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Abstract: Protein-protein interaction plays an essential role in almost all cellular processes and
biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking
analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein
binding process and predicting the binding affinity. Our case study of designed ankyrin repeats
proteins (DARPins)—AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1
capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory
activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key
residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and
CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold
conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with
CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but
not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-
Y56A (−31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced
compared to AnkGAG1D4 (−60 kcal/mol). The possible mechanism of the protein-protein binding
was explored in detail by decomposing the binding free energy for crucial residues identification and
hydrogen bond analysis.

Keywords: nanoparticle tracking analysis; molecular dynamics simulations; HIV-1; DARPins;
protein-protein binding

1. Introduction

In almost all significant cellular processes and biological functions, protein-protein
interactions play a vital role [1]. Identifying protein-protein interactions and their bind-
ing affinity are crucial in knowing cellular biological processes, discovery and design of
novel therapeutics, protein engineering, and mutagenesis studies [2]. Hence, convenient,
highly sensitive, and low-cost bioanalytical tools that allow fast and high throughput
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screening targeting protein-protein interactions are extremely important for biomolecular
research [3–5].

Various computational tools are available for the evaluation of the functional relevance
of the predicted protein-protein complexes and the prediction of their realistic binding
affinity [6]. Molecular dynamics (MD) simulation is one of the main in silico tool in the
study of biomolecules owing to its better predictive power and more reliable analysis of
protein structure, dynamics, and functions [7,8]. In addition, simulating protein-protein
interactions in the presence of water through molecular dynamics (MD) simulations has
become a common, accurate and reliable approach in understanding the communication
between the proteins. Dynamics and structure of protein obtained from MD simulations
can be analyzed in depth to understand the interactions of the protein with its targets [7]
and reveal the amino acids that are critical to enabling the communication [9,10] or the
other way, disrupting the interactions [11]. Furthermore, predicted binding free energy
calculated from MD snapshots can distinguish the candidate amino acids sequences [12–17]
for their affinity in binding with a target.

Nevertheless, investigating the protein-protein binding interactions using the experi-
mental technique is indispensable. Nanoparticle tracking analysis (NTA) emerges as an
innovative and attractive approach commonly employed in routine to visualize and ana-
lyze nanoparticles in liquids directly, in real time since it was first introduced in 2006 [18].
Each of the particles scatters light when they are illuminated by a laser beam and the
paths taken by the particles under Brownian motion over a period of time is recorded
using a camera [19]. Hydrodynamic radius (rh), or the size of each tracked individual
particle can be measured based on the displacement of the particle over time [20–22] using
the Stokes-Einstein equation, where KB is Boltzmann’s constant, T is temperature, and η

is viscosity.

Dt =
KBT

6πηrh
(1)

In numerous studies, nanoparticle tracking analysis (NTA) has demonstrated its
strength in the direct and quantitative measurement of the protein-protein binding [23–28]
by coupling gold nanoparticle probes and dynamic light scattering (DLS) as a light scat-
tering enhancer and read-out system, respectively. Of the highlights, NTA was not only
successful in confirming the completion of conjugation between a protein and gold nanopar-
ticles, but also detected and monitored the binding of antigen toward the antibody-gold
conjugated in situ by measuring the average particle size change of the assay solution [26].

In this work, we have adopted MD simulations and NTA technique as a novel pro-
tocol to decipher the binding patterns and monitor the binding between the Designed
Ankyrin Repeat Proteins (DARPins) AnkGAG1D4/AnkGAG1D4-Y56A and HIV-1 capsid
protein (CA). DARPins are genetically engineered antibody mimetic proteins derived
from naturally occurring ankyrin proteins, typically exhibiting highly specific and high-
affinity target protein binding in a wide variety of bacterial and mammalian cells [29–32].
DARPins are composed of stacked repeats containing 33 amino acids. Each repeat is
formed by two antiparallel α-helices and a β-turn connecting the next repeat [33,34]. These
repeats are flanked by constant capping regions, forming one contiguous polypeptide chain.
AnkGAG1D4 is a trimodular DARPin binding to HIV-1 capsid protein (CA) and was isolated
from screening a phage-display artificial library [35]. AnkGAG1D4 exerted its intracellular
antiviral activity at the late phase of the HIV-1 life cycle, by negatively interfering with the
Gag protein assembly and budding machinery [35]. To increase the affinity of AnkGAG1D4
in binding with CA, a few amino acid residues located in the interacting site were subjected
to site-directed mutagenesis [36] and binding affinity of AnkGAG1D4 for CA was lost when
a mutation occurs at residue Y56 of AnkGAG1D4 (AnkGAG1D4-Y56A). Through all atoms’
MD simulations, we were able to visualize the conformational changes of the CA upon the
binding of AnkGAG1D4 and AnkGAG1D4-Y56A and explain the reason for the unfavorable
binding of the mutant DARPins toward CA. The capability of NTA in monitoring the
binding process between two proteins was found useful to examine if/whether binding
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occurs between derivatives of AnkGAG1D4 and CA. Moreover, structural, and dynamic
properties obtained from MD simulations permit exploration of possible mechanisms that
led to different binding affinities of DARPins.

2. Results

2.1. Single Point Mutation Disrupts the Interaction Network between AnkGAG1D4 and HIV-1 CA

Binding free energy, ∆GB computed under MMGBSA and ∆PB obtained from MMPBSA
protocols have differentiated the affinity of AnkGAG1D4 and AnkGAG1D4-Y56A for CA
as described in Table 1. AnkGAG1D4 has ∆GB of −60.38 kcal/mol while AnkGAG1D4-
Y56A has ∆GB of −31.06 kcal/mol. The magnitude of the energy difference between
the two complexes obtained from MMGBSA calculations is more pronounced as ∆PB
of AnkGAG1D4 and AnkGAG1D4-Y56A in complex with CA was −77.49 kcal/mol and
−67.07 kcal/mol, respectively. Binding free energy accounted from both methods agree
with the experimental findings [36] in which AnkGAG1D4 lost its affinity toward CA when
tyrosine (Y) at position 56 was mutated to alanine (A). In both the complexes, favorable
contributions to the binding arose from van der Waals (vdW) and the non-polar part of
the solvation free energy, as opposed to the unfavorable total electrostatic contributions
(EEL + EGB and EEL + Epb). Site-directed mutagenesis at the residue Y56 has disrupted
all the energy components involved in the binding, where the vdW interactions lost are
observed to be greater (Table 1).

Table 1. Binding affinity derived from MMGBSA and MMPBSA for AnkGAG1D4-CA and AnkGAG1D4-
Y56A-CA complexes. EEL, MM electrostatic energy; vdW, van der Waals energy while the polar and
non-polar term for MMGBSA/MMPBSA are EGB/EPB and ESURF/ENPOLAR, respectively.

∆Ebinding (kcal/mol) AnkGAG1D4-CA AnkGAG1D4-Y56A-CA

EEL −118.70 −92.45
vdW −219.39 −87.13
EGB 289.91 157.75

ESURF −12.21 −9.23
∆GB −60.38 −31.06
EPB 280.89 129.06

ENPOLAR −20.29 −16.55
∆PB −77.49 −67.07

Interaction free energy (IE) of residues was calculated by decomposing the binding
free energy into vdW, non-polar contributions to the solvation free energy (NP) and the
sum of electrostatic interactions (EEL) and electrostatic contribution to the solvation free
energy components (GB) to identify the important residues contributing for the binding
affinity using residues within close contacts (4 Å) between AnkGAG1D4/AnkGAG1D4-Y56
and CA. Key residues R23, D44, Y56, R89, and K123 of AnkGAG1D4 shown in Figure 1
were previously identified [37] for their crucial role in binding affinity observed to have
remarkable low IE with major contribution from the sum of EEL and GB. Interactions of D44,
Y56A, R89 and K123 with CA reduced drastically as IE went higher in AnkGAG1D4-Y56-CA.
IE Y56A increased the most among the key residues, about 95%, from −11.17 kcal/mol to
−0.65 kcal/mol.

