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Abstract

Quantifying accurate functional magnetic resonance imaging (fMRI) activation maps

can be dampened by spatio-temporally varying task-correlated motion (TCM) arti-

facts in certain task paradigms (e.g., overt speech). Such real-world tasks are relevant

to characterize longitudinal brain reorganization poststroke, and removal of TCM arti-

facts is vital for improved clinical interpretation and translation. In this study, we

developed a novel independent component analysis (ICA)-based approach to denoise

spatio-temporally varying TCM artifacts in 14 persons with aphasia who participated

in an overt language fMRI paradigm. We compared the new methodology with other

existing approaches such as “standard” volume registration, nonselective motion cor-

rection ICA packages (i.e., AROMA), and combining the novel approach with AROMA.

Results show that the proposed methodology outperforms other approaches in

removing TCM-related false positive activity (i.e., improved detectability power) with

high spatial specificity. The proposed method was also effective in maintaining a bal-

ance between removal of TCM-related trial-by-trial variability and signal retention.

Finally, we show that the TCM artifact is related to clinical metrics, such as speech

fluency and aphasia severity, and the implication of TCM denoising on such relation-

ship is also discussed. Overall, our work suggests that routine bulkhead motion based

denoising packages cannot effectively account for spatio-temporally varying TCM.

Further, the proposed TCM denoising approach requires a one-time front-end effort

to hand label and train the classifiers that can be cost-effectively utilized to denoise

large clinical data sets.
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1 | INTRODUCTION

Stroke is a devastating cerebrovascular disease that frequently results

in motor, speech and language, and spatial neglect deficits. In order to

understand stroke-related neuroplasticity and monitor longitudinal

brain changes in response to treatment, it is important to identify

real-world tasks that can be utilized within the magnetic resonance

(MRI) that aides in characterizing stroke-related impairment and

recovery. For example, joystick-based wrist movement paradigms in

upper extremity motor stroke (Buetefisch, Revill, Shuster, Hines, &
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Parsons, 2014), attention modulation paradigms in right hemisphere

stroke (Russell, Malhotra, Deidda, & Husain, 2013) and speech

fluency-based overt functional MRI (fMRI) in aphasia research

(Benjamin et al., 2014) are clinically relevant task designs.

Head motion is always a concern in fMRI experiments, and indeed,

task-correlated head motion has been identified in motor fMRI para-

digms (Kochiyama et al., 2005) and overt language fMRI paradigms

(Gopinath et al., 2009; Xu et al., 2014). For overt-language fMRI para-

digms, the indirect source of task-correlated motion (TCM) artifact

stems from movement of the tongue, facial muscles, palate, and

changes in air volume within the respiratory areas that can result in sig-

nificant local magnetic field inhomogeneities (Birn, Bandettini, Cox,

Jesmanowicz, & Shaker, 1998; Mehta, Grabowski, Razavi, Eaton, &

Bolinger, 2006). Bulk head movement combined with speech-related

TCM can introduce complex spatio-temporally varying motion artifacts

that can be further exacerbated by through-plane spin-history effects

and its interaction with susceptibility induced image distortions in

fronto-temporal brain areas (Kemeny, Ye, Birn, & Braun, 2005; Mehta

et al., 2006). Another important note is that although these tasks are

highly relevant to study stroke, TCM artifacts can be more exaggerated

in stroke participants than the general population because of their neu-

rological issues with movement of orofacial areas (such as in patients

with oral apraxia and dysarthria), and relatively increased motion due to

compensatory head and body movements while attending to overt lan-

guage tasks. Thus, tasks such as overt-language fMRI paradigms not

only require correcting for bulk-head motion but also nonrigid source of

motion artifacts such as TCM.

Over the last two decades, there has been tremendous research

effort to not only understand the nature of the spatio-temporally vary-

ing TCM artifacts (Birn et al., 1998; Birn, Cox, & Bandettini, 2004) but

also to develop approaches to mitigate such artifacts via improved data

acquisition scheme (Bresch, Kim, Nayak, Byrd, & Narayanan, 2008; Nar-

ayanan, Nayak, Lee, Sethy, & Byrd, 2004), retrospective artifact removal

methodologies (Birn et al., 2004; Birn, Bandettini, Cox, & Shaker, 1999;

Bullmore et al., 1999; Gopinath et al., 2009; Xu et al., 2014), and

improved design of experimental paradigms (Birn et al., 2004; Mehta

et al., 2006). Signal changes due to speech can result in obscure false

positive (FP) or Type I errors (Birn et al., 1999; Mehta et al., 2006) since

both language-related signal and speech-related motion are synced with

task stimuli and spatially co-localize in frontal and temporal brain areas

(Gopinath et al., 2009; Kemeny et al., 2005). Further, the large magni-

tude of speech-induced TCM signal changes mask weaker true positive

(TP) blood oxygen level-dependent (BOLD) activity from key language

areas (Gopinath et al., 2009). Establishing a cost (labor and computa-

tional)-effective approach that can optimally minimize FP errors while

retaining TP activity has been the challenging goal in this niche

research area.

Independent component analysis (ICA) is a blind source separa-

tion technique in which the fMRI data are decomposed into spatial

components with corresponding unique time courses that are maxi-

mally independent from each other. This attractive approach has been

effectively developed for TCM removal by only few groups.

