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A B S T R A C T

Background and purpose: Lung cancer is a leading cause of cancer-related mortality, and stereotactic body
radiotherapy (SBRT) has become a standard treatment for early-stage lung cancer. However, the heterogeneous
response to radiation at the tumor level poses challenges. Currently, standardized dosage regimens lack adap-
tation based on individual patient or tumor characteristics. Thus, we explore the potential of delta radiomics
from on-treatment magnetic resonance (MR) imaging to track radiation dose response, inform personalized
radiotherapy dosing, and predict outcomes.
Materials and methods: A retrospective study of 47 MR-guided lung SBRT treatments for 39 patients was con-
ducted. Radiomic features were extracted using Pyradiomics, and stability was evaluated temporally and
spatially. Delta radiomics were correlated with radiation dose delivery and assessed for associations with tumor
control and survival with Cox regressions.
Results: Among 107 features, 49 demonstrated temporal stability, and 57 showed spatial stability. Fifteen stable
and non-collinear features were analyzed. Median Skewness and surface to volume ratio decreased with radiation
dose fraction delivery, while coarseness and 90th percentile values increased. Skewness had the largest relative
median absolute changes (22 %–45 %) per fraction from baseline and was associated with locoregional failure (p
= 0.012) by analysis of covariance. Skewness, Elongation, and Flatness were significantly associated with local
recurrence-free survival, while tumor diameter and volume were not.
Conclusions: Our study establishes the feasibility and stability of delta radiomics analysis for MR-guided lung
SBRT. Findings suggest that MR delta radiomics can capture short-term radiographic manifestations of the intra-
tumoral radiation effect.

1. Introduction

Lung cancer is the leading cause of cancer-related mortality with a 3-
year relative survival rate of 33 % in the United States from 2016 to
2018 [1]. Stereotactic body radiotherapy (SBRT) has emerged as a
standard treatment modality for early-stage lung cancer in the inoper-
able setting with high rates of initial local control despite increasing
recurrence risk over time [2]. Previous studies demonstrate that

pathologic complete response post-SBRT is heterogeneous and lower
than anticipated [3], suggesting there may be differential radiation dose
responses at the tumor level, even at ablative dose ranges.

Current protocols standardize dosages without accounting for pa-
tient or tumor specifics, aiming for a biologically equivalent dose (BED)
>= 100 Gy(alpha/beta: 10), with tailored tradeoffs in situations where
tumors closely abut critical normal structures [4]. There is currently no
direct way to assess radiation dose response during SBRT in vivo, and
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resultingly little basis for tailoring dose. Improving the ability to track
and predict individual, patient-level responses to SBRT would be valu-
able to inform personalized radiotherapy (RT) dosing regimens, risk-
stratification, and selection of patients for adjuvant or neoadjuvant
therapy intensification.

RT inflicts damage through DNA double-stranded breaks leading to
cell death mechanisms such as apoptosis and necroptosis or tumor ne-
crosis [5]. These cellular changes can manifest hours to days post-RT
[5], and it may be possible to indirectly assess these changes via
radiographic changes, providing insights into RT dose response [6,7].
Radiomics analyses, which extract quantitative features from imaging
data have shown promise for predicting RT response and decision sup-
port [8], with the predominant literature assessing baseline radiomic
features from pre- and post-treatment imaging to make predictions [9].
Delta radiomics model variations in quantitative tumor imaging features
intra-treatment and can enhance the understanding of radiation dose
response and recurrence risk by using sequential images as internal
controls for radiographic changes [10]. However, until recently, intra-
fractional radiomic analyses were hindered by the low quality of im-
aging systems like traditional cone beam computer tomography (CT),
which suffer from poor soft tissue contrast and signal-to-noise ratios
[11].

Recently, magnetic resonance (MR)-guided RT has gained traction
for various malignancies, representing an advance for image-guided RT
with standardized, real-time fractional MR images with superior soft
tissue contrast and tumor visualization and localization than current CT-
guided RT. Furthermore, MR-guidance with breath-hold has also been
shown to improve image quality [12]. MR-guided RT for lung SBRT,
given its standardized dosing regimens and on-treatment imaging pro-
tocols, enables systematic investigation of intra-fractional radiographic
changes that could potentially lead to reproducible, longitudinal imag-
ing biomarkers of radiation dose response.