In addition, different interaction patterns of CA helices in complexed with AnkGAG1D4
and AnkGAG1D4-Y56 was observed as illustrated in Figure 2. Residues of helix 7 (H7),
helix 4 (H4), helix 1 (H1), and helix 2 (H2) were in close contact with the AnkGAG1D4 with
a total IE of −52.32 kcal/mol, −28.08 kcal/mol, −12.82 kcal/mol, and −12.13 kcal/mol,
respectively. Among the close contact residues of CA, E46 located in the loop between
H2 and H3, D129 and R133 of H7 are the major binding affinity contributors by making
favorable interaction with AnkGAG1D4 via R89, D44, and K123 with IE of −17.05 kcal/mol
(E46-R89), −12.31 kcal/mol (R133-D44), and −9.96 kcal/mol (D129-K123). In contrast,
interactions between AnkGAG1D4-Y56A and helices of CA disrupted as H1 and H2 CA did
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not interact with AnkGAG1D4-Y56A. Total IE of H7 residues in AnkGAG1D4-Y56A-CA was
−42.46 kcal/mol, about 10 kcal/mol or 18% higher than that of H7 in AnkGAG1D4-CA.
Apart from energetic profile, single point mutation Y56A has dynamically changed the
conformation of the CA as H1 in AnkGAG1D4-Y56-CA was observed to have moved further
away from the DARPin (Figure 2).
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Figure 1. Interaction free energy of key residues (a) AnkGAG1D4 and (b) AnkGAG1D4-Y56A in complex.

Hydrogen bonding interactions play a role in stabilizing the inter-molecular contacts.
Hydrogen bond analyses on the MD trajectories were carried out and their fractions, which
reflect the percentage of conservation, were reported in Figure 3. A total of 12 hydrogen
bonds that remained more than 50% of the simulations time are found in the AnkGAG1D4-
CA complex compared to 11 in the AnkGAG1D4-Y56A-CA complex. It is noticeable that
more than half of the hydrogen bonding pairs involved water molecules at the binding
vicinity (Table S1, Supplementary Materials). Presence of tyrosine (Y) at position 56 in
AnkGAG1D4 promoted hydrogen bond formation with residue I130 of CA. The hydrogen
bonding pairs between CA and AnkGAG1D4 at R133-D44, E77-R23, and I130-Y56 were
absent upon the substitution of tyrosine with alanine at position 56. In the AnkGAG1D4-
Y56A-CA complex, a new hydrogen bonding pair was found between R133-D77. Y56A
mutation reorganized the hydrogen bonding network within the complex (Figure 3) and
with surrounding water molecules. This agrees with the free energy binding analysis, in
which the affinity was reduced in the AnkGAG1D4-Y56A-CA complex.

2.2. Confirming Binding of AnkGAG1D4 toward CA
2.2.1. NTA Assay

NTA-DLS technique would be an alternative approach for directly and quantitatively
measuring the effect of point mutation on the binding affinity between a protein-conjugated
gold and a target analyte in solution. Upon protein binding, the size of the protein
particles in a solution containing two binding proteins would increase, equivalent to the
summation of the size of the two binding proteins. The average size of AnkGAG1D4-
conjugated GNP measured by NTA was 31 nm (Figure 4a) and was much smaller than
AnkGAG1D4-Y56A-conjugated GNP that was 82 nm (Figure 4b). This may be due to the
preparation step of the Ank conjugated gold particles that caused variations in particle size
distribution. Interestingly, after adding the HIV-1 CA, the size of AnkGAG1D4-conjugated
GNP significantly increased from 31 nm to 42 nm and some larger particles with sizes 98 nm,
163 nm and 281 nm were found forming in the solution (Figure 4c). However, the size of
the AnkGAG1D4-Y56A-conjugated GNP decreased slightly to 78 nm (Figure 4d). The size
of AnkGAG1D4-conjugate GNP almost remained unchanged suggested that AnkGAG1D4-
Y56A did not bind with CA while an increase in the size of AnkGAG1D4-conjugated GNP
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showed that the binding occurs between AnkGAG1D4 and CA. Additionally, the larger size
of AnkGAG1D4-conjugate GNP after binding with CA affected the Brownian movements of
the particles. Observation obtained from NTA was therefore consistent with the previous
study [36]. Protein binding can be distinguished from protein aggregation by monitoring
the size of the protein particles after the binding reaction.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 2. Interaction free energy of the CA residues interacting with (a) AnkGAG1D4 and (b) AnkGAG1D4-Y56A within 4 Å 

binding vicinity. Comparison between the conformation of (c) AnkGAG1D4-CA and (d) AnkGAG1D4-Y56-CA complexes 

after 100 ns simulations showed that the H1 (red) moved further away from the DARPin in (d). Residues in both complexes 

that contributed the most in the binding free energy were highlighted in yellow. 

Figure 2. Interaction free energy of the CA residues interacting with (a) AnkGAG1D4 and
(b) AnkGAG1D4-Y56A within 4 Å binding vicinity. Comparison between the conformation of
(c) AnkGAG1D4-CA and (d) AnkGAG1D4-Y56-CA complexes after 100 ns simulations showed that the
H1 (red) moved further away from the DARPin in (d). Residues in both complexes that contributed
the most in the binding free energy were highlighted in yellow.
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Figure 3. Important hydrogen bonding pairs of both the (a) AnkGAG1D4-CA and (b) AnkGAG1D4-
Y56A-CA complexes. R23, D44, and Y56 (green sticks) of AnkGAG1D4 making hydrogen bonds
with CA (blue sticks) while the hydrogen bond between D77 and R133 in AnkGAG1D4-Y56A-CA
is shown in pink and blue sticks. R23, D44, and Y56 that are making hydrogen bonds with the CA
in AnkGAG1D4-CA are at a distance that is too far to establish hydrogen bonds at the AnkGAG1D4-
Y56A-CA complex (green shading in b). The table lists the hydrogen lifetime where (A) denotes
residues from AnkGAG1D4-CA/AnkGAG1D4-Y56A while (P) denotes residues from CA.

2.2.2. Electrochemical Impedance Spectroscopy

Cyclic voltammetry (CV) was used to investigate the electrochemical properties of
the fabricated ITO surface using [Fe(CN)6]4−/3− redox active species after every single
step of ITO surface fabrication (Figure 5). Figure 5b shows the cyclic voltammograms of
bare ITO surface and 1,4-phenylenediamine-fabricated ITO surface (Surface 1), whereas
Figure 5c shows the CV of Surface 2 and Surface 3, respectively. A pair of well-defined
Faradaic peaks for [Fe(CN)6]4−/3− species was found on the reversible CV of bare ITO
surface (blue color curve in Figure 5b). It was due to the absence of the inhibition layer
on the ITO surface, hence the redox species could directly access the ITO surface. After
the electrochemical deposition of 1,4-phenylenediamine, no Faradaic peaks for redox
species were observed between +0.6 V and −0.4 V. Deposition of 1,4-phenylenediamine
inhibited the redox species from accessing the ITO working electrode. The attachment of
AnkGAG1D4 conjugated colloidal gold to 1,4-phenylenediamine on the ITO surface showed
no significant changes in peak current. This was because the high conductivity of gold
increased peak current, whereas the large molecular size of AnkGAG1D4 could cause the
peak current to decrease, therefore the change in peak current had been balanced out by
these two factors. The decrease of peak currents (4 µA to 3 µA) in Figure 5c and the increase
of charge transfer resistivity (18.511 kΩ to 31.791 kΩ) obtained by fitting the Nyquist plots
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with the equivalent circuit in the inset of Figure 5d showing that the binding of large CA to
the surface-bound AnkGAG1D4 decreased the access of redox species to the ITO working
electrode. Therefore, the changes in electrochemical signal (e.g., peak current and charge
transfer resistivity) indicated binding of AnkGAG1D4 and CA was detected and hence
validated the binding activity.
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Figure 4. The average size of DARPin-conjugated colloidal gold before and after binding with HIV-1 CA. Size of (a)
AnkGAG1D4-conjugated colloidal gold, (b) AnkGAG1D4-Y56A conjugated colloidal gold, (c) AnkGAG1D4 conjugated
colloidal gold upon binding with CA and (d) AnkGAG1D4-Y56A conjugated colloidal gold upon binding with CA under
measurement of nanoparticle tracking analysis.
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Figure 5. Simple stepwise of (a) fabrication of ITO surface used for detecting binding of CA, and the cyclic voltammograms
of the (b) bare ITO surface (blue) and Surface 1 (red), (c) Surface 2 (orange) and Surface 3 (yellow), and (d) the Nyquist plots
obtained from the EIS measurements for Surface 2 (orange) and Surface 3 (yellow).
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3. Discussion