(Kochiyama et al., 2005) focused on spatial ICA (s-ICA) in young

participants engaged in finger tapping task with and without head

motion. More recently, Xu et al. (2014) developed a more sophisti-

cated dual-masked s-ICA technique to denoise TCM in an overt-

language fMRI paradigm collected on healthy young participants. In

the realm of routine bulkhead motion correction, Janssen and

Mendieta (2020)) employed the standard ICA-based denoising pack-

age (i.e., AROMA) to correct for motion in an overt picture naming

task collected on healthy young subjects, while (Sebastian et al., 2016)

utilized a rigid body alignment approach (i.e., MCFLIRT) to correct for

motion in an overt picture naming task collected from acute stroke

patients. However, given that speech related motion is not just spa-

tially selective, but also temporally correlated with task-induced

hemodynamic response, and can vary from epoch to epoch (Gopinath

et al., 2009), optimization of TCM denoising approaches to account

for the noise jointly encoded in both spatial and temporal domains is

equally important. Further, in neurological disease population such as

stroke, these spatio-temporally varying TCM artifacts can be exacer-

bated from patient to patient, and the number of lesion-dependent

ICs can be strongly dependent on lesion size (Yourganov, Fridriksson,

Stark, & Rorden, 2018). Thus, the specific goals of this study are (a) to

determine whether ICA-based classifiers customized to capture

spatio-temporally varying speech-induced TCM in patients with post-

stroke aphasia is effective in optimal denoising and (b) to determine

the performance of such a classifier against other widely used motion

correction approaches in aphasia research. We hypothesize that ICA

classifiers trained to capture spatio-temporally varying TCM in overt-

speech fMRI data sets acquired from persons with aphasia are more

effective in mitigating the TCM artifacts as compared to other existing

approaches, while also being cost efficient to reliably denoise larger

data sets.

2 | MATERIALS AND METHODS

2.1 | Participants

Fourteen right-handed participants (with English as their primary lan-

guage) who were chronic stroke survivors (6 months or more post

left-hemisphere stroke) and diagnosed with aphasia (67 ± 11 years

age, six females) were recruited into this study. For the purposes of

the present report, only the baseline time-point is presented. The

demographic information of all 14 stroke participants is detailed in

Table 1. Each participant was screened for MRI contraindications and

provided written informed consent in accordance with procedures

approved by the University of Florida Health Science Institutional

Review Board. All consent procedures were in compliance with the

Declaration of Helsinki. Subjects participated in an MRI session and a

language assessment session which included administration of the

Western Aphasia Battery - Revised (WAB) (Kertesz, 2007). Table 1

also shows WAB fluency scores and aphasia quotient (AQ) which is an

index of aphasia severity for all participants. Additional information

such as lesion volume and a spatial overlap of lesion maps across all

participants are provided in supplementary section S1.
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2.2 | MRI acquisition

The MRI data were acquired using a Philips 3 T Achieva scanner (Best,

The Netherlands) using the body coil for radio frequency

(RF) transmission and an 8-channel head coil for RF receiving. The

participant's head was comfortably stabilized using foam pads to mini-

mize motion during and between scans. A 1 mm3 isotropic high reso-

lution T1-weighted anatomical image for spatial normalization to

montreal neurological institute (MNI) template space was acquired

using turbo field echo acquisition with the following parameters: echo

time (TE) = 3.7 ms, repetition time (TR) = 8.1 ms, field of view

(FOV) = 240 × 240 mm2, flip angle (FA) = 8�, and matrix

size = 240 × 240. To identify areas of activation during overt word

generation, six runs of continuous task fMRI time course was acquired

with a BOLD weighted single shot gradient recalled echo planar imag-

ing (EPI) sequence with the following parameters: 36 sagittal acquired

slices, slice thickness = 4 mm, FOV = 240 × 240 mm2, matrix

size = 64 × 64, TR = 1700 ms, TE = 30 ms, FA = 70�, acquisition

bandwidth = 3,906 Hz/px, and 186 volumes per run.

2.3 | Task design

To assess the patient's brain activity during word retrieval, fMRI data

were collected during an overt category member generation task

(i.e., semantic verbal fluency). Figure 1a shows the schematic for the

task design. The task design comprised of six runs each containing

10 trials, for a total of 60 trials. The patients heard and silently read

the category (e.g., “Tool”and were instructed to generate aloud a sin-

gle exemplar (e.g., “Hammer”). The trial length was 6.8 s. During the

inter-trial intervals (ITI), patients viewed a fixation cross (“+”), and

were instructed to not speak and stay still. The ITI was jittered

between 13.6, 15.3, and 17 s. Also shown in Figure 1a is a schematic

of the canonical BOLD signal (green line) along with the nuisance

TCM artifact (red line) that is super-imposed on top of the BOLD sig-

nal. Note the rapid signal changes (i.e., “spiky” signal change) due to

TCM in comparison to the sluggish signal change of BOLD. This strik-

ing difference in the temporal signature will be utilized in the detec-

tion of TCM as described below.

2.4 | Image processing

2.4.1 | Structural and task-fMRI pre-processing

The high-resolution T1w images are denoised using an ONLM filter

(Coupe et al., 2008; Wiest-Daessle, Prima, Coupe, Morrissey, &

Barillot, 2008) to remove Rician noise from the magnitude images

(Gudbjartsson & Patz, 1995). The denoised T1w images are then bias

field corrected, followed by the estimation of an initial binary lesion

mask in native space using LINDA (Pustina et al., 2016). To skull strip

the images, a binary brain mask was generated using optiBET

(Lutkenhoff et al., 2014), manually touched up using ITK Snap to

remove meninges and areas of calcification (Yushkevich et al., 2006),

and applied to the bias field corrected T1w image. Finally, chimera

spatial normalization (i.e., the lesion's right hemisphere homolog tissue

was stitched into the lesion) was carried out to obtain more accurate

transformation to MNI template space (Nachev, Coulthard, Jager,

Kennard, & Husain, 2008; Yourganov et al., 2018).

The BOLD EPI images were processed systematically using a

combination of AFNI (Cox, 1996), FSL (Smith et al., 2004), and Matlab

(Natick, MA) in-house scripts. The first nine TRs were discarded to

TABLE 1 Demographic information of chronic stroke participants

ID Age Gender CVA type Lesion location WAB AQ WAB fluency WAB classification

S01 79 Female H Subcortical 51.2 2 Broca's

S03 92 Female I Parietal 69.1 5 Conduction

S04 53 Male I Parietal, temporal 65.8 6 Conduction

S05 73 Male I Insula 76.4 5 Anomic

S06 62 Female H Subcortical 57.8 5 Conduction

S07 80 Female I Insula 78 6 Anomic

S08 55 Male I Frontal, parietal, subcortical, temporal 67.1 4 Transcortical motor

S10 69 Male I Frontal, parietal, subcortical 52.2 4 Broca's

S11 68 Male I Parietal, temporal 67.8 5 Conduction

S12 63 Female I Insula, temporal 66.6 6 Conduction

S14 61 Male I Subcortical 75.8 5 Anomic

S15 68 Female I Parietal 69.4 4 Broca's

S16 59 Male H Frontal, insula 74.5 5 Anomic

S19 64 Male I Insula 90 8 Anomic

Note: Reported are age, gender, cerebrovascular accident (CVA) type, lesion location, Western Aphasia Battery (WAB) aphasia qNouotient (AQ), WAB

fluency, and WAB aphasia classification.

Abbreviations: H, hemorrhagic; I, ischemic.
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ensure that the magnetization was at equilibrium, followed by slice

timing and bulk head motion of the remaining fMRI time series. The

volume registered BOLD data sets were then processed for TCM den-

oising in four different ways: (a) bare volume registered correction

without any specific TCM correction (Standard), (b) novel TCM classi-

fier (TCMcorr, details of the methodology described below), (c) routine

ICA denoising package (AROMA) (Pruim et al., 2015), and (d) TCM

classifier followed by AROMA (TCMcorr + AROMA). The denoised

images were co-registered to the T1w images using FSL's “epi_reg”

boundary-based registration and then warped to MNI space using the

T1w to MNI transformation warp images obtained via FSL's “FLIRT”

and “FNIRT” tools. For each data set, we also generated a binarized

cerebrospinal fluid (CSF) mask that comprised of the ventricles (seg-

mented from T1w images using FSL tools) and the lesioned brain area

obtained through LINDA, all in MNI space. In the process of spatial

smoothing of the BOLD images (Gaussian kernel size = 6 mm), the

F IGURE 1 Description of the task, task-correlated motion (TCM), and proposed methodology to correct for TCM. (a) Schematic of the overt
language task functional magnetic resonance imaging (fMRI) design paired with task-evoked hemodynamic response function (green) and TCM
artifact (red). (b) Flowchart describing the novel spatio-temporal independent component analysis (ICA)-based TCM correction algorithm. The
gray circle with numbers corresponds to bullet point description in the Section 2.4.2
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CSF mask was used in conjunction to minimize CSF contamination

from ventricles and brain lesions. The smoothed BOLD time course

was scaled with respect to the initial baseline condition

(7 TRs = 11.9 s) to obtain task-induced relative % BOLD change, cen-

sored for head motion (>0.3 mm), followed by deconvolution (AFNI's

3dDeconvolve) of the combined 60 trials across the six runs. In order

to account for low-frequency scanner drifts, we employed the polyno-

mial fitting option within AFNI's 3dDeconvolve command. The

deconvolution also incorporated regressors for the different motion

parameter estimates and its derivatives obtained via 3dvolreg and

1d_tool.py AFNI tools. Finally, the statistical parametric activation

maps on each individual subject were generated at an R2 threshold of

0.16 (FWE corrected p < .01, cluster size = 30).

2.4.2 | Methodology for the novel spatio-temporal
TCM denoising algorithm

Figure 1b delineates the flowchart for our novel ICA-based spatio-

temporal TCM denoising algorithm. Here is a step-by-step description

of the algorithm flow: (a) the volume registered BOLD time series for

each run was fed into FSL MELODIC for ICA decomposition

(Beckmann & Smith, 2004), more details on the MELODIC setup can

be found in the supplementary section S2). (b) stimulus-locked 1D

deconvolution was carried on each MELODIC IC time-series. (c) Each

component's impulse response function (IRF) was then inspected for

classic TCM artifact (Birn et al., 1999; Gopinath et al., 2009), and the

ICs that showed classic TCM artifact were noted. If an IC had a mix-

ture of TCM noise and signal, we leaned on the conservative side to

retain that IC for two purposes: (a) retain potential signal of interest

(in other words, to avoid instances of “throwing the baby out with the

bathwater”) and (b) toward robust training of the classifier that incor-

porates a variety of signal and noise components. (d) In conjunction to

deconvolution based TCM IRF, the ICs were also inspected for “spiky”

task periodicity in the IC time-series and for spurious increase in

power at task frequency (see supplementary section S3 for task fre-

quency calculation) by looking at the power spectral density (PSD)

plots. In addition to primarily customizing the hand classification to

TCM, the process also involved identifying and labeling noise compo-

nents related to susceptibility, physiological noise, and hardware arti-

facts based on recommended procedures by Griffanti et al. (2017).

