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A B S T R A C T   

Stubble-burning in northern India is an important source of atmospheric particulate matter (PM) 
and trace gases, which significantly impact local and regional climate, in addition to causing 
severe health risks. Scientific research on assessing the impact of these burnings on the air quality 
over Delhi is still relatively sparse. The present study analyzes the satellite-retrieved stubble- 
burning activities in the year 2021, using the MODIS active fire count data for Punjab and 
Haryana, and assesses the contribution of CO and PM2.5 from such biomass-burning activities to 
the pollution load in Delhi. The analysis suggests that the satellite-retrieved fire counts in Punjab 
and Haryana were the highest among the last five years (2016–2021). Further, we note that the 
stubble-burning fires in the year 2021 are delayed by ~1 week compared to that in the year 2016. 
To quantify the contribution of the fires to the air pollution in Delhi, we use tagged tracers for CO 
and PM2.5 emissions from fire emissions in the regional air quality forecasting system. The 
modeling framework suggests a maximum daily mean contribution of the stubble-burning fires to 
the air pollution in Delhi in the months of October–November 2021 to be around 30–35%. We 
find that the contribution from stubble burning activities to the air quality in Delhi is maximum 
(minimum) during the turbulent hours of late morning to afternoon (calmer hours of evening to 
early morning). The quantification of this contribution is critical from the crop-residue and air- 
quality management perspective for policymakers in the source and the receptors regions, 
respectively.   

1. Introduction 

Air pollution has been a growing concern for many developing cities across the globe. Delhi often tops the list of the most polluted 
cities globally [1]. The rapid increase in the air pollution episodes over Delhi and the National Capital Region (NCR), for the past 
several years, especially in the post-monsoon and the winter seasons, primarily due to steady growth in a broad range of local emission 
sources such as transportation, industrial power generation, and construction activities, in addition to the seasonal burning of the 
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crop-residue (stubble) in the upwind regions of the national capital of India, has posed a greater health risk to a large residential 
population [2,3]. In the past few years, the increase in PM2.5 concentrations observed more commonly in the post-monsoon period in 
the Delhi-NCR and further down-wind regions [4] has been connected with the open crop-residue burning in the north-western states 
of India apart from the local emission sources [5–12]. In India, fires are often used as a tool for agricultural management, such as 
removing residues from paddy cultivation. These fires mainly occur during the post-monsoon season (roughly October–November) due 
to widespread stubble-burning in preparation for planting the next round of crops [4,13]. A sharp rise in rice production and yields in 
India, the world’s biggest exporter of grain, has exacerbated the problem of crop waste within the two northwestern states, Punjab and 
Haryana, generating more than 27 million tonnes of rice straw a year [13]. It is estimated that about 46 million tonnes/year of cereal 
crop residue is generated in Punjab alone, out of which ~21 million tonnes is burnt in a year (~7− 8 million tonnes during winter) [14, 
15]. In Haryana, the total cereal crop residue generated is ~25.73 million tonnes/year, and 9.18 million tonnes are burnt in a year 
[15]. The coincidence of the fire activities with the unfavorable meteorological conditions such as a stable boundary layer with 
near-surface temperature inversion results in the cold and polluted air trapped close to the surface, promoting the hazy conditions [16, 
17]. Due to the greater residence time for pollutants and relatively poorer dispersion owing to the atmospheric inversion, the smoke 
accumulates in the lower atmosphere posing a greater risk of damage to the health of the residents [18]. Several studies have reported 
the average PM2.5 mass concentration in Delhi during the post-monsoonal season to be crossing at least 120 μg m− 3 [19–21]. With 
episodic peaks that can even cross 900 μg m− 3 especially during the time of Diwali [19]. The non-local fire emissions play an important 
role in modulating these concentrations. Previous studies have shown that stubble-burning contributes to around 20% of the PM2.5 
mass concentration in Delhi during the burning season [12,22–24]. 

Given the aforementioned significance of agricultural burning practices in north-western India to the ambient pollution levels in 
Delhi-NCR and the northern part of India, we in this study analyze the fire events that occurred over Punjab and Haryana in the post- 
monsoon season of the year 2021. For that, we use active fire counts information retrieved by the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument onboard the polar-orbiting satellites Aqua and Terra of NASA. Additionally, we analyze the 
results of the operational air quality forecasting system, the ‘Air Quality Early Warning System (AQEWS)’ of the Indian Institute of 
Tropical Meteorology, Ministry of Earth Sciences, India, to understand the contribution of the stubble-burning fires to the air quality in 
Delhi-NCR in the post-monsoonal months of the year 2021. The AQEWS [25–29], which employs the regional chemistry transport 
model WRF-Chem, has employed tagged tracers for CO and PM2.5 emissions from fires for the first time. With the help of these tracers, 
we quantify the contribution of stubble-burning to CO and PM2.5 mass concentration in Delhi. Such quantification is very critical from 
the perspective of air-quality management in Delhi. 

The details about the data used and the methodology employed can be found in section 2. The results are discussed in section 3. The 
main conclusions from the study are listed in section 4 of the paper. 

2. Data and methodology 

Multiple satellite systems play a crucial role in detecting, monitoring, and characterizing fires for location, timing, and burned area 
of active fires. The National Aeronautics and Space Administration, USA (NASA) provides active fire and burned area products [30] 
using the MODIS instrument. The MODIS functional fire product onboard the two polar-orbiting satellites, NASA’s Terra and Aqua, 
detects active fires at the time of overpass with a spatial resolution of 1-km under relatively cloud-free conditions. We use the daily 
active fire counts data from MODIS for the period 15th September to 15thDecember of 2021 to detect the fires over the states of Punjab 
and Haryana. Additionally, we also examine similar data for 2016 to 2020 to compare and contrast with the year 2021. 

To quantify the contribution of stubble-burning to the air quality in the Delhi-NCR region, we use the AQEWS of IITM, Pune. The 
AQEWS employs the online regional chemistry transport model, Weather Research and Forecasting with Chemistry (WRF-Chem 
version 3.9.1). Several previous studies have already evaluated the ability of WRF-Chem model in simulating aerosol loading over the 
Indian region [31–40]. The model domain in our study covers the Northern part of India with a resolution of 10 km. The MOZART-4 
gas-phase chemistry linked to the GOCART aerosol scheme (MOZCART) is used in the model to simulate aerosol and gas-phase 
chemistry. The anthropogenic aerosol and trace gas emissions are derived from version 2.2 of the Emission Database for Global At
mospheric Research-Hemispheric Transport of Air Pollutants (EDGAR-HTAP) [41]. However, specifically for Delhi and the 19 districts 
surrounding it, we employ the anthropogenic emissions inventory prepared by The Energy Research Institute (TERI) [42]. The 
Biogenic emissions are employed using the Gases and Aerosols from Nature (MEGAN) model. The static geographical fields such as soil 
properties, vegetation fraction, and land-use pattern are taken from MODIS datasets. The fire emissions are generated by making use of 
climatological data from the Fire Inventory from NCAR (FINN v1.5) [43] at 1 × 1 km2 resolution and the active fire count information 
from MODIS and Visible Infrared Imaging Radiometer (VIIRS) fire products [28]. The methodology makes use of the near real-time fire 
count information to trigger climatological FINN fire emissions for the pixels with non-zero fire counts [28]. The use of near-real-time 
fire count information for generating fire emissions in AQEWS enhances its ability to capture severe air-quality episodes occurring in 
the northern states of India [4]. The AQEWS system is initialized with the Global Forecast System (GFS) forecast run at the Indian 
Institute of Tropical Meteorology, Pune, India. The system assimilates near-real-time aerosol optical depth retrieved by MODIS in
strument and that measured by over 260 Central Pollution Control Board (CPCB) monitoring stations across India. The necessary 
quality control filters are applied to the data, as mentioned in the previous study [28]. The assimilation is carried out using the 
three-dimensional variational (3DVAR) scheme of the community Gridpoint Statistical Interpolation (GSI) system version 3.5, similar 
to above study [28]. The fire emissions of CO and PM2.5 are traced in the domain using the tagged-tracer approach [44,54]. These 
tracers enable the identification of CO and PM2.5 originating from fires and thus help quantify the contribution of fires to the total CO 
and PM2.5. 
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3. Results and discussion 

