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More and more cancer-associated genes (CAGs) are being identified with the
development of biological mechanism research. Integrative analysis of protein-protein
interaction (PPI) networks and co-expression patterns of these genes can help identify new
disease-associated genes and clarify their importance in specific diseases. This study
proposed a PPI network and co-expression integration analysis model (PRNet) to integrate
PPI networks and gene co-expression patterns to identify potential risk causative genes for
pancreatic adenocarcinoma (PAAD). We scored the importance of the candidate genes by
constructing a high-confidence co-expression-based edge-weighted PPI network,
extracting protein regulatory sub-networks by random walk algorithm, constructing
disease-specific networks based on known CAGs, and scoring the genes of the sub-
networks with the PageRank algorithm. The results showed that our screened top-ranked
genes were more critical in tumours relative to the known CAGs list and significantly
differentiated the overall survival of PAAD patients. These results suggest that the PRNet
method of ranking cancer-associated genes can identify new disease-associated genes
and is more informative than the original CAGs list, which can help investigators to screen
potential biomarkers for validation and molecular mechanism exploration.
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machine learning

INTRODUCTION

Abnormal gene regulation and uncontrolled growth of cells in pancreatic tissue can lead to
pancreatic cancer (McGuigan et al., 2018; Yao et al., 2020). Pancreatic adenocarcinoma (PAAD)
accounts for approximately 80% or more of all types of pancreatic cancer and is the most common
type of pancreatic cancer. This tumour is one of the most common cancers and is the top 10 leading
causes of cancer-related death (Siegel et al., 2020). Therefore, it is critical to screen and identify
potential biomarkers that can be used to treat PAAD, which will significantly improve the quality of
life and prognosis of PAAD patients.

Tumour tissue is highly heterogeneous, and its complexity is a significant obstacle to a
comprehensive understanding of the molecular mechanisms underlying tumour development
(Qian et al., 2020). Researchers have uncovered potential risk-causing genes in tumour
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progression for many years (Bilici 2014; Le et al., 2016; Loosen
et al., 2017). With advances in experimental tools and high-
throughput sequencing technologies, an increasing number of
genes are closely associated with cancer progression. The Cancer
Gene Census (CGC) database (Sondka et al., 2018) screens
candidate genes by searching for the presence of typical
oncogene somatic mutation patterns, and determines the
biological functions of candidate genes through literature
curation, and has identified mutations affecting the molecular
mechanism of gene dysfunction, which in turn explains the
rationale for oncogenic transformation of the gene. The latest
gene-wide screening described 719 genes that play essential
functions in pan-cancer, providing researchers with great help
in understanding cancer pathogenesis. However, whether these
genes function in pancreatic adenocarcinoma tumour tissue and
whether there are new pancreatic adenocarcinoma-specific
biomarkers remain to be further investigated.

The development of computational methods for tumour
candidate biomarker identification and ranking could fill the
gap mentioned above. Alshahrani and Hoehndorf (2018)
incorporated phenotypic similarity into network-based
characterization learning and conveyed phenotypic association
information through PPI networks to address the incompleteness
of gene-phenotype knowledge. The features generated by their
proposed SmuDGE algorithm can characterize gene-disease
associations. By integrating information from various aspects
such as PubMed abstracts, pathways, interactions, gene
ontology, disease ontology, sequence similarity, and
constructing bayesian ridge regression models, the pBRIT
developed by Kumar et al. (2018) can prioritize disease genes.
Recently, Li et al. (2019) constructed a graph convolutional neural
network-based gene ranking algorithm PGCN by training both
embedded learning models and association prediction models in
an end-to-end manner and discovered some disease-associated
candidate genes. These approaches have achieved a great success
in exploring potential disease-associated genes, which also
suggest that integrating multifaceted biological information
can help us better delineate the gene-disease associations and
thus screen key candidate genes. The PageRank algorithm is one
of the most widely used page ranking algorithms, it is developed
by Google and is named after Larry Page, Google’s co-founder
and president (Brin et al., 1998). When applied to biological
networks, PageRank has a great stability can help evaluate
important nodes and pathways in directed networks, such as
metabolic networks (Iván and Grolmusz 2011).

With the development of high-throughput sequencing
technology, tumour-related sequencing profiles are increasingly
accumulated. Bioinformatics analysis based on expression
profiling data has emerged in studying the molecular
mechanisms of tumorigenesis and development. This study
proposed a PPI network and co-expression integration analysis
model (PRNet) to integrate PPI network and gene co-expression
patterns to identify potential risk causative genes in pancreatic
adenocarcinoma (PAAD). We scored the importance of
candidate genes by PRNet to screen new key regulators based
on existing cancer-related genes and PageRank algorithm is used
for network scoring in PRNet. Moreover, the reliability of our

ranked candidate genes was further validated by various
analytical tools. Overall, our data can give a guide to the study
of the biological mechanisms of PAAD development and provide
new insights for the future treatment of PAAD.

MATERIALS AND METHODS

Dataset Preparation
TCