole population
We randomly masked 10–90% of all lines as the testing population
(inference) and treated the remaining lines as the training pop-
ulation (reference, or validation). Prediction accuracy was com-
puted as the Pearson correlation coefficient between the predicted
and the observed phenotypes in the testing population using the
instant method(Zhou et al. 2016b).

HT and HL exhibited the highest and lowest prediction accuracy,
respectively (Figure 4 and Table S1). In order from highest to lowest, the
prediction accuracies for the four traits were HT.HN.HW.HL.
In general, prediction accuracy declined as the proportion of in-
ference increased for each husk trait. For HT, however, this decline
was minimal, only decrease 7.3% from the highest and to the lowest.
This may be because its heritability was higher in each environment
compared to the other traits.

Cross validation within subpopulations
The degree of prediction accuracy in GS is related to the relationship
between the training sets and the testing sets (Guo et al., 2014;
Ly et al., 2013). GS within subpopulations that have closely related
individuals will result in higher prediction accuracies than GS within
randomly selected lines. Thus, to further estimate and compare
prediction accuracies, we masked varying proportions (10–90%)
of lines from a particular subpopulation into the testing population

and treated the remaining lines within the same subpopulation as
the training population (Figure 5 and Table S2). For example, the
10% proportion of inference within MIXED subpopulation repre-
sents sampling 10% lines from this subpopulation as testing pop-
ulation and remaining 90% lines from this subpopulation were
treated as training population.

In the MIXED subpopulation, we found little difference in pre-
diction accuracy among the husk traits using 10–50% of the inference
population. In order from highest to lowest, the prediction accuracies
for the four traits were HL . HN . HW . HT. In the NSS
subpopulation, the order of prediction accuracies was HT . HW .
HN . HL. In SS, HT and HW exhibited the higher levels of
prediction accuracies compared to HN and HL, across all proportions
used for the inference population. In TST, the highest prediction
accuracies occurred with HT (# 0.394). For the other three traits,
prediction accuracies from highest to lowest were HW . HL . HN.

Cross validation across subpopulations
We also assessed prediction accuracy by masking varying proportions
(10–100%) of the lines from each of the four subpopulations into the
testing population and treating the remaining lines as the training
population (Figure 6 and Table S3). For example, the 10% proportion
of inference within MIXED subpopulation represents sampling

Figure 2 Heritability estimates of husk traits in two
locations and combined. HL = husk length, HN =
husk layer number, HT = husk thickness, and HW =
husk width.

Figure 3 Comparison among four models to predict four husk traits.
The comparisons were conducted in a population with 498 maize
inbred lines by randomly sampling 20% of whole population as
testing population and the rest as training population. The sampling
was conducted 20 times. The models include 1) MAS using the top
ten associated markers (QTNs) only; 2) Using PCs only; 3) Using
kinship only; and 4) Using both PCs and kinship.
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10% lines from this subpopulation as testing population and remain-
ing 90% lines from MIXED subpopulation plus all the lines from
other three subpopulations were treated as training population.

In the MIXED subpopulation, prediction accuracy varied little
among husk traits. In order from highest to lowest, the prediction
accuracies for the four husk traits were HL . HT . HW . HN. In
the NSS subpopulation, from highest to lowest, prediction accuracies
were HW.HN.HT.HL. In the SS subpopulation, HT exhibited
the highest prediction accuracy ($0.718); the other three traits
ordered as HW . HN . HL. In the TST subpopulation, HT
exhibited the highest prediction accuracy; the order of prediction
accuracies for the other traits was HW . HL . HN. For HL, the
highest prediction accuracy occurred in MIXED. For the other three
husk traits, their highest prediction accuracies occurred in SS.

DISCUSSION

Heritability plays the key role for GS
Heritability is variously dependent on the genetic architecture of a
trait. For example, in plants, flowering traits that are controlled by

several major QTL have high heritabilities and yield traits that
are controlled by multiple small-effect genetic loci have low
heritabilities(Dicenta et al. 1993; Crossa et al. 2010; Heffner
et al. 2011). In turn, trait heritability affects GS prediction
accuracy(Zhang et al. 2017b). For example, GS with traits of higher
heritability always results in a higher prediction accuracy com-
pared to traits of lower heritability(Jannink et al. 2010). In our
study, HT had the highest heritability across both planting loca-
tions and among all husk traits. On the contrary, HL had the lowest
heritability in Beijing and the second lowest in Sanya. For the
other two husk traits, GS prediction accuracy was better for
HN than HW.

Benefit of using other subpopulations depends on
training population size
Kinship among individuals is critical for GS. To have a high
prediction accuracy, individuals in the testing population must
have closely related individuals in the training population. Pop-
ulation structure can be the major factor affecting kinship. For
example, in a previous study with maize and rice diversity panels,

Figure 4 Accuracies to predict proportion of
inbreds using the rest as training population.
There are 498 maize inbred lines in total. Part
of the lines (10–90%) were randomly sampled
as the testing population and the rest as the
training population. The sampling was con-
ducted 100 times. HL = husk length, HN =
husk layer number, HT = husk thickness, and
HW = husk width.