Binding free energy computed by MMGBSA or MMPBSA algorithms have been widely
employed to predict the binding affinity of protein-ligand [38–41] and protein-protein com-
plexes [16,42–44] and is in good agreement with experimental findings. In this work,
binding free energy of AnkGAG1D4 and AnkGAG1D4-Y56A for HIV-1 CA was computed to
understand the effect of single point mutation performed on residue Y56 of AnkGAG1D4.
Residue Y56 was previously identified as one of the crucial residues of AnkGAG1D4 for CA
binding affinity. Binding free energy (∆GB) of AnkGAG1D4-Y56A-CA (−31.06 kcal/mol)
increased almost two folds as compared to AnkGAG1D4-CA (−60.38 kcal/mol). The effect
of mutating just one amino acid of DARPin could be huge and significant as single point
mutation could improve the binding affinity of DARPin for its target [44,45] but it could
also cause DARPin to lose its affinity for its target entirely such as AnkGAG1D4. Substitut-
ing tyrosine with alanine at residue 56 AnkGAG1D4 had altered the binding interactions
between AnkGAG1D4 and CA as favorable inter-molecular contacts reduced within the
complex. There were nine CA residues, R19, E76, E77, E80, W81, D129, I130, R133 and
N140 from H1, H4 and H7 interacted with AnkGAG1D4 with IE < −5 kcal/mol while only
two CA residues D129 and R133 were low in IE upon interactions with AnkGAG1D4-Y56A.
In the AnkGAG1D4-Y56A-CA complex, H1 of CA and R23, D44 and Y56 of AnkGAG1D4-
Y56A have shifted away from the binding interface. Consequently, hydrogen bonds were
not formed between R23, D44 and Y56 and CA in the AnkGAG1D4-Y56A-CA complex as
their distance is too far for hydrogen bonding. Hence, conformational changes and hydro-
gen bonding network reorganization making the protein-protein interactions unfavorable
between AnkGAG1D4-Y56A and CA. Conventional approaches in investigating protein-
protein binding are normally tedious and require high cost and long incubation time. NTA
assay comes into place to simplify the process and offering a rapid and simple technique to
investigate and monitor the binding between two proteins in solution [26]. The binding
process was determined and monitored by measuring the hydrodynamic radius of the gold
conjugated nanoparticles (GNP) of AnkGAG1D4 and AnkGAG1D4-Y56A after mixing with
CA in solution. In the mixed solution, AnkGAG1D4-conjugated GNP has its size increased
from 31 nm to 42 nm while the size of AnkGAG1D4-Y56A-conjugated GNP almost remained
unchanged. The size increment of AnkGAG1D4-conjugated GNP inferred that binding oc-
curred between AnkGAG1D4 and CA. Size of AnkGAG1D4-Y56A-conjugated GNP did not
increase suggested no binding occurred between the two proteins. It was in agreement
with previous ELISA findings where AnkGAG1D4-Y56A did not bind with CA [36]. Due to
a larger size, Brownian movements of AnkGAG1D4 was observed to reduce after binding
with CA. Apart from MD simulations and NTA, binding activity was also validated by
the EIS method. EIS offers a highly sensitive and selective technique for most bio-sensor
studies involving large biomolecules, such as proteins [45–47]. The detection principle
works on measuring changes of electrochemical signals such as charge transfer [48,49],
capacitance [50] or impedance [51,52]. Binding between AnkGAG1D4 and CA was detected
as changes in electrochemical signals such as peak current and charge transfer resistivity
were observed (Figure 5). The large size of CA prevented redox species to interact with
the ITO working electrode resulted in changes in the electrochemical signals. For the first
time, our work showcasing how MD simulations and NTA techniques can be applied to
provide mechanistic insights into protein-protein interactions and protein-protein asso-
ciation. The techniques described are practical and simple in elucidating the impacts of
a single point mutation toward the protein-protein binding, including the binding and
dynamics pattern change. Additionally, it would allow predicted binding interactions
between computationally designed proteins and target to be easily verified.