Previous research on pancreatic cancer investigated MR delta
radiomics and discovered that change in histogram skewness, which
represents the asymmetry of voxel intensities about mean intensity,

correlated with progression free survival (PFS) [13]. To our knowledge,
no published studies have yet explored MR delta radiomics in lung
cancer, nor have intra-fractional changes been investigated for dose
response with granular endpoints. We sought to address this knowledge
gap by investigating a database of patients receiving MR-guided lung
SBRT. The aim of this study was to determine the feasibility and stability
of MR radiomic feature extraction for lung SBRT. Furthermore, we
aimed to investigate how MR delta radiomics is associated with
increasing radiation dose delivery and to assess the association between
on-treatment changes and tumor control as well as patient survival.

2. Materials and methods

2.1. Dataset and patient population

We conducted a retrospective study of patients treated with MR-
guided lung SBRT at our institution since the inception of our MR-
guided RT program in 2019 with database abstraction in October
2022 (Fig. 1). All patients were treated with five RT fractions, delivered
every other weekday, per institutional protocol. This study was con-
ducted under the Declaration of Helsinki guidelines and was approved
by the institutional internal review board (IRB) with a waiver of consent.
Treatment was administered using the ViewRay MRIdian 0.35T system
for Stereotactic MR-guided adaptive radiation therapy (SMART), as per
previously described methods [12]. Inclusion criteria were treatment for
lung tumors (primary or metastasis) with complete imaging records,
including an MR simulation and 5 pre-treatment scans from fractions
one through five. Clinical outcomes such as survival status, radiation
start date, locoregional control, and distant metastasis status were
abstracted by a trained clinical research coordinator in a Research
Electronic Data Capture database and verified by a board-certified ra-
diation oncologist (B.H.K.). For patients with multiple primaries treated,
analysis was conducted by treatment course. Reporting follows the
Transparent Reporting of a Multivariable Prediction Model for Individ-
ual Prognosis (TRIPOD) guidelines [14].

Fig. 1. Study framework. N indicates number of patients in the study. N indicates number of features after each step. I. Preprocessing. Images before (left) and after
(right) show the change after N4 bias field correction. II. Feature Extraction. Three types of features were extracted after preprocessing: shape-based features (left),
first-order histogram features (middle), and texture features (right). III. Stability Check. Images before (left) and after (right) show the shape change of tumor after
erosion and dilation. IV. Collinearity check. Heatmap for feature Pearson correlation. V. Delta-radiomics Measurement. Delta-radiomics were calculated for fractions
1 (top left), 2 (top middle), 3 (top right), 4 (bottom left), 5 (bottom right). For analysis of radiation dose–response, delta-radiomics were calculated using the formula
(Fn – F1)/F1, where Fn represents the fraction number. For analysis of disease outcome, delta-radiomic slope (F5/F1) was used. VI. Delta-radiomics Feature Analysis.
Relative trend of feature among fractions (left) and Kaplan-Meier for survival analysis (right).
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2.2. Patient characteristics

In this study, 47 MR-guided lung SBRT treatments for 39 patients
were analyzed (Table 1), with 22 (47 %) in the setting of Stage IV dis-
ease. With a median follow-up time of 415 days (range: 32–1178 days),
17 deaths (36 %), 25 progression events (53 %), 6 locoregional failure
events (13 %), and specifically 4 in-field locoregional failure events (9
%) were observed. Each of the six patients with locoregional failures
underwent one treatment course. Radiation total dose delivered ranged
from 40 Gy to 60 Gy in 5 fractions (dose per fraction range: 8 Gy/fx to
12 Gy/fx). One patient had reirradiation to an overlapping area (24
months after prior course). Eight patients received systemic chemo-
therapy after SBRT.

2.3. Image acquisition

MR images were acquired in DICOM format on the ViewRayMRIdian
system at pretreatment simulation (F0) and before each subsequent RT
fraction (F1-5) with true fast imaging with steady-state precession
(TrueFISP) sequence using 144 slices, and voxel size 1.5 × 1.5 × 3 mm,
with repetition time (TR) = 3 ms and echo time (TE) = 1.27 ms. Images
were acquired in an inspiration breath-hold position. Gross tumor vol-
ume (GTV) regions of interest (ROIs) were contoured at simulation and
aligned to the daily MR scans, and if needed, modified, and confirmed
daily by treating radiation oncologists at the time of planning via theMR
images.