3.1. Stubble-burning fires in the north-western states of India in the year 2021 

The spatial locations of the fires from the MODIS active fire count data for the period September 15, 2021 to December 15, 2021, 
over the north Indian region, are shown in Fig. 1a. The colours indicate the number of fire counts observed at each pixel over the entire 
season. It can be seen that over the two north-western Indian states, namely Punjab and Haryana, the fire counts at individual pixels 
exceed the count 250 over many locations. In fact over Punjab, the count 250 is crossed at every fire location. There is a gradient in fire 
count in the north-west to south-east direction. The peak is observed in Punjab and north-western parts of Haryana, beyond which the 
counts reduces as one approaches Delhi and Uttar Pradesh. The count is very low in the state of Uttar Pradesh possibly linked with 
lesser harvest of Wheat in the state [45]. The neighboring states of Rajasthan, Himachal Pradesh, and Uttaranchal show scattered 
locations of high number of fire counts. Fig. 1b shows the total number of active fire counts in Punjab and Haryana on a daily basis for 
the study period. The daily active fire counts depict episodic behavior, with several incidents of a sudden rise in fire counts encap
sulated by relatively calmer days. The fire counts reached their peak in the first week of November 2021. Though the fires increased 
relatively gradually from mid-September to reach the peak in November, they dropped down hurriedly after reaching the peak, with a 
substantially reduced number of fires after the November 22, 2021. Similar analyses has been carried out by a few previous studies for 
fire counts in Haryana in the year 2019 [9] and for the four states of Punjab, Haryana, Uttar Pradesh and Delhi from 2016 to 2020 [7]. 
Compared to the last five years (2016–2020), the fires in Punjab and Haryana in 2021 depict a distinct behavioral pattern. The cu
mulative MODIS active fire counts from Punjab and Haryana for 15th September to 15th December for the last six years are shown in 
Fig. 1c. It may be noted that the fire counts gradually increase in the first month before rising rapidly at the start of the second month. 
The year 2021 shows a relatively subdued first half of the fire season from 15th September to 15th October, with the fire count being 
the lowest in the last six years. The cumulative fire count on October 15, 2021 is ~2500, while those for the last five years range 
between 3500 and 8000. However, in the next 30 days, the fire counts in 2021 have increased rapidly to surpass the cumulative count 
for the last five years on 15th November. Additionally, we also notice a consistent temporal shift in the fire counts over the last six 
years, e.g., for 2016, a cumulative count of 4000 is achieved by 9th-10th of October, but for the year 2021 by 17th-18th of October. 
Thus, there is a clear shift of a week or so in the occurrence of the stubble-burning fires from 2016 to 2021. Our results are consistent 
with the previous studies[ [3,46,47]] which report such shift in the burning activities in Punjab and Haryana. The studies attribute the 
shift to the implementation of a groundwater preservation act in Punjab Haryana post 2010. This act ensures that the farmers make use 
of monsoonal rains for the cultivation of the crops instead of the already depleting ground water. This delays the harvesting of the 

Fig. 1. (a) Spatial distribution of MODIS active fire counts’ density in northern India during 15th September 2021–December 15, 2021. b). Daily 
active fire counts in Punjab and Haryana during 15th September 2021–December 15, 2021. c). Accumulation of MODIS active fire counts over 
Punjab and Haryana during 15th September - 15th December of the years 2016 to 2021. The states are identified with their names in Fig. 1a. 
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Kharif crops into November instead of October as in the pre-2010 era. As a result, the burning of the stubble also gets delayed by 10–12 
days [3,46,47]. 

3.2. Contribution of the stubble-burning fires to the air quality in Delhi 

We use the AQEWS to understand the contribution of stubble-burning to the air quality in Delhi during the study period of the year 
2021. Before examining the contribution of fires to the air quality in Delhi, we briefly evaluated the performance of AQEWS for the 
study duration. Much formal evaluation of AQEWS has already been carried out in recent studies [27,28,38]. The hourly and daily 
variation of PM2.5 mass concentration (μg m− 3) is shown in Fig. 2a and b respectively. The time series is generated by averaging the 
data obtained from Delhi. The blue line in the panels indicates the data obtained from the 38 CPCB observational stations whereas the 
red line shows the AQEWS forecasted PM2.5. The simulated results are in good agreement with the observations. 