For consistency purposes, the hand classification was carried out by a

single trained and experienced expert (V.K.).1 (e) In parallel, stimulus-

locked 3D deconvolution on the BOLD images (using all six runs)

was carried out to obtain voxel-wise HRFs. (f ) A spatially selective

TCM mask based on previous literature (Gopinath et al., 2009;

Kemeny et al., 2005; Xu et al., 2014) was developed on standard

1 mm isotropic MNI brain (using ITKSNAP) and back projected to

each individual participant's native space (using FSL tools). (g) The

TCM spatial mask was then applied to the voxel-wise activation

maps to identify voxels in TCM-prone areas. Each voxel's HRF

within this TCM area were correlated with the 1D IRFs labeled as

TCM obtained from step-2, and the resulting Pearson's product

moment for each voxel within the TCM area was thresholded at 0.7.

(h) The ICs that survived the threshold (r = 0.7) from the previous

step were labeled as noise (high correlation indicates TCM-like sig-

nal changes), and the process was repeated on 102 different data

sets from the current study (sampled across the six runs and differ-

ent subjects and time points) (Salimi-Khorshidi et al., 2014). (i) The

hand classification from 10 different data sets were fed into FSL's

FIX tool to build a classifier based on FSL inbuilt machine-learning

algorithms (Salimi-Khorshidi et al., 2014).

2.4.3 | HRF modeling to evaluate efficacy of TCM
correction

To quantitatively evaluate the efficacy of TCM correction for motion-

related spikes in temporal dynamics, we first built a canonical HRF

adapted from (Lindquist, Meng Loh, Atlas, & Wager, 2009) as shown

below:

h tð Þ= −A
tα1−1βα11 e−β1t

г α1ð Þ −c
tα2−1βα12 e−β2t

г α2ð Þ
� �

ð1Þ

where the canonical HRF is a linear combination of two different

gamma functions (г), A controls the amplitude, α and β control the

shape and scale of the HRF respectively, and c determines the ratio of

the response to undershoot, with the following parameter values:

A = 1, α1 = 2.5, α2 = 12, β1 = 0.4, β2 = 0.7, and c = 1/6.6. The esti-

mated voxel-wise HRF from the four different methodologies were

then nonlinearly fitted to the canonical HRF using the generalized

Levenberg–Marquardt nonlinear least squares algorithm as

implemented in MATLAB (nlinfit), and goodness-of-fit estimate (R2)

was also quantified for each methodology.

2.4.4 | Coefficient of variation to compare
denoising methodologies

In order to objectively compare the HRF temporal dynamics across all

four methodologies, we identified significant surviving clusters (at an

R2 = 0.16) across all four methodologies from different subjects. We

then drew a sphere (5 mm radius) centered at the peak activity and

the average HRF was quantified from within that sphere. Within the

same sphere, coefficient of variation (CoV) was computed on the

smoothed time series (for each run and then average CoV across the

runs) to quantitatively evaluate the effectiveness of denoising across

the methodologies.

2.4.5 | Fano factor to characterize trial-by-trial
variability

Fano Factor (FF) is a measure widely used in experimental cellular and

molecular neuroscience fields to quantify the variability in spiking
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bursts (Falkner, Goldberg, & Krishna, 2013; Tolhurst, Movshon, &

Thompson, 1981). Unlike CoV in which the mean and SD is calculated

from the entire time series, FF involves mean (μ) and variance (σ2) esti-

mation from a defined time window (W) as shown as follows:

FF =
σ2W tð Þ
μW tð Þ ð2Þ

where W is defined as time length of first 3 TRs (=5.1 s) (Birn

et al., 1998; Gopinath et al., 2009; Mehta et al., 2006) following the

stimulus onset (see blue hatch in Figure 1a). For each subject, the FF

was quantified from the smoothed BOLD time series (underneath the

same spherical ROIs as described above) for each individual trial. The

FF for each run was normalized and then averaged across the runs.

Thus, a run-averaged FF for each of the 10 trials is obtained, thereby

allowing the quantitative investigation of continuous trial-by-trial vari-

ability during the first three TRs when the participant initiates speech.

2.4.6 | Quantification of denoising effects on
spatial specificity and sensitivity

The task activation maps were thresholded at R2 = 0.16 (cluster

size = 30 voxels) and binarized to generate a mask of significant task

activity for each analysis methodology (Standard, TCM, AROMA,

and TCM + AROMA). The high resolution T1w images were seg-

mented into white matter (WM) and gray matter (GM) using FSL's

FAST tool and then were transformed into MNI space. Each task

activation mask was then multiplied with the WM and GM masks to

delineate significant task activity within WM and GM, respectively.

The number of voxels that survived after this step were tabulated

and compared across methodologies via t-test using JMP Pro15

(SAS Inc., Cary, NC).

2.4.7 | Delineate the relationship between various
clinical factors and TCM artifact

Table 1 outlines the values for clinical factors such as WAB AQ and

WAB fluency, and supplementary section S1 outlines the lesion vol-

ume for each subject. The TCM artifact was quantified via FF using

the Standard methodology. The assumption is that the Standard

approach encodes more speech-related TCM. Simple linear regression

to assess the relationship between WAB fluency and TCM artifact

was carried out in JMP Pro15 and reported with R2 and p values. Note

that in order to derive a holistic perspective in the context of FF and

CoV as described above, we will obtain these relationships from the

same representative brain areas that were utilized in FF and CoV ana-

lyses. Further, we completed an ANOVA in JMP Pro15 to test

whether aphasia severity (WAB AQ) and lesion volume explain TCM

artifact. The results of the model are reported with F-statistic and

subsequent t-tests are performed to determine which terms had sig-

nificant effect.