2.4. Radiomics pipeline

Radiomic feature extraction was performed by the Pyradiomics
package [15] in Python 3.9.1 per Image Biomarker Standardisation
Initiative (IBSI) guidelines [16]. All DICOM images and structures were
converted to NIFTI with N4 bias field correction applied before extrac-
tion via SimpleITK [17] in Python. Intensity values were quantized with
bin count 64 and B-spline interpolation was used to resample images.
Normalization in the Pyradiomics pipeline was modified by dividing the
intensity of each image by the corresponding median heart intensity
value acquired from each thoracic MR. This method controls global in-
tensity variation among fractions [13]. Median lung intensity value was
not considered for normalization because tumors in lung could alter
signal intensity. Median heart intensities were extracted for all fractions
per patient. A total of 107 radiomic features for every scan were
extracted from 7 classes (Table S1).

2.5. Radiomics stability

Radiomic feature stability was evaluated both temporally and
spatially. Temporal stability was evaluated by comparing feature values
acquired at simulation (SIM) and F1 within two weeks without radia-
tion. Spatial stability was evaluated via random erosions and dilations of
the GTV contour to simulate small, expected discrepancies between
clinicians. Random contouring perturbations were repeated five times to
avoid potential bias (Table S1). Stability was assessed via Lin’s
Concordance Correlation Coefficient (CCC), with a value > 0.90 indi-
cating stability.

Collinearity was assessed using Pearson correlation, identifying pairs
with correlation >0.90.

In each pair, the feature with a higher mean absolute correlation
across all other features was dropped to mitigate collinearity effects. The
remaining stable, non-collinear features underwent delta radiomics
analysis, evaluating relative changes between RT fractions, normalized
by the initial fraction’s value (e.g., (F2-F1)/F1). This process also
included calculating delta ratios from start to finish (F5/F1) and iden-
tifying features with consistent changes as potential indicators of RT-
induced cellular change. Additionally, an analogous analysis of abso-
lute changes in feature values was performed (Supplemental Methods 2,

Table 1
Patient and tumor characteristics.

Patient and Treatment
Characteristics

N¼ 47 treatments
(39 patients)

Age at time of
treatment, median
(IQR)

67 (61.5–73.5)

Sex
Female 27 (57 %)
Male 20 (43 %)

Smoking status
Former smoker (quit >1 year
prior to diagnosis)

33 (70 %)

Never smoker (<100 cigarettes in
lifetime)

10 (21 %)

Current smoker (smoking at time
of diagnosis or quit<1 year prior)

3 (6 %)

Unspecified 1 (2 %)

Performance status
0 23 (49 %)
1 21 (45 %)
2 2 (4 %)
Unspecified 1 (2 %)

Prior thoracic RT
Yes 19 (40 %)
No 22 (47 %)
Unspecified 6 (13 %)

T stage
T0 0 (0 %)
T1a 12 (26 %)
T1b 5 (11 %)
T2a 1 (2 %)
T2b 2 (4 %)
T3 6 (13 %)
T4 3 (6 %)
Unspecified 18 (38 %)

N stage
N0 27 (57 %)
N1 1 (2 %)
N2 0 (0 %)
N3 1 (2 %)
Unspecified 18 (38 %)

M stage
M0 25 (53 %)
M1 22 (47 %)

Overall stage
I 15 (32 %)
II 7 (15 %)
III 3 (6 %)
IV 22 (47 %)

Recurred tumor
No 37 (79 %)
Yes, reirradiation 1 (2 %)
Yes, not reirradiation 9 (19 %)

Tumor size as radiographically measured at diagnosis, cm
(median, IQR)

1.6 (1.3–2.5)

Maximum 3D tumor diameter extracted from GTV, cm
(median, IQR)

3.7 (3.0–5.0)

(continued on next page)
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Fig. S6, Table S10–S12).

2.6. Clinical endpoints

Association of delta radiomic slope (F5/F1) for the final stable and
non-collinear features and disease outcomes were evaluated for overall
survival (OS), progression-free survival (PFS), local-failure free survival
(LFFS), and in-field LFFS (iLFFS). iLFFS is defined as >20 % increase in
longest diameter compared to nadir of disease extent after treatment
and/or biopsy-proven and/or residual (equal to or greater than pre-
treatment) or new Fludeoxyglucose F18 (FDG) uptake on positron
emission tomography (PET). Event timing was from radiation start to
occurrence. Follow-ups followed National Comprehensive Cancer
Network (NCCN) guidelines, with CT surveillance generally every 3
months and assessments by Response Evaluation Criteria in Solid Tu-
mors (RECIST).