It can be observed that there is a shooting of PM2.5 mass concentration on 17th October and again on 21st October. Also, during the 
late hours of 4th and November 5, 2021, a sharp peak (900 μg m− 3) can be observed in PM2.5 concentration, this huge rise in PM2.5 
could be contributed from the burning of crackers and fireworks during Diwali night and the day after, however in the next section we 
would explore the contribution of stubble-burning fires to this severe air pollution episode. The air quality thereafter remains poor till 
11th November and starts improving henceforth. From Fig. 2b, it can be seen that after 14th November the simulation results slightly 
overestimated the observed values by an average of approximately 60 μg m− 3. This reduction in the observed PM2.5 is specifically 
associated with the improvement in the air-quality due to the imposed restrictions by the Government of Delhi and the Commission for 
Air Quality Management in Delhi and the adjoining areas (CAQM) (https://www.dpcc.delhigovt.nic.in//uploads/pdf/Directions16- 
11-2021pdf-30033b0c97ed9df8044c3f1a0eb16961.pdf). The AQEWS system on the other hand did not employ such a reduction 
emission in its formulation. Nevertheless, apart from such episodic disparities the AQEWS simulated PM2.5 in Delhi confirms well with 
the observations. 

We used tagged tracers employed in the AQEWS to understand the contribution of stubble-burning fires to PM2.5 over Delhi. We 
first analyze the carbon monoxide emitted from fires (COfire). The temporal variation of the COfire concentration (Parts Per Billion by 
Volume, ppbv) during the post-monsoon season of the 2021 over Delhi is shown in Fig. 3a. The figure indicates the rise in atmospheric 
CO concentration associated with fires as the burning season progresses. Fig. 3a is in agreement with Fig. 2 in terms of deterioration of 
air quality over Delhi. Every year major crop residue burning activities occur during this season in Punjab and Haryana which con
tinues for almost a month or two, as shown in Fig. 1. Such a biomass burning activity has a significant connection with the degradation 
of air quality even during the pre-monsoon season over NCR and IGP [48–50]. The peaks in Fig. 3a coincide with the crop residue 
burning events over Haryana and Punjab (Fig. 1). The high peak events occurring during 6th-11th Nov, contribute an average of ~400 
ppb of CO to the local atmosphere of Delhi. The highest contribution of 550 ppb of CO is observed on November 9, 2021 which ac
counts for 30% of the total CO over the Delhi region (Fig. 3b). The western disturbances start prevailing during the post-monsoon 
season which carries the smoke over NCR from the Haryana, Punjab, and other north western regions of the adjoining areas where 
the biomass burning amplifies. One such example of the intrusion of a plume of pollutants from Punjab and Haryana into the at
mosphere of Delhi is shown in Fig. 3c. The shaded quantity is COfire while the vectors denote the magnitude and direction of 10-m 
winds during one particular hour (03 UTC) of November 7, 2021. It can be very clearly seen that the CO emitted from the fires in 
Punjab-Haryana finds its way not only up to Delhi but also downwind into the central Indo-Gangetic Plains. The CO generated from 

Fig. 2. Time series of (a) hourly and (b) daily variation of observed (blue line) and simulated (red line) PM2.5 (μg m− 3) averaged over 43 stations 
covering NCR and adjoining areas. The dataset covers the period from September 15, 2021 to December 15, 2021. The location and names of the 43 
stations can be found in Fig. 1 of Sengupta et al., 2022. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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such fires in north-central India is even seen to affect the air quality in the far-eastern states of West Bengal and Odisha before heading 
into the Bay of Bengal (Fig. 3c). While the non-local fires affect the air quality of entire north-central India, the effect is the maximum 
over Delhi and the nearby locations. 

