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Abstract: We report the experimental results on a new infrared fiber-optic pyrometer for very
localized and high-speed temperature measurements ranging from 170 to 530 ◦C using low-noise
photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole
temperature range. We also report a shutter based on an optical fiber switch which is optically
powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 ◦C.
The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical
switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

Keywords: contactless temperature sensor; fiber-optic; pyrometer; optical switch; power over fiber;
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1. Introduction

Temperature measurement in today’s industrial environment requires sensors that are able to
measure a large range of temperatures at relatively high speeds in localized areas, especially in
machining processes [1,2] or rotor engines [3]. In the first case, a non-rotary high-speed cutting tool
removes material from a rotary mandrel, and this rotary movement applied to the mandrel is provided
by a high-power electrical motor. Additionally, the electromagnetic interferences emitted by the
electrical motor limit the use of electrical-based sensors, especially thermocouples, because of the high
sensitivity of the readings to the electromagnetic fields [4]. On the other hand, the use of infrared
cameras for high-speed measurements in this framework is also limited by their low sampling rate
operation as well as positioning issues, which make them unsuitable for very localized measurements
in difficult-to-access areas [5,6]. In contrast to these sensors, radiation pyrometers overcome the flaws
of electrical sensors using a non-contact technique based on the well-known spectral emission pattern
from a black body given by the Wien–Planck relation [7], becoming a good choice for measuring
temperature in these difficult-to-access rotating areas. However, a critical issue in radiation pyrometers
results from their trade-off performance between providing a suitable spatial resolution and collecting
enough radiated light amount to measure a specific temperature range. This disadvantage can be
solved by employing a fiber-optic pyrometer capable of viewing the machining surface directly with
a fiber-optic probe, thus providing localized temperature measurements but with different spot sizes.
Spot diameters greater than 1 mm [2,3,8], from 0.8 to 0.25 mm [9,10], or as small as 0.16 mm [11] at the
region of interest, have been reported. Nevertheless, within this approach, it is sometimes necessary to
employ discrete optical components, such as condenser lenses [3], which may be difficult to place due
to space restrictions or, if they are placed far away from the measurement point, require a line of sight
that is not always available.
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However, a still important problem of fiber-optic pyrometers yet to solve is the difficulty of
measuring low temperature values with both high accuracy and a moderate speed. This disadvantage
limits their use when temperature measurement of polymer composites [12] or low-emissivity metals is
required [13]. These materials are machined using lower speeds which generate lower radiation, thus
reducing the temperature of the process. In this case, it is important to enhance the signal-to-noise ratio
(SNR). Different pyrometers have been proposed in the low temperature range such as those based on
pyroelectric detectors in the mid-infrared range to collect the higher energies radiated following the
Wien’s displacement law but with limited accuracy and measurement speed. To overcome this issue,
some solutions have been developed operating in the wavelength range from 1 to 4 µm and using
infrared fibers with large core diameters [3,8,9,14] and cooling photodetectors.

Other methods for measuring low radiated energy is to compensate for undesirable offsets in
the receiving signal by applying a modulation scheme to the gathered light. This modulation can be
performed using a shutter or a chopper to periodically interrupt the continuous light. This scheme is
implemented for the measurement of the temperature distribution from 50 to 150 ◦C of large engines
for power generation [3]. In other cases, the chopper provides the synchronous signal required in
a lock-in amplifier, as in infrared multispectral optical fiber pyrometers wherein the influence of the
reflected light by the hot body is taken into account thus providing a measuring range from 45 to
75 ◦C [9]. Nevertheless, temperatures in the whole range from 50 to 150 ◦C cannot be measured
without the use of large diameter fibers, collimation lenses, different transimpedance amplifier gains,
and active cooling systems. These two approaches offer good accuracy at low temperature values
but at the expense of adding more complexity to the system, thus increasing its cost. There are
other pyrometer applications where some sort of optical modulation is used. Particularly, a rotating
shutter and specific data acquisition circuitry is proposed for measuring a broadband temperature
range from 900 to 1200 ◦C [15]. The authors in [16] proposed using a modulator as a chopper,
next to the hot object, to reduce the effect of measurement drifts due to background radiation on
low temperature measurements (<200 ◦C), but they need an additional fiber, a mechanical chopper,
and a CW Nd:YAG laser beam of 1 W to excite the modulator. However, the above solutions suffer from
the serious drawback of the strong electromagnetic interference environment, which may interfere
with the motor-driving of the mechanical chopper employed, thus affecting the uncertainty and
synchronization of the readings, especially if a high accurate and at a moderate speed measurement is
targeted. In contrast, a power over fiber (PoF) technique provides galvanic insulation between two
ends of the fiber and a lack of electromagnetic interference among others. This is useful in current
monitoring in high voltage transmission lines [17], in sensor networks in hazardous environments [18],
or in providing an isolated power supply to a gate-drive [19], thus eliminating the control signal
distortion in switching transients. For all these reasons, we consider PoF a good candidate for
powering active parts of any fiber-optic pyrometer designs.