2.7. Statistical analysis

Delta radiomic trends were analyzed by median relative change
between fractions. The analysis of covariance (ANCOVA) compared
patients based on locoregional failure for relative F5/F1 skewness by
base R package in R V.4.3.1. Univariate and multivariate survival ana-
lyses were performed for clinical endpoints via the Lifelines package
V.0.27.7 in Python. Univariate Cox proportional hazard regression
model evaluated the effect of each delta radiomics ratio (F5/F1) on
outcomes. Benjamini-Hochberg correction [18] applied for multiple
testing corrections. Feature selection with Recursive Feature Elimina-
tion (RFE) [19] with Lasso Regression was applied for feature selection
to control the number of features and avoid overfitting the multivariate
Cox model. The final Cox model incorporated covariates from the top
four feature rankings to reflect the feature importance [20]. Given the
prior observation of change in Skewness as a PFS predictor for pancre-
atic cancer [13], we attempted to validate this feature in our lung cancer
cohort. This involved assessing Skewness against disease outcomes at
the established cutoff of F5/F1 = 0.951 [13] and through a conditional
inference tree for LFFS within our cohort using the partykit package in R.
Disease outcomes were compared using Kaplan-Meier plots and log-rank
tests, considering p < 0.05 as statistically significant.

3. Results

3.1. MR delta radiomics and radiation dose–response

From 107 features extracted, 49 (46 %) demonstrated temporal
stability, 57 (53 %) demonstrated spatial stability, and 47 (44 %)
demonstrated both (Table S1). Among these, 15 non-collinear features
were identified (Fig. S1). Stable and non-collinear delta radiomic fea-
tures demonstrated heterogeneous intra-fraction trajectories across pa-
tients (Fig. 2). Most features exhibited a mix of increasing and
decreasing feature values per fraction (Fig. 2). Notably, Skewness and
SurfaceVolumeRatio most often decreased from F1 to F5 (64 %, and 55
% of tumors, respectively) across tumors (Fig. 2, Table S2). In contrast,
Coarseness and 90 Percentile were the most likely to increase with ra-
diation dose (62 % and 60 % of cases, respectively, Table S2). To
illustrate the variability in Skewness change, GIFs were provided to
show the patient with the largest Skewness change from F1 to F5 and the
patient with the smallest Skewness change from F1 to F5 (Fig. S2). 3D
tumor volume (VoxelVolume), while excluded from the final 15 features
due to collinearity, was analyzed separately due to its clinical impor-
tance and associations with long-term RT response [21] (Supplemental
Methods 1, Fig. S3, Table S6–S9). For all delta radiomic features, across
patients, there were substantial portions of patients with all positive
(median:+21%, range:+9% to+36%) or all-negative (median: − 21%,
range: − 9% to − 30 %) relative radiomic value changes for F2 through
F5 compared to the F1 baseline (Fig. S4, Table S3). Textural feature,
GrayLevelNonUniformity, for which lower values indicate more homo-
geneity [15] demonstrated consistent negative median change per
fraction, and one feature, LargeDependenceHighGrayLevelEmphasis,
which indicates concentration of high-intensity voxel values, showed a
consistent median increase per fraction (Table S4). Skewness, along with
these two features, had the largest median absolute changes per fraction
on-treatment (Table 2) and the largest magnitude of median relative
dose-related change from baseline (22 % to 45 %) (Table 2). Analysis of
radiomic feature absolute value changes demonstrated similar results
(Supplemental Methods 2, Fig. S6, Table S10–S12).