In addition to CO, we analyze the contribution of fires to PM2.5 in Delhi by using the tagged-tracer within AQEWS for PM2.5 
associated with fire activities. The percentage of fractional contribution of biomass burning to PM2.5 mass concentration over Delhi for 
the period 6th October-17th November 2021, as obtained from AQEWS can be seen in Fig. 4. The contribution of fires to PM2.5 in Delhi 
(Fig. 4) confirms the trend the COfire shows (Fig. 3b). It also maximizes during the periods of the peak in the fire activity (1st week of 
November 2021) (Fig. 1b). The highest daily mean contribution from fires to the PM2.5 in Delhi is ~35–40%, which occurs during the 
peak of the fire activities. If Figs. 2 and 3 are examined together, we can see that most of the peaks in fire CO contribution & PM2.5 are in 
phase with Fig. 4 peaks. In contrast, the PM2.5 peak during the 4–5 November (Diwali night) is not present in Fig. 4, which indicates the 
separation and filtering of PM2.5 contribution from stubble-burning to other sources. Our results show consistency with the previous 
estimates of the contribution of stubble-burning to the air quality in Delhi [11]. Such quantification of the contribution of fires to the 
air quality in Delhi-NCR is very critical from the perspective of air quality management. Based on such information, several policy-level 

Fig. 3. Temporal variation of (a) the hourly magnitude (b) the daily percentage contribution of CO from fire emissions in the total simulated CO in 
Delhi from September 22, 2021 to December 15, 2021. (c) Spatial distribution of COfire on during 03 UTC hours of November 7, 2021. The contours 
indicate CO magnitudes in ppbv while the vectors denote wind speed and direction at 10 m height above the surface. 

Fig. 4. Fractional contribution of stubble-burning fire to the PM2.5 mass concentration in Delhi for the period 23rd September-15th December 2021, 
as obtained from AQEWS. 
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decisions could be taken regarding the stubble-burning activities in Punjab and Haryana. Moreover, the authorities could also un
derstand the quantitative significance of local and non-local emissions to PM2.5mass concentrations in Delhi through such 
quantifications. 

3.3. Diurnal variation in contribution of stubble burning to the air quality in Delhi 

The stubble burning occurring in the states of Punjab and Haryana is a relatively distant source of pollutants as far as Delhi is 
concerned. In Fig. 5, we show the model-simulated mean diurnal variation in the contribution of stubble burning activities to the PM2.5 
load in Delhi, for the period of October 1, 2021 to November 30, 2021 (blue line, Fig. 5). To clearly understand this contribution, we 
compare and contrast it with the diurnal variation in the contribution of local emission sources (such as vehicles, industries, power 
plants, residential sources etc.) to the PM2.5 burden in Delhi (orange line, Fig. 5). The contribution of local sources has been computed 
using the similar tagged tracer approach discussed in section 2. The stubble burning contribution maximizes in the afternoon hours 
around 15:30 local time. It is comparatively low during evening to early morning hours. It systematically increases from 8.30 local time 
to reach its maxima in the afternoon. On the contrary, the contribution from the local sources to the PM2.5 in Delhi is seen to be the 
highest during the evening to early morning hours. It smoothly decreases down from 8:30 local time to reach its minima around 14:30 
local time. Beyond that, it once again starts increasing and attains its daily maxima in the late evening hours. 

This peculiar behavior of the distant (e.g. stubble burning) and the local sources in relation to the air quality in Delhi mainly 
appears to be driven by the evolution of boundary layer dynamics and winds within the atmospheric boundary layer during day and 
night time. During the hours of evening to early morning the winds are calm and boundary layer is shallow, which together limit the 
horizontal and vertical transport of pollutants. As a result they remain more in the vicinity of the sources. Hence, we see more 
dominance of the local sources to the PM2.5 mass in Delhi during those hours. On the other hand, during the turbulent hours of day 
time, the winds are relatively stronger and boundary layers are relatively deep allowing enhanced three dimensional advection of 
pollutants away from the sources. This results in increased contribution from the distant sources like stubble burning and reduced 
contribution from the local sources to the pollution load in Delhi. The pollutants getting emitted from the local sources within Delhi 
would travel in the downwind region during such turbulent day time hours allowing the distant sources to dominate the PM budget. In 
this manner the boundary layer dynamics and winds decide which sources would dominate the air quality in Delhi. Unraveling this 
behavior of the local and distant sources in association with the air quality in the city is critical from the perspective of air quality 
management. The decision makers could take important policy level decisions about the distant stubble burning activities as well as the 
local anthropogenic activities based such results. Based on this analysis, we find that discouraging stubble burning activities in Punjab 
and Haryana occurring especially in the afternoon hours would be an effective policy as far as the air quality in Delhi is concerned. 