In this paper, we propose an improved design of a fiber-optic two-color pyrometer using InGaAs
photodetectors with low-noise and single high-gain amplifiers to measure temperatures ranging from
170 to 530 ◦C in very localized areas and at a high speed. In another setup, for the first time to
our knowledge, a light chopper based on an optically powered fiber-optic switch is used to provide
a reference signal to reduce the effect of measurements drifts caused by the background radiation.
The PoF technique becomes of prime importance to place the switch close to the hot object, thus
minimizing the influence of additional energy radiation components and allowing for the use of
a single chopper for both channels in the two-color pyrometer. The proposed topology also reduces
the number of components within the system, thus avoiding synchronization issues especially if
a multi-channel solution is considered. The use of a fiber-optic switch instead of a mechanical chopper
also reduces the insertion losses and can enhance the SNR, critical in this noisy electromagnetic
environment. The characteristics of the new elements at the selected spectral bands of operation are
analyzed and the remote optically powering of the switch is discussed. Finally, calibration curves of
both pyrometer prototypes with and without the fiber-optic switch are provided.



Sensors 2018, 18, 483 3 of 10

2. Principle of Operation and Pyrometer Design

The spectral radiance of a blackbody is given by the well-known Planck’s law. If a real body with
an emissivity ε is considered, the spectral radiance (L) can be expressed as [1]

L(λ, T) =
C1 · ε(λ, T)

λ5 ·
(

e
C2
λ·T

) (1)

where λ is the wavelength, and C1 and C2 are the Planck’s radiation constants, whose values are
1.191 × 108 W·Sr−1·µm4·m−2 and 1.439 × 104 µm·K, respectively. T corresponds to the absolute
temperature of the body.

In some cases, in order to overcome the influence of emissivity variations, two color fiber-optic
pyrometers measuring the emitted radiation at two specific wavelength bands were used [1,2,8].

2.1. Pyrometer Design

The new pyrometer design is illustrated in Figure 1. It includes the fiber-optic switch, the optical
fiber, and both photodetectors with their corresponding transimpedance amplifiers, thus performing
the signal conditioning. The active element close to the measuring unit corresponds to the fiber-optic
switch. It is optically powered by the PoF system and driven by an electrical square signal to perform
an on/off control. Whether the optical switch will be part of the signal conditioning system depends
on the pyrometer analysis to be performed. As in [1], the new pyrometer employs a 62.5/125 µm
core/cladding diameter silica multimode optical fiber, thus allowing very localized temperature
measurements without the need for condenser lens. The spot diameter provided by our solution at
the region of interest results in 0.16 mm that matches with the fiber numerical aperture of 0.275 and a
distance between the fiber end and the hot object of 0.3 mm. The signal processing system (Figure 1) is
designed to be able to modulate the optical signal (on/off control) and to spatially demultiplex the
radiation emitted by the hot object into two spectral bands centered at 1.31 and 1.55 µm, respectively.
Two InGaAs photodetectors with high-gain transimpedance amplifiers are used to convert the receiving
light from radiation to an output voltage. The optical switch is placed close to the hot object and before
the optical filter for switching both spectral bands simultaneously.

Figure 1. Schematic of the pyrometer with an optically powered fiber-optic switch. PD: photodetector;
PoF: power over fiber; PV: photovoltaic; HPLD: high power laser diode. DAQ: data acquisition card.