4. Materials and Methods
4.1. Protein-Protein Docking

X-ray crystal structures of AnkGAG1D4 and AnkGAG1D4-Y56A were retrieved from
the Protein Data Bank (PDB) with PDB ID 4HLL and 4ZFH, respectively. AnkGAG1D4
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was docked to the helix 7 of CA under rigid-body docking protocol embedded in Z-Dock
Discovery Studio programme 2.5 as described in the previous study [37]. The complex of
AnkGAG1D4-Y56A-CA was then generated by superimposing the AnkGAG1D4-Y56A to
AnkGAG1D4 in the AnkGAG1D4-CA complex. Both complexes underwent minimization
under RMS gradient tolerance of 0.1000 kcal / (mol × Angstrom). CHARMm force field
with Momany-Rone partial charge [53] was applied to describe the molecular properties of
the protein structures.

4.2. Molecular Dynamics

Both minimized AnkGAG1D4-CA and AnkGAG1D4-Y56A-CA complexes were sub-
jected to propka [54] to assign the protonation state of the amino acid residues in the
complexes. Then, the two structures were prepared under the LeaP module embedded in
the AMBER 14 program [55], for adding the missing hydrogen and solvating the complex
using a TIP3P water box with counter ions added to neutralize the system. FF14SB force
field [56] has been used to describe the protein complexes. MD simulations were performed
using PMEMD.CUDA from AMBER with a time step of 2 fs and a cutoff radius of 10 Å for
the nonbonded interactions, and particle-mesh Ewald (PME) was used for calculating the
long-range electrostatic interactions. SHAKE algorithm was used to constrain all bonds
involving hydrogen. The temperature of each system increased gradually from 0 to 310 K
over a period of 60 ps of NVT dynamics. This was followed by 200 ps of NPT equilibration
at 310 K and 1 atm pressure. The resulting structures were then simulated for 100 ns. To
determine the equilibrate state for trajectories sampling and convergence of simulations,
root mean square deviation (RMSD) of all backbone atoms of the two simulated complexes
(Figure S1, Supplementary Materials) were computed using initial structure as reference
under the CPPTRAJ module [57]. Binding free energy of the complexes was accounted
with Molecular Mechanics Generalized Born Surface Area (MMGBSA) and Molecular
Mechanics Poisson Boltzmann Surface Area (MMPBSA) protocols under MMPBSA.py
module [58] implemented in AMBER 14 using 1000 snapshots extracted from the last 5 ns
of NPT-MD trajectories.