3.2. Delta radiomics and disease outcome

For the stable and non-collinear features, univariable survival anal-
ysis of four clinical endpoints using feature delta radiomic slope (F5/F1)
was examined (Table S5). Initially, we observed significant associations
of delta Elongation (p = 0.006), Flatness (p = 0.03), and Skewness (p =

Table 1 (continued )

Patient and Treatment
Characteristics

N¼ 47 treatments
(39 patients)

Tumor volume, cm3 (median, IQR) 8.6 (4.3–
15.1)

Histology
Metastasis from other site 15 (32 %)
Adenocarcinoma 14 (30 %)
No pathology 12 (26 %)
Mesothelioma 3 (6 %)
Large cell carcinoma 2 (4 %)
Other 1 (2 %)

Radiation total dose delivered (Gy)
40 4 (9 %)
50 28 (60 %)
55 3 (6 %)
60 12 (26 %)

Radiation dose per fraction (Gy/fx)
8 4 (9 %)
10 28 (60 %)
11 3 (6 %)
12 12 (26)

Biologically equivalent dose to tumor (Gy10)
72 4 (9 %)
100 26 (55 %)
115.5 3 (6 %)
132 13 (28 %)
300 1 (2 %)

Reirradiation
Yes 1 (2 %)
No 46 (98 %)

Concurrent
chemotherapy

Yes 0 (0 %)
No 39 (83 %)
Unspecified 8 (17 %)

Adjuvant
chemotherapy

Yes 8 (17 %)
No 31 (66 %)
Unspecified 8 (17 %)

Multiple treatments of one patient are considered independent cases. Median of
age excluded unspecified patients. IQR: interquartile range, GTV: gross tumor
volume. Maximum 3D diameter was extracted via Pyradiomics package using
the 3D Feret Diameter. Metastasis from other site included sarcoma, colorectal
cancer, melanoma, esophageal cancer, head and neck cancer, and other cancer.

Y. Zha et al.
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Fig. 2. Delta radiomics trends for stable, non-collinear features across all treatment courses (n = 47), showing relative feature changes of feature values across
fractions. The dotted black line shows median values of relative value for each fraction. Gradient color legend and color of lines show the value of relative F5 over F1
for each feature.
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0.01) with locoregional failure free survival (LFFS); Imc2 (p = 0.04) for
progression free survival (PFS), and GrayLevelNonUniformity with
overall survival (OS) (p = 0.049). However, no significant associations
remained after correction for multiple hypotheses. Ratio of Skewness,
previously observed as statistically significant for PFS in pancreatic
cancer (Tomaszewski et al., 2021), trended towards LFFS correlation (p
= 0.01, corrected p = 0.09) in our study, indicating higher Skewness
slopes might associate with worse outcomes. Additionally, ANCOVA
confirmed Skewness’s association with locoregional failure (p = 0.01).
The relative changes of feature Skewness from F1 to F5 for cases with (n
= 6) and without (n = 41) locoregional failure highlighted the sensi-
tivity of its relative value to dose change in both groups (Fig. S5). Tumor
volume had no observed association with disease outcomes (Table S9).

We further investigated the optimal threshold for relative skewness
change as a marker for local control. A conditional inference tree using
recursive partitioning demonstrated maximal separation to divide pa-
tients into low-risk (n = 28) and high-risk (n = 19) groups of LFFS at an
optimal threshold of skewness ratio = 0.973 (Fig. 3). Survival plots
showed a numerical but not statistically significant differentiation be-
tween these groups at these thresholds (Fig. 3).

For multivariable Cox regression with RFE, we found that F5/F1
ratio of feature Elongation, which shows the relationship between the
two largest principal components in the GTV shape, was selected to fit
the model in all 4 clinical endpoints. Covariates F5/F1 ratio of Elonga-
tion and original_glcm_Imc2 were all significantly associated with PFS
(HR 1.21 [95 % CI 1.01–1.45], p = 0.04; HR 1.2 [95 % CI 1.04–1.39], p

Table 2
Relative median and IQR of absolute change for 15 stable and non-collinear features across fractions 1 to 5 (normalized by fraction 1).

Feature Name F2 (%) F3 (%) F4 (%) F5 (%)

Skewness 21.79 (10.42, 85.24) 41.33
(20.49, 72.96)

40.38 (20.45, 118.55) 45.41 (22.41, 94.31)