Figure 5 Prediction accuracies for four
husk traits within subpopulations. There
are 67 inbred lines in non-stiff stalk (NSS),
27 in stiff stalk (SS), 193 in ropical-subtropical
(TST) and 211 in admixed (MIXED). Within
each subpopulation, certain proportions
(10–90%) of inbred lines were sampled as
testing population and the rest lines within
the subpopulation as the training population.
The sampling was replicated 100 times. Husk
traits: HL = husk length, HN = husk layer
number, HT = husk thickness, and HW =
husk width.
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population structure explained 33% and 7.5% of the genomic
variation, respectively(Guo et al. 2014). Individuals within sub-
populations are more related than individuals among the sub-
populations. For such reason, closely related individuals within
the same subpopulation structure were split across training and
testing populations(Ly et al. 2013; Spindel et al. 2015).

Our association panel was clustered into four subpopulations,
MIXED, NSS, SS, and TST based on origins. Population study
using 1,536 SNPs suggested that TST had the largest distance
with the rest, especially SS, on the first principal component
which explained 18.2% of total genetic variation. The second
principal component (6.9% variance explained) separates SS
from NSS with MIXED in the middle among other three with
majority between TST and NSS (Yang et al. 2011). We conducted
two sampling schemes in cross validation to evaluate the re-
lationship between GS prediction accuracy and the relatedness
between training and testing populations. One sampling scheme
was to evaluate how one subpopulation was influenced by other
subpopulations (Guo et al. 2014). The other was to evaluate how a
subpopulation performed without using other subpopulations
(Ly et al. 2013; Guo et al. 2014). In both schemes, the SS sub-
population showed the highest prediction accuracies across all husk
traits, except HL.

For a subpopulation, prediction accuracies were higher when
training populations were large and sampled with the same sub-
population than introducing extra lines from other subpopulations.
For examples, HT in SS had prediction accuracy of 0.634 with 90%
of lines as training population. The prediction accuracy dropped
to 0.542 when all lines from other subpopulations joined to the
training population; HT in NSS had prediction accuracy of
0.394 with 90% of lines as training population. The prediction
accuracy dropped to 0.321 when all lines from other subpopulations
joined to the training population.

However, when the numbers of lines in the training population
were small, introducing lines from other subpopulations was bene-
ficial. For examples, HT in SS had prediction accuracy of 0.358 with
20% of lines as training population. The prediction accuracy in-
creased to 0.724 when all lines from other subpopulations joined to
the training population; HT in NSS had prediction accuracy of
0.088 with 20% of lines as training population. The prediction

accuracy increased to 0.202 when all lines from other subpopulations
joined to the training population.

Implication to breeding on husk traits
Determining the most suitable husk traits for breeding improvements
in maize depends primarily on planting location, especially climatic
conditions. For example, in temperate areas such as north China,
appropriate husk traits would include a shorter length, a lower
number of layers, a thinner cross-section (thickness), and a narrower
width, all features conducive to fast kernel dehydration during me-
chanical harvest. According to GEBVs of husk traits (supplemental
material Table S4 and S5) and the relationships between husk traits and
PCs (Figure S2), TST lines are unfavorite due to high values on HT and
HN for temperate areas. SS, NSS, and MIXED lines are in favorite.

In contrast, in tropical and subtropical areas, such as southern
China, appropriate husk traits would include greater length, number
of layers, thickness, and width. Together, these characteristics are
suitable for protection against pest damage and pathogen infection,
which are more prevalent and intense in tropical and subtropical
areas(Renfro and Ullstrup 1976; Afolabi et al. 2007). Most lines in the
TST subpopulation should be appropriate choices for breeding
improvements in tropical and subtropical areas.

Trait wise, the most predictable husk trait in our GS study was HT.
Consistent with its high heritability in all locations, HT exhibited the
highest prediction accuracies within and among most subpopula-
tions. Thus, to improve husk traits by GS in maize breeding selection
programs, we recommend beginning with HT.

CONCLUSIONS
The four husk traits had moderate to high heritabilities with HT at
the top. The higher heritability, the higher accuracy of genomic
prediction. Among four GS models, gBLUP with PCs has the highest
prediction accuracies, followed by gBLUP without PCs, PCs only.
With the best model of gBLUP with PCs, including individuals
of external subpopulations, would help to predict individuals in a
subpopulation when the training individual within the subpopulation
was not large. Otherwise, the inclusion of the individuals of external
subpopulation decreased prediction accuracy. HT was recommended
as the first husk trait for breeding using GS.

Figure 6 Prediction accuracies for husk traits
across subpopulations. There are 67 inbred
lines in non-stiff stalk (NSS), 27 in stiff stalk (SS),
193 in tropical-subtropical (TST) and 211 in
admixed (MIXED). For each subpopulation,
certain proportions (10–90%) of inbred lines
were sampled as testing population and the
rest, including the lines from other subpop-
ulations, as the training population. The
sampling was replicated 100 times. Husk
traits: HL = husk length, HN = husk layer
number, HT = husk thickness, and HW =
husk width.
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