4.3. Preparation of Gold Nanoparticle-DARPin Conjugates

Gold nanoparticles (GNPs) used in the experiments were established by mixing 900 µL
of GNPs solution and 100 µL of AnkGAG1D4 and AnkGAG1D4-Y56A at the concentration
of 1000 µg/mL. The solution was incubated for 1 h in a shaking incubator. Next, 150 µL
of bovine serum albumin (BSA) was added to the GNPs solution and incubated for an
additional 1 h in a shaking incubator. The GNPs solution was centrifuged at 5000 rpm for
3 min and the pellet obtained was reconstituted in 1 mL of phosphate buffer saline (PBS)
(pH 7) for measuring the optical density (OD) of GNPs. The recombinant CA was expressed
in the baculovirus (BV) expression system [59,60] and purified by affinity chromatography
on the HisTrap column, using ÄKTA Prime™ plus (GE Healthcare, Piscataway, NJ, USA).
The protein concentration was quantified using a BCA Protein Assay from Pierce™ (Thermo
Fisher Scientific, Waltham, MA, USA).

4.4. Nanoparticle Tracking Analysis

All NTA measurements were performed using 300 µL of the sample under NS300
Particle Measuring Instrument from NanoSight Ltd. (NanoSight, Worcestershire, UK). The
size and distribution of AnkGAG1D4 and DARPin-conjugated GNPs was first characterized
by diluting the samples in PBS to obtain optimal OD at 0.002. The binding activity of
DARPin-conjugated GNPs and CA was measured by mixing diluted DARPin-conjugated
GNPs with 100 µg/mL of purified HIV-1 CA protein in a 1:1 ratio. Particle movement was
monitored for 60 s long by NTA to determine the size of DARPin-conjugated GNPs before
and after interacting with CA.
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4.5. Validation of the Binding Activity Using Electrochemical Impedance Spectroscopy

An Autolab PGSTAT204 (Metrohm, KM Utrecht, The Netherlands) and NOVA soft-
ware were used in this study. A three-electrode system consists of indium tin oxide (ITO)
as the working electrode, Ag/AgCl (3.0 M KCl) as the reference electrode and a platinum
wire as the counter electrode was used. A clean ITO surface was modified with 5 mM of
1,4-phenylenediamine by CV technique at a scan rate of 100 mVs−1 for 2 cycles between
+0.2 V and −0.6 V versus Ag/AgCl. 5 mM of the 1,4-phenylenediamine solution was
prepared in 0.5 M HCl aqueous solution, to which 10 mM NaNO2 was added to generate
the aryl diazonium cation. The diazonium cation solution was deaerated with nitrogen
flow and allowed to react for at least 10 min prior to fabrication of the ITO surface. Next,
the fabricated ITO surface was rinsed with Milli-QTM water and dried under a stream of
nitrogen gas. Surface 1 (Figure 5) was incubated in an aqueous solution (60 µL), which
contains 5 mM of NaNO2 and 0.5 M of HCl, for 15 min. After incubation, the ITO plate
was rinsed with Milli-QTM water and dried under a stream of nitrogen gas. For Surface 2
(Figure 5), the fabricated ITO surface was incubated with 60 µL of Ank1D4 conjugated
colloidal gold at room temperature (25 ◦C) for 3 h. Then the ITO plate was rinsed with Milli-
QTM water and dried under a stream of nitrogen gas. Finally, the ITO surface (Surface 2
in Figure 5a) was used to detect CA protein (200 µg mL−1) by incubating the ITO plate
with CA for 30 min. The detection of CA was monitored by electrochemical impedance
spectroscopy (EIS) measurement performed with a DC potential of 0.2 V, a frequency range
of 0.1–10,000 Hz and amplitude of 0.01 V. Surface characterization of ITO by CV technique
in phosphate buffer solution (0.05 M of KCl and 0.05 M of K2HPO4/KH2PO4) containing 1
mM of [Fe(CN)6]4−/3− at a scan rate of 100 mVs−1 for 2 cycles between +0.2 V and −0.6 V
versus Ag/AgCl.

Supplementary Materials: The following are available online, Figure S1: RMSD of AnkGAG1D4-CA
and AnkGAG1D4-Y56A-CA complex throughout 100 ns simulations time; Table S1: Hydrogen bond
pairs involving water molecules in AnkGAG1D4-CA and AnkGAG1D4-Y56A-CA complex.
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