3 | RESULTS

3.1 | Spatial and task specificity

Figure 2 demonstrates the performance of each methodology

(TCMcorr, Standard, AROMA, and TCMcorr + AROMA) for spatial

specificity across a sample of subjects with different lesion location

and size. For the same statistical thresholding across the board

(R2 = 0.16, p < .01, cluster size = 30), Figure 2a shows spatial speci-

ficity to removal of unwanted white matter (WM) activity, and

Figure 2b shows the task-related spatial specificity. Visual inspection

across the methodologies indicates that the novel methodology

(TCMcorr) provides a good balance in removal of WM activity while

maintaining task-related spatial specificity. Figure 2c demonstrates

group level quantitative comparison across methodologies of false

positive white matter (WM) activity and gray matter (GM) activity in

thresholded activation maps. Note that both TCMcorr and AROMA

approaches remove false positive WM activity compared to Stan-

dard analysis routines, but TCMcorr does not significantly reduce

the number of GM voxels, while AROMA does (Figure 2c). TCMcorr

+ AROMA removes excessive amount of signal along with noise. An

axial montage of task activation focused around the lesion and lan-

guage eloquent areas across all 14 subjects is demonstrated in sup-

plementary section S7.

3.2 | Task sensitivity

Figure 3 demonstrates the performance of each methodology for

task sensitivity across a sample of subjects with different lesion

location and size. The statistical thresholding (R2 = 0.16, p < .01,

cluster size = 30) was maintained the same across the board for fair

comparison across the methodologies. The proposed TCM correc-

tion methodology was effective in bringing out task-relevant true

positive (TP) cortical activation in areas prone to TCM (see green cir-

cles), while the standard and AROMA methodologies were effective

in retaining task-relevant activation in subcortical and medial tempo-

ral areas (see blue circles) that are immune to TCM. The orange cir-

cles denote the FP TCM-related activation that was observed in the

standard approach. The combined TCMcorr + AROMA approach

performed the worst where excessive task-relevant signal was

removed.

3.3 | Effectiveness of the novel methodology in
correcting for spatio-temporally varying TCM

Given that TCM is a spatio-temporally varying artifact, it is relevant to

dive deeper and more quantitatively explore the effectiveness of the

proposed denoising approach, and how it compares to the other

methodologies. Figure 4 shows the task activation map from a repre-

sentative subject. The orange circle in Figure 4a denotes a TCM-prone

area (i.e., left superior frontal gyrus, L-SFG), and its associated HRF
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across the methodologies. Figure 4b shows how the HRFs from the

same area compared against the canonical HRF (dotted black line).

Visual inspection of the HRFs shows that the proposed novel method-

ology effectively unmasks the BOLD-like temporal dynamics while

the other methodologies have TCM-like “spiky” temporal artifacts.

More quantitatively, the HRFs estimated across the methodologies

were fitted to the canonical HRF and the goodness of fit (R2) were as

follows: TCMcorr (0.63), Standard (0.5), AROMA (0.27), and TCMcorr

+ AROMA (0.22) which is consistent with the qualitative inspection of

the HRFs. A detailed summary of the F-statistics and associated signif-

icance is shown on Supplementary section S4. Inspecting the modeled

HRF parameters (see Supplementary section S3), specifically the ones

that control for shape and scale (α and β), the proposed performance

of the TCMcorr approach was by far superior compared to the other

methodologies. Interestingly, activation from a TCM immune area

(i.e., right primary visual cortex, R-V1, shown in purple box) demon-

strates BOLD-like temporal dynamics across TCMcorr, Standard, and

AROMA methodologies demonstrating that the TCM artifact is spatial

selective and that the proposed methodology is superior in correcting

the temporal dynamics in TCM prone areas, and leaving the BOLD

temporal dynamics untouched (i.e., no over correction) in areas that

are immune to TCM. The TCMcorr + AROMA methodology again per-

formed the worst as it removed excessive amount of signal along with

noise.

F IGURE 2 Comparison of spatial specificity across four different denoising methodologies. (a) Spatial specificity of each methodology to
remove white matter activity. (b) Spatial specificity of each methodology to task-relevant activation. (c) Quantification of retained gray matter and
white matter voxels in thresholded (i.e., statistically significant) activation maps. The activation maps are significant at R2 = 0.16, p < .01, cluster

size = 30. Orange circles denote false positive white matter (WM) activity. L, left hemisphere; R, right hemisphere
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3.4 | Comparison of HRFs derived from various
TCM-prone language-relevant areas

In the results above, note that TCMcorr + AROMA approach did not

result in any significant activation at the set statistical threshold for

S01. Figure 5 shows an objective comparison of HRF from TCM prone

language areas that survived the statistical threshold across all four

methodologies, for representative areas from both left and right hemi-

sphere. Consistent with the results shown in Figure 4, the Standard

approach shows TCM-related temporal spiky artifacts (S05 and S14)

while the novel TCMcorr approach corrects for those temporal arti-

facts. In terms of BOLD amplitude, we observe that TCMcorr

+ AROMA approach provides the least sensitivity followed by the

AROMA approach, which may be due to excessive removal of signal

along with noise. On the other hand, the standard approach has high

signal to noise ratio (SNR) since it retains multiple sources of artifacts

(such as motion, susceptibility-motion, etc.) in addition to false posi-

tive TCM-related activity.