Through this study, we shed light on the contribution of stubble burning activities to the air quality in Delhi. We also show that the 
contribution is the highest during the afternoon hours. However, revealing such information through numerical models with realistic 
fire emissions has been and continues to be a very challenging task. The satellite retrieval of fire counts, which is used to generate fire 
emissions in the model, could be posed with multiple shortcomings. A previous study has reported some dips or gaps in the regional 
total Fire Radiative Power (FRP) due to large parts of clouds, haze, and smoke [51]. The persistent, dense haze decreases brightness 
temperature over a broad region, thereby interfering with the detection of thermal signatures of small fires by the thermal infrared 
bands of MODIS and VIIRS. One other major issue is that the farmers are getting better at avoiding fire detections. Fires are often set in 
the late hours of the day or on cloudy days to avoid detection by the satellites. High PM concentration levels and low fire counts on the 
preceding days of rains indicate that high burning activity takes place on those days under cloud cover. Additionally, sometimes the 
stubble is collected over a small region of the field, and it is then burnt to avoid detection by the footprint of the satellites. Another 
critical issue is related to the temporal frequency of the pass of the polar-orbiting satellites. The satellites pass over the Indian region 
once a day in the morning to afternoon hours. So, fires occurring over all other times of the day are likely to be missed by the satellites. 
Additionally, an underestimation of crop residue burning emissions from Haryana and UP has been reported due to missing out on 
detecting partially burnt areas in these regions [52]. Many studies estimate the emissions from stubble-burning relying on the 

Fig. 5. Diurnal variation of contribution of stubble burning and local sources to the PM2.5 mass concentration in Delhi, for the period of October 1, 
2021 to November 30, 2021. 
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residue-to-product ratios. The rice stubble that is actually burnt on the field is mostly unaccounted for and leads to an underestimation 
of emissions by a factor of about 2–3 [53]. Thus, all the aforementioned limitations hamper satellites’ detection of stubble-burning 
over Punjab and Haryana. These uncertainties will translate into the uncertainties in the model-estimated contribution of fires to 
the air quality in northern India. Nevertheless, our study possibly gives a lower bound to the contribution of stubble-burning fires to the 
air quality in Delhi, albeit with the uncertainties mentioned above. 

4. Conclusions 

To understand the evolution of the stubble-burning season in north-western India in the year 2021, we examined the satellite 
retrieved fire count data. We examined the data in light of the fire count data for the last 5 years over the same region. We further used 
the air quality forecasting system of IITM Pune (AQEWS) to understand the contribution of such stubble-burning fires to the air quality 
in Delhi in the year 2021. The salient conclusions from the study are as follows:  

1. The active fire count data from the MODIS instrument in 2021 depicts the highest stubble-burning activity in Punjab and Haryana 
compared to the last five years.  

2. While the count was the lowest in the first month of the burning season compared to the previous five years, it rose rapidly, 
reaching around ~20000 towards the end of the season.  

3. A temporal shift (delay) of around one week is noticed in the stubble-burning activity in the year 2021 compared to the year 2016. 
4. The tagged tracers for CO and PM2.5 from fires in the AQWES air quality forecasting system indicate that the mean daily contri

bution of stubble-burning to the air quality in Delhi reached around 30–35% in the burning season of 2021, with its maxima 
occurring in the first week of November 2021.  

5. The results of the study are valuable to policymakers in order to understand the evolution of the stubble-burning activities in the 
year 2021 and to get a quantitative idea about their contribution to the air quality in Delhi. 

6. We find that the contribution from stubble burning activities to the air quality in Delhi is maximum (minimum) during the tur
bulent hours of late morning to afternoon (calmer hours of evening to early morning). This behavior is largely controlled by at
mospheric boundary layer dynamics and lower tropospheric winds. 
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