LargeDependenceHighGrayLevelEmphasis 16.71 (4.47, 26.98) 12.50 (5.66, 24.54) 20.95 (9.12, 31.33) 18.95 (10.63, 29.83)
GrayLevelNonUniformity 8.07 (4.57, 13.24) 8.76 (5.38, 15.43) 9.79 (4.53, 15.58) 11.41 (4.94, 21.54)
DifferenceAverage 7.94 (3.42, 11.15) 6.01 (3.51, 9.35) 5.62 (2.91, 10.14) 8.76 (3.59, 18.45)
Median 8.10 (3.85, 12.45 8.09 (3.15, 13.66) 9.56 (4.26, 16.59) 7.71 (2.95, 17.23)
90Percentile 5.67 (2.08, 10.45) 5.13 (2.61, 11.00) 5.06 (2.38, 10.98) 7.15 (3.62, 13.42)
Coarseness 5.20 (2.51, 9.53) 5.78 (2.49, 9.76) 6.56 (3.52, 10.91) 5.95 (2.72, 15.99)
Flatness 2.00 (0.42, 4.94) 2.70 (1.11, 5.43) 2.00 (0.75, 4.75) 2.79 (1.38, 5.69)
Elongation 1.58 (0.66, 3.60) 2.33 (0.59, 4.79) 1.83 (0.48, 3.39) 2.10 (0.59, 4.75)
Maximum2DDiameterSlice 0.00 (0.00, 2.59) 1.18 (0.00, 4.62) 0.00 (0.00, 2.67) 1.09 (0.00, 3.96)
Imc2 0.93 (0.33, 2.11) 1.04 (0.23, 2.80) 0.92 (0.35, 3.04) 1.05 (0.30, 1.91)
DependenceEntropy 1.28 (0.46, 2.53) 1.37 (0.80, 1.84) 1.38 (0.48, 2.43) 1.04 (0.67, 2.26)
Sphericity 0.61 (0.17, 1.67) 0.84 (0.33, 2.03) 0.60 (0.21, 1.62) 0.95 (0.41, 2.46)
SurfaceVolumeRatio 1.05 (0.24, 3.09) 1.13 (0.50, 2.38) 0.66 (0.20, 2.30) 0.79 (0.33, 1.99)
RunLengthNonUniformityNormalized 0.72 (0.32, 1.18) 0.57 (0.36, 1.12) 0.53 (0.25, 0.95) 0.75 (0.39, 1.16)

Median values were calculated by relative feature absolute values. Features were ordered by relative F5 over F1 values, showing intra-fraction fluctuations.

Fig. 3. Conditional inference tree and Kaplan-Meier plot for feature skewness between F5 and F1. Upper Left: Conditional inference tree for LFFS with optimal cutoff
point skewness = 0.973. Upper right: Measure the optimal cutoff point for LFFS. Bottom left: Test cutoff point skewness = 0.951 for LFFS. Bottom right: Test cutoff
point skewness = 0.951 for ILFFS.
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= 0.01)) and covariates F5/F1 ratio of Elongation was also significantly
associated with LFFS (HR=1.7 [95 % CI 1.10–2.65], p = 0.02) (See
Table 3).

4. Discussion

Radiation-induced tumor intra- and extra-cellular response may
manifest radiographically, and the ability to practically measure and
evaluate these changes would significantly advance personalized treat-
ment. MR-guided RT, known for its high-quality intra-fraction imaging
and standardized procedures, alongside advanced radiomics ap-
proaches, holds promise for detecting and tracking radiation dose effect.
To our knowledge, this study marks the first systematic exploration of
MR radiomic intra-treatment changes for lung tumors, adding to the
emerging field of MR-guided RT delta-radiomics. In this proof-of-
principle study, we found that delta radiomic feature extraction can
be feasible, stable, and reproducible on a low-field, 0.35 T MRI-guided
linear accelerator. Analyzing 15 such features, we observed varied and
distinct patient responses to radiation doses, identifying key features
such as voxel Skewness that correlate with tumor control and patient
outcomes, suggesting its potential as a universal marker for assessing
cross-cancer radiation effects.

Remarkably, despite internally controlled, standardized image
acquisition protocols, many features extracted were unstable to tem-
poral and spatial perturbations, emphasizing the importance of rigorous
stability testing even when evaluating intra-patient changes with stan-
dardized imaging acquisition parameters. Notably, features like Skew-
ness and LargeDependenceHighGrayLevelEmphasis consistently altered
across treatment, showing these variations might indicate cumulative
radiation effects. Radiomic features that are sensitive to dose change,
like Skewness, could have utility in response prediction due to their
quantifiable change. Additionally, associations between skewness and
LFFS in this study and prior work [13] suggest its potential as a cross-
cancer predictive marker for therapy efficacy. The conditional infer-
ence tree divided the patients into high and low risk groups by an
optimal threshold of skewness ratio = 0.973 (Fig. 3), which was similar
to the prior reported threshold for predicting failure in pancreatic cancer
(0.951) [13]. We hypothesize that voxel Skewness may reflect intra-
tumoral heterogeneity, with its variation during treatment indicating
local response effectiveness. Further work is ongoing to investigate how