3.5 | Effectiveness of methodologies to account
for trial-by-trial variability

Average FF was quantified to represent signal variability at task-onset

from various representative TCM prone brain areas from intact left

and right hemisphere areas (see Figure 6). A higher FF is associated

with a greater amount of spikiness, that might be associated with

TCM artifacts. As a function of trials (averaged across runs), the

AROMA and TCMcorr + AROMA approaches demonstrate “flat” pro-

jections while the Standard approach shows more variations in

FF. The flat projection suggests removal of speech-induced TCM vari-

ability across the continuum of trials that are apparent in the Standard

approach. Interestingly, the FF in intact left hemisphere areas is rela-

tively lower compared to the right hemisphere areas. The proposed

TCM correction approach (TCMcorr) has a FF that is reduced com-

pared to Standard, representing removal of TCM but greater FF than

AROMA and TCM + AROMA, representing retention of signal. In

other words, TCMcorr potentially removes TCM variability while

F IGURE 3 Comparison of task
sensitivity across four different denoising
methodologies. The activation maps are
significant at R2 = 0.16, p < .01, cluster
size = 30. green circles denote true
positive (TP) task-relevant activation
retained in the proposed novel
methodology; orange circles denote
potential false positive task-correlated

motion (TCM) activity, and blue circles
denote TP activity retained in standard
and AROMA methodologies. The MNI
warped images are in the neurological
convention
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F IGURE 4 Demonstration of the
effectiveness of proposed methodology
to mitigate spatio-temporal variability of
task-correlated motion (TCM) artifact in
S01. (a) The activation and associated
hemodynamic response function (HRF)
from TCM prone area (L-SFG, orange
circle) and TCM immune area (R-V1,
purple box). (b) The comparison of the

HRFs derived from each methodology to
a canonical HRF. L, left hemisphere; L-
SFG, left superior frontal gyrus; R-
V1, right primary visual cortex; R,= right
hemisphere; n/s, not significant at
R2 = 0.16, p < .01, cluster size = 30

F IGURE 5 Comparison of hemodynamic response function (HRF) across four different denoising methodologies. Each HRF is derived from a
task-correlated motion (TCM) prone language area. DLPFC, dorsolateral prefrontal cortex; L, left; SFG, superior frontal gyrus; STG, superior
temporal gyrus; POp, pars opercularis; PTr, pars triangularis; R, right. The naming of these specific regions of interest (ROI) was based on the
center of peak activity for that ROI obtained via AFNI's cluster report
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retaining the signal of interest. Another metric of quantifying signal

variability is coefficient of variation (CoV) assessed at the run level

(averaged over 10 trials). Similar to FF, the CoV also shows that

TCMcorr provides a balance between removal of noise and retention

of signal. Group level paired t-test showed significant (p < .01) differ-

ence between the methodologies for both FF and CoV metrics.

4 | DISCUSSION

TCM is a unique challenge that is inherent to certain types of task

designs (e.g., overt speech) where there is shared variance between

stimulus-evoked task activity and noise. Treating TCM as rigid body

motion artifacts and thereby approaches to correct for TCM using

tools designed for routine motion artifacts, can be sub-optimal at best,

or misleading at worst for clinical research. Thus, in this study, we set

out to develop ICA classifiers trained to capture spatio-temporally

varying TCM in an aphasia data set (with overt-language fMRI para-

digm) (Krishnamurthy, Krishnamurthy, Meadows, et al., 2020). We

provided evidence that our novel TCMcorr methodology is more

effective in mitigating TCM artifacts compared to other existing

approaches, while also being cost efficient to reliably denoise larger

data sets. From a clinical translation standpoint, optimal removal of

TCM artifacts will allow for subsequent secondary analyses such as

quantifying area under the curve (underneath the denoised HRF) to

obtain longitudinal BOLD-behavior relationships (Krishnamurthy,

Krishnamurthy, Drucker, et al., 2020) indexing neuroplasticity in

response to treatment and interventions.

Speech-induced TCM is a spatio-temporally varying artifact that

shares variance with task-induced neural activity. A previous report

(Mehta et al., 2006) indicated that speech-related residual variance

increases by about 15% relative to covert (silent word generation)

task, and that in some brain areas, these increases are much greater.

Previous reports have also shown significant inter-subject variability

in spatial location of speech-related variance (Barch et al., 1999;

Preibisch et al., 2003) that includes frontal, inferior, and temporal

brain areas (along with outside the brain) that progressively attenu-

ate towards the posterior, superior, and medial regions including

around the ventricles (Birn et al., 1999; Gopinath et al., 2009;

Kemeny et al., 2005; Mehta et al., 2006; Xu et al., 2014). Thus, the

spatio-temporal variance in speech-induced TCM severely affects

the capability to detect true positive BOLD activity and separate it

from false positive activity for brain areas relevant to language and

cognitive processing. The inherent spatio-temporal variance in TCM

can be more exacerbated in patients with nonfluent aphasia as their

speech execution (motor programming and execution) is damaged

and can vary depending on lesion location and size. Although, there

have been several elegant approaches in detecting and mitigating

TCM (Birn et al., 1999; Bullmore et al., 1999; Gopinath et al., 2009;

Kochiyama et al., 2005; Mehta et al., 2006; Xu et al., 2014), a cost-

effective (labor and computational) and automated approach to

effectively denoise both spatial and temporal variance in TCM while

maintaining high fidelity to task-relevant signal that can be

customized to variety of stroke data sets was not available until the

current report.

ICA is a blind source separation technique that has been widely

used in fMRI field for removal of various types of artifacts while pre-

serving the integrity of continuous time-series. (Du et al., 2016;

Griffanti et al., 2017; Pruim et al., 2015; Salimi-Khorshidi et al., 2014;

Thomas, Harshman, & Menon, 2002). ICA-based approaches exploi-

ting both spatial and temporal information have been developed to

identify and remove physiological noise (Beall & Lowe, 2007; Perlbarg

et al., 2007), and rigid-body head motion (Pruim et al., 2015;

Yourganov et al., 2018). Although these techniques have been highly

automated for easy user interface, these tools are optimized primarily

for denoising physiological noise and rigid head motion from resting-

state fMRI data, but not TCM.