Sensors 2018, 18, 483 4 of 10

2.2. Calibration Setup

An automated calibration setup is developed, as shown in Figure 2. This setup includes a data
acquisition card (DAQ) with synchronous analog-to-digital converters (ADCs) for digitalizing the
output voltage from the transimpedance amplifiers. The data acquisition card is configured to measure
both voltages at two different voltage ranges (±1 and ±2 V). This feature is implemented to optimize
the dynamic and voltage range of the ADCs with respect to the output voltage of the pyrometer.
In addition, the optical switch control signal (TTL) is also acquired for synchronizing the voltage
measurements with the fiber-optic switch.

Figure 2. Schematic of the setup for the pyrometer calibration. Dashed lines are parts only included if
the optical switch is considered. ADC: analog-to-digital converter.

The two-color pyrometer calibration is performed with a dry block calibrator and a black body kit
as in [1,11]. The calibration setup operates within a temperature range from 50 to 650 ◦C with ±0.17 ◦C
of temperature uncertainty (upper bound). Calibration results of the radiant flux emitted by the black
body at 1.31 and 1.55 µm spectral bands, respectively, are measured placing the fiber sensor 0.3 mm
from the reference blackbody by means of a calibrated metallic holder. The temperature span of the
black body surface changes from 150 to 550 ◦C in 20 ◦C steps. Temperature acquisition is performed at
a sampling rate of 1 kHz and taking 500 samples per temperature. A 45 min time interval between
each temperature value acquisition in the calibration procedure is considered thus maximizing the
stability of the measurements. Data processing computes on each step the average of the measured
output voltage at both spectral bands from the mean of the samples acquired.

Temperature measurements obtained from this calibration procedure are shown in the following
section. The uncertainty of measured voltage according to [20] is the experimental standard deviation
of the mean (s(

_
V)), defined as

s(
_
V) =

√
s2(Vk)

n
(2)

with

s2(Vk) =
1

n− 1
·

n

∑
j=1

(
Vj −

_
V
)2

(3)
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where Vj is the value of the output voltage in each observation,
_
V is the average of all measurements,

n is the number of independent repetitions or samples, s(
_
V) is the experimental standard deviation of

the mean, and s2(Vk) is the experimental variance of the observations.
On previous pyrometer designs, the pyrometer calibration curve was also validated using a K-type

thermocouple [21].

3. Experimental Results

In this section, the characterization of some elements of the signal conditioning system and
the measurements of the pyrometer calibration curves are provided, either with or without the
fiber-optic switch.

3.1. Two Color Fiber-Optic Pyrometer

Measurements average of the radiant flux emitted by the black body at both spectral bands of
interest are shown in Figure 3. In those measurements, the temperature of the blackbody surface
changes from 150 to 550 ◦C at 20 ◦C steps as described in the calibration setup section.

As expected the output voltage, which is proportional to the optical power gathered by the optical
fiber, increases with temperature. In addition, the longer the wavelength band is, the greater the
optical power measured. A single amplifier gain is used in the whole temperature range. The voltage
measurements up to 530 ◦C are within the ±2 V upper limit operation range configured for the data
acquisition card. This is why the experimental data at 550 ◦C does not fit to the calibration curve.
The radiated energy by the hot object provides a voltage at the receiver greater than 2 V and the output
of the DAQ is saturated.

The experimental standard deviation of the mean, obtained from Equation (2), is almost constant
(0.032 mV at 1.31 µm and 0.029 mV at 1.55 µm) being dominated by the dark and thermal noise of the
receiver. To obtain the temperature error, the equivalence in temperature of the standard deviation
of the mean of voltage measurements needs to be established. To do this, the following procedure
was followed. First, the data were fitted to a five-order polynomial curve to obtain the relationship
between voltage,

_
V, and temperature. Next, the standard deviation of the voltage mean value, s(

_
V) ,

was included in order to consider the case where the maximum error in the measurement occurs, as
V′ =

_
V + s(

_
V). Then, by solving the polynomial fitting, the temperature value corresponding to this

voltage was calculated. Finally, the temperature error is given by

ET [%] =
TR − T

T
·100 (4)

where TR is the temperature corresponding to V′, and T is the temperature calibration.
After this analysis, it was verified that temperature uncertainties below 5% are obtained at both

wavelength bands at temperatures greater than 190 ◦C. Particularly, if the 1.55 µm channel data is
considered, temperature uncertainties are below 4%, even less than 1% for temperatures starting
at 190 ◦C.