intensity histogram feature Skewness and other textural features spe-
cifically correlate with cellular heterogeneity. For multivariate survival
models, radiomics features were more highly concordant with local
failure outcomes than overall progression or survival, suggesting these
changes reflect local phenomena. Given the early stage of data collection
and aggregation for MR-guided delta radiomics, and the small, hetero-
geneous patient population in this study, further validation will be
necessary to confirm these findings, are hypothesis-generating. We
expect our findings and methodologies will underpin broader radiomic
validation studies in larger cohorts across malignancy types.

Our work advances the nascent field of RT delta radiomics, building
on preliminary research and expanding beyond previous CT-based
studies with limited outcomes [22,23]. Before our study, only one
study explored MR-guided RT delta radiomics in pancreatic SBRT, [13],
demonstrating predictive potential of features like Skewness. We expand
the investigation of MR delta radiomics to lung cancer and are the first to
systematically evaluate radiomic feature trajectories after both temporal
and spatial stability testing.

This study has several limitations. Its small, single-institution sample
size may introduce selection bias, and its confinement to one single MRI
sequence, which, while promoting reproducibility, may limit general-
izability. Our analysis focuses on linear relationships between inter-
fraction radiomic values and their association with radiation delivery,
while between RT-induced cellular change and radiographic manifes-
tation may be more complex and non-linear. Additionally, our dataset
was too small to compare total dose differences (between 40 and 60 Gy).
Additionally, interpreting radiomic associations with outcomes beyond
local control requires caution due to our cohort’s large proportion of
Stage IV patients. Despite heterogeneous radiomic feature responses
through treatment, further work will be needed to validate specific delta
radiomic patterns and signatures that consistently (and reproducibly)
track with RT-induced cellular change. Future research should also
investigate additional techniques, such as advanced machine learning
methods and the use of image filters before feature extraction to increase
the number of features that may highlight more detailed and compre-
hensive image properties [24,25]. Since we found skewness can poten-
tially track dose response, nonspatial filters like taking the square or
exponential could be used to adjust the sensitivity of skewness-related
radiomics features to intensity values [25]. Deep learning may provide
an attractive means for outcome prediction by delta radiomic features

Table 3
Multivariate Survival Analysis Result.

Survival Delta radiomic feature (F5/F1) p-value HR (95 % CI) Importance Concordance

PFS 0.68
Elongation 0.04 1.21 (1.01–1.45) 1
Flatness 0.15 0.86 (− 0.71 to 1.05) 2
90Percentile 0.06 0.97 (0.93–1.00) 4
lmc2 0.01 1.20 (1.04–1.39) 3

OS 0.63
Elongation 0.43 1.09 (0.88–1.37) 2
Flatness 0.63 0.94 (0.75–1.19) 3
SurfaceVolumeRatio 0.81 0.98 (0.81–1.18) 4
DependenceEntropy 0.16 1.20 (0.93–1.57) 1

LFFS 0.9
Elongation 0.02 1.70 (1.10–2.65) 2
Flatness 0.18 0.74 (0.48–1.15) 3
DependenceEntropy 0.82 1.08 (0.56–2.06) 4
RunLengthNonUniformityNormalized 0.32 1.67 (0.61–4.57) 1

ILFFS 0.85
Elongation 0.07 1.25 (0.99–1.59) 2
Median 0.91 1.00 (0.93–1.09) 3
Imc2 0.08 1.53 (0.95–2.46) 1
DependenceEntropy 0.38 0.65 (0.24–1.71) 4
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[26], though necessitates larger datasets than presently available for
effective model training.

In conclusion, our study demonstrates a feasible and stable delta
radiomics pipeline for MR-guided lung SBRT that can serve as a
framework for future cancer radiomics investigations. We find that MR-
delta radiomic features change heterogeneously with distinct trajec-
tories across tumors and that several may be indicative of RT-related
tumoral change with increasing dose delivered, as well as risk of
recurrence. Further work should validate these findings to determine if
delta radiomics can ultimately serve as real-time, clinical biomarkers to
guide personalized radiation regimens and therapeutic strategies.
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