A handful of studies have utilized ICA to remove TCM, but were

focused more on the spatial information of ICA-decomposed fMRI

data (Kochiyama et al., 2005; Xu et al., 2014). Our novel approach, on

the other hand, accounts for both the spatial and temporal aspects of

speech-induced TCM. We utilized widely available FSL tools

(MELODIC and FIX) (Beckmann & Smith, 2004; Salimi-Khorshidi

et al., 2014) as the basis for the ICA decomposition and classification,

and further developed TCM-specific denoising approach using an

overt language task fMRI data set. In order to impose TCM-specific

spatial constraints, we developed a customizable approach wherein

the TCM-specific spatial mask was developed in MNI space that was

back-transformed to subject's native space for the masking of spatial

independent components (s-ICs). Note that for our mask, we not only

include the classic TCM areas (i.e., frontal, inferior, and temporal

areas) but also outside the brain as (Xu et al., 2014) have shown that

expanding the mask to include extracerebral soft tissue and air cavi-

ties can aid in TCM-relevant noise decomposition. On the IC time-

series, we ran stimulus-locked deconvolution to obtain impulse

response function (IRF) for each of those unique time-series. The

stimulus-locked approach is meant to be simple (i.e., no need for com-

plicated experimental setup for microphones to record and then to

analyze the subjects' responses) for the purposes of TCM identifica-

tion and denoising. In the process of ICA decomposition, we also did

not impose variance normalization to maintain the detectability to

TCM noise and signal of interest, and thereby their separability. In

parallel, we also analyzed the 3D functional data for stimulus-locked

deconvolution, and the significant HRF underneath the TCM spatial

mask (as described above) was correlated with each IC's IRF to ensure

that the hand labeling of a given IC captured both the spatial and tem-

poral aspects of TCM. In addition to spatial and temporal features, we

also utilized the power spectral density plots (for each IC to identify

spurious increase in power at task frequency) to facilitate the identifi-

cation of TCM. Finally, to ensure that this novel approach is cost

friendly (i.e., minimize the labor and computational resources to

denoise each individual task run of N subjects across multiple time

points in longitudinal studies), we utilized the ICA FIX tool to train a

classifier that is then used to denoise the entire data set. To build a

robust TCM-classifier, it is important to use a minimum of 10 data sets

(Salimi-Khorshidi et al., 2014) and to select a wide variety of TCM

KRISHNAMURTHY ET AL. 1125



artifacts such that when deployed on new data sets, the classifier can

capture a broad spectrum of TCM noise. Such an approach will also

be favorable to capture a wide variety of TCM artifacts that are

influenced by neurological (in our case, language and speech) impedi-

ments in clinical datasets.

Given that AROMA is a widely used ICA-based denoising

approach, we wanted to dive deeper to compare how the novel

TCMcorr approach compared to AROMA in mitigation of speech-

related TCM. Since AROMA was developed to correct for global bulk-

head motion (Pruim et al., 2015), it is grossly non-selective and thus

was not able to remove speech-related nonrigid motion artifacts

(e.g., L-SFG in Figure 5). It should be noted that the TCMcorr classifier

was not only sensitized to TCM, but the hand classification also incor-

porated accounting for other sources of artifacts and thus when com-

pared to AROMA, it provided either comparable or superior results in

terms of artifact removal (e.g., removal of white matter artifacts in

Figure 2). However, the task sensitivity in certain brain areas (subcor-

tical and medial temporal) that inherently has lower SNR may have

been compromised in the TCMcorr approach as compared to AROMA

(Figure 3), and also the BOLD amplitude was higher for AROMA as

compared to TCMcorr in some cortical areas (see R-POp, and S07 R-

STG in Figure 5) in representative subjects, but the shape of the HRF

is quite normal. On the other hand, in subjects with spiky HRFs (see

L-SFG and S05 R-STG in Figure 5), the TCMcorr approach not only

removes the spikiness but also retains higher BOLD magnitude com-

pared to AROMA. Collectively, these results suggest that the novel

TCMcorr approach is more tailored to effectively account for speech-

induced spatio-temporally varying TCM. Also, inspecting the average

CoV across all subjects (Figure 6), the TCMcorr approach provides a

good balance between removal of TCM artifact while retaining signal

of interest. Given that AROMA is tailored to bulkhead motion and

TCMcorr sensitized to TCM, from a methodological standpoint, it was

imperative to also combine the two approaches to see if that was

more optimal than either alone. Across the board (see Figures 2

through 6), our results show that TCMcorr+AROMA approach

removes excessive amount of structured signal along with structured

noise resulting in “overcorrection” (Bright & Murphy, 2015;

Krishnamurthy et al., 2018).