In addition, the calibration curve using only 150 samples instead of 500 samples is analyzed. Since
the number of samples is smaller, the standard deviation of the mean increases slightly. However,
this hardly influences the temperature uncertainty and in the voltage average. These values are
almost identical to those obtained in the previous analysis. From this, it is concluded that reliable
measurements could be obtained in this smaller time interval.
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Figure 3. Experimental (#) and fitting (-) pyrometer calibration curves at (blue line) 1.31 µm and
(red line) 1.55 µm, respectively. No fiber-optic switch is included within the setup.

3.2. Two-Color Fiber-Optic Pyrometer with Fiber-Optic Switch

3.2.1. Optical Switch: Characterization and Remote Power Over Fiber Tests

The pyrometer temperature error is not only dependent on the selected wavelength bands [2]
but also on the spectral characteristics of the devices employed [1,11]. Consequently, it is important to
characterize any new element being part of the pyrometer setup at both wavelength ranges. The 1 × 1
quad fiber-optic switch has 4 input ports and 4 output ports, which are simultaneously connected or
disconnected by means of a 5 V electronic control signal. All switch ports are characterized although
only Input Port 1 and Output Port 1 are used in the experiments. The following experimental data
provided refers to these switch ports. Insertion losses less than 0.25 dB and crosstalk greater than 46 dB
were measured at both spectral bands. The switching time, defined as the time elapsed to change the
port state from off to 90% of the final value, was 1.55 ms with a standard deviation of 0.11 ms. The duty
cycle of the output optical signal was around 60% when a 50% of duty cycle square pulse was used
to control the switch, because the switch starts to change the state at a control signal slightly lower
than specified.

As previously stated, in case of operating the pyrometer in electromagnetic noisy environments
such as rotor engines or machining equipment, Power over Fiber (PoF) can be a good technique for
remotely powering the optical switch used as a chopper placed close to the hot object within the
pyrometer sensing scheme. The optical switch is in front of the optical filter for switching both spectral
bands simultaneously before they are spatially demultiplexed and detected by the corresponding
photodetectors. The maximum power consumption of the fiber-optic is 300 mW (5 V × 60 mA).
The PoF system deployed uses a transmitter made of 2 high power laser diodes (HPLDs) at 808 nm
providing a total optical power of 3 W, two multimode optical fibers with a 200/500 µm core/cladding
diameter, and a receiver that includes two GaAs optical photovoltaic (PV) cells, with on/off control
capability via software. The maximum test distance explored for remote optically powering is 100 m,
but shorter distance can be used with less power consumption. The optical fiber used in the pyrometer
fiber-optic probe has low losses of around 0.3 dB/km, so a small resolution penalty should be expected
if measurement must take place far away from the reception circuit. More specifications about the
PoF system design are addressed in [18,22,23]. A picture of the PoF system that drives the fiber-optic
switch is shown in Figure 4.
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Figure 4. Picture of the 100-m-long Power over Fiber system at the laboratory. Inset: remote optically
powered switch.

3.2.2. Calibration Curves of the Pyrometer with the Fiber-Optic Switch

Measurements of radiant flux emitted by the blackbody using the pyrometer with the fiber-optic
switch were carried out. The latter was excited by a square signal with a 50% duty cycle and a 10 Hz
period. The temperature range, temperature steps, a sampling rate, and the number of samples were
similar to that described in the calibration setup section. The uncertainty obtained at both wavelength
ranges depended on the way the data was processed. Two data processing techniques were considered,
and the samples of the two acquired periods were taken into account. In the first analysis, the output
voltage amplitude average was calculated with the data corresponding to the on state of the switch
(that is when the optical switch allows the radiant flow emitted by the black body to pass). The first
15 samples were excluded to avoid the influence of the delay time of the switch. The second technique
was based on subtracting the voltage average of the on and off state of the switch (without taking into
account the first 15 samples of each state). In this last method, since the final measure was obtained
indirectly, the uncertainty was the combined standard uncertainty.

The temperature errors were calculated following the same procedure described in the previous
section after fitting the data to a polynomial curve of order five, whose approximation error was less
than 1%. Slightly higher uncertainties are obtained when the data of the two states are subtracted,
so this method is currently rejected. In Figure 5, the results for the data of the on state of the reference
signal are shown. For example, the uncertainty can reach values below 5% whether only the 1.55 µm
channel data is considered from 250 ◦C and below 1% from 310 ◦C.

Figure 5. Experimental (#) and fitting (-) pyrometer calibration curves with the fiber-optic switch:
(blue line) 1.31 µm and (red line) 1.55 µm.
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Whether it is possible to obtain good results using fewer samples was evaluated in the first case.
In this case, only data of one period of the on state, after the first 15 samples were removed, were used.
Therefore, the number of samples used was 85.

The standard deviations of the mean obtained in this experiment were higher than those obtained
with two periods. Even so, the difference in the temperature error was less than 1% and the voltage
average was almost identical. It was concluded that, by acquiring the signal within a shorter period of
time, reliable results could be obtained.

4. Discussion

The two-color fiber optic pyrometer using InGaAs photodetectors with low-noise and high-gain
transimpedance amplifiers could measure temperature in very localized areas at a high speed and
at a wider temperature range in comparison with our previous designs [1], particularly from 170
to 530 ◦C, with just a single gain factor. The electronic and optoelectronic devices used exhibited
an excellent performance at frequencies up to 2 kHz. This value guarantees enough bandwidth to
measure all possible temperature changes that happens during a machining process. To validate these
measuring conditions, the previous sensing scheme was tested in a real application, which yielded
excellent results in terms of response and accuracy [11].

Integrating a fiber-optic switch provided a reference signal but at the expense of having low
level voltage signals at the pyrometer output. The difference in the output voltage amplitude with
and without the switch increased at greater temperature values. For a 300 ◦C temperature value,
the measured pyrometer sensitivity changed from around mV/◦C to tenths of µV/◦C. The main reason,
apart from the additional fiber-optic switch insertion loss, arises from its 100 nm reduced bandwidth
of at both spectral bands (1.26–1.36 µm and 1.51–1.62 µm, respectively). This affects the minimum
temperature that can be measured with this pyrometer approach without using a lock-in amplifier,
but prevents saturation at greater temperature values. The use of a broadband fiber-optic switch
instead of a dual band counterpart will provide greater output voltages for the same temperature
ranges. If measurements at a higher speed are required, other faster optical switch technologies can
be used.

The proposed technique with the fiber-optic switch is an alternative in any of the different
state-of-the-art pyrometer solutions previously described that take advantage of mechanical shutters,
choppers, or lock-in amplifiers to provide background noise reduction, as part of a multispectral
pyrometer or with the aim of avoiding excessive photodetector heating. Additional analysis of the
fiber-optic switch performance in terms of jitter, operation frequency, and data processing is part of
future work to perform these applications with lock-in amplifiers to recover the signal.

The potential of optically powering the switch with a moderate power consumption at a large
distance is also an attractive feature when measurements are carried out in electromagnetic noisy
environments, such as engines, where electromagnetic interferences should be avoided to prevent
interfere with the motor-driving of the mechanical chopper, thus affecting the uncertainty and
synchronization of the readings.

The optical fiber coating was removed in the last section of the fiber-optic pyrometer probe, which
was made of silica, which has a melting point close to 1400 ◦C. This temperature is two times higher
than the maximum temperature reached in the calibration setup (650 ◦C). Therefore, the gathered
properties and physical integrity of the glass fiber were not affected by the calibration temperatures as
well as the cutting temperatures of the superalloys (up to 675 ◦C), at which the pyrometer was tested.

Further analysis of pyrometer calibration under cooling and heating cycles should be performed in
the future. Linearization of the ratio between both channels can be performed in a limited temperature
range of around 100 ◦C.
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5. Conclusions

An infrared two-color pyrometer able to measure temperature from 170 to 530 ◦C in very localized
areas at a high speed with the same gain factor in the whole temperature range is reported. A light
chopper based on a fiber-optic switch was tested to provide a 10 Hz reference signal within an optical
fiber pyrometer that was able to measure at a moderate speed within a temperature range from 200 to
550 ◦C with proper data processing. A remote 300 mW power-hungry switch was optically powered at
100 m via a Power over Fiber system operating at 808 nm that employed a multimode fiber and GaAs
photovoltaic cells. This Power over Fiber provided galvanic isolation and avoided any electromagnetic
interference in the target applications ruled by electromagnetic noisy environments. It also allowed for
placement of the optical switch in front of the hot object in case a reduction of the background noise
is required.
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