Although deconvolution is an elegant approach to quantify HRF,

one down side to such an approach is that it combines all the trials for

HRF estimation. In such an approach, deconvolution might be less

sensitive to trial-by-trial variability in TCM. This issue is even more

protracted in patients with aphasia as they have neurologic speech

timing issues. It is also reasonable to expect filler word (e.g., - “um, er”)

or no response which may still involve stimulus-locked cognitive

processing and perhaps some degree of rigid and nonrigid

F IGURE 6 Comparison of trial-by-trial variability and CoV across four different denoising methodologies. For each of the six different TCM
prone brain areas, the left column shows coefficient of variation (CoV) quantified across runs, and the right column depicts the trial-by-trial
variability quantified using Fano Factor from the same brain areas. CoV, Coefficient of Variation; FF, Fano Factor; L, left; MFG, middle frontal
gyrus; mPFC, medial pre-frontal cortex; R, right; SFG, superior frontal gyrus; aSTG, right anterior superior frontal gyrus; PMd, dorsal pre-motor
cortex; PTr, pars triangularis
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movements. Thus, FF was quantified for each trial using the time-

series and window length of 3TRs (=5.1 s) (Birn et al., 1998; Gopinath

et al., 2009; Mehta et al., 2006) synced with the stimulus onset. The

FF quantified across all subjects from various language-specific TCM

prone areas show that the TCMcorr approach provides a good bal-

ance between signal detectability and minimizing TCM-related trial-

by-trial variability. Another interesting note is that the FF is relatively

lower in left hemisphere residual areas as compared to right hemi-

sphere intact language areas (see Figure 6). Given that FF is quantified

from HRF (first three TRs) that was derived from stimulus-locked

deconvolution, lower FF in residual language areas from lesioned

hemisphere might indicate lower and/or delayed activity. This could

potentially be due to word initiation and word retrieval difficulties in

these patients that need to be further investigated in future studies.

Overall, it is promising to note that FF can be a potential biomarker to

identify word initiation deficits (i.e., vascular lags; Siegel, Snyder, Ram-

sey, Shulman, & Corbetta, 2016) and how it may change as a function

of language rehabilitation.

In light of clinical translatability of the proposed work, we also

took a preliminary stab at exploring the relationship between TCM

artifact (and its removal with proposed methodologies) with clinical

factors (such as WAB fluency and WAB AQ) and lesion size. Note

that the assumption here is that the FF derived from Standard

approach has higher amount of TCM and thus served as the proxy

for indexing TCM artifact. Results from supplementary section S5

indicate that lesion size does not predict speech-induced TCM arti-

fact. However, WAB fluency and WAB AQ (i.e., aphasia severity) did

show a significant inverse relationship with TCM artifact. That is,

increased aphasia severity and poorer performance on WAB speech

fluency is predictive of a greater amount of TCM artifact in brain

areas (i.e., R-aSTG and L-MFG) involved in fluency (Meinzer

et al., 2009). In terms of how FF relates to clinical factors after the

removal of TCM, we observe a spatial dependence across the meth-

odologies. Although this is quite promising, given that our study had

a small sample size, further work is required to investigate the valid-

ity and reliability (Wilson, Bautista, Yen, Lauderdale, &

Eriksson, 2017) of overt task activation in patients with aphasia.

Such an investigation should also incorporate delineating the impact

of various analysis parameters such as voxel-wise threshold and

cluster size cutoff on test–retest reliability of such activations. In the

current study, given that the focus was to compare the removal of

TCM across methodologies, we chose a conservative approach to

threshold at an R2 of 0.16 across the board. We also explored rela-

tive thresholding of R2 in a few representative subjects (see supple-

mentary section S6), and did not find any significant impact within

the scope of the current study, but further work is warranted.

Overall, it is promising to note that ICA technique can be devel-

oped to account for both spatial and temporal variabilities that are

unique to TCM induced by certain tasks. Such tasks include overt

speech or joystick movement inside the scanner that are clinically

relevant to stroke-related neurorehabilitation, and thus cannot be

easily pushed aside for resting-state fMRI scans. Although fully

automated approaches are attractive for clinical translation, careful

identification of TCM-related ICs require training and a one-time

front-end effort from a researcher. The current work provides such

a framework and is positioned towards developing and disseminat-

ing fully automated pipelines. From a validity standpoint, indeed fur-

ther work is warranted to establish test–retest reliability on TCM

denoising such that it increases confidence in deploying this

approach for clinical use. From an acquisition standpoint, B0 field

maps (Jezzard & Balaban, 1995) were unfortunately not acquired

with this data set to correct for EPI geometric distortion. Although

sagittal EPI acquisition was employed to minimize speech-related

TCM, most of the contemporary fMRI data collection involves

multiband transverse acquisition that facilitates the use of “TOPUP”

approach (Andersson, Skare, & Ashburner, 2003) to correct for EPI

distortion. In the same context, although multiband acquisition can

be attractive for capturing the temporal dynamics of TCM,

multiband acquisition is inherently more sensitive to motion than

traditional EPI scans. Given that an 8-channel head coil was utilized,

the sensitivity to deeper sub-cortical areas was limited and may have

affected optimal denoising in the proposed methodology. Thus,

future work will entail development and optimization of the pro-

posed methodology to effectively account for TCM in multiband

fMRI data sets that utilizes contemporary 32-channel receiving head

coils. As a proof of principle, we have demonstrated that the pro-

posed approach works on overt speech tasks, but the generalization

of this approach requires further testing on other stroke rehabilita-

tion relevant tasks such as joystick movement or spatial aiming tasks

that can also have unique task-specific TCM.

5 | CONCLUSION

In summary, TCM is a unique spatio-temporally varying artifact that

can reduce the detectability of true positive activation. TCM arti-

facts cannot be mitigated by using routine denoising packages that

are tailored to correct for rigid body bulkhead motion. We have

demonstrated that developing a TCM-specific ICA classifier that uti-

lizes both spatial and temporal features can be spatially selective

while also retaining and/or enhancing the detectability power to

task-induced BOLD activity. Importantly, our approach is optimized

to account for trail-by-trial variability in TCM. Finally, the develop-

ment of a TCM classifier is cost efficient to analyze large data sets

designed to study longitudinal rehabilitation in different stroke

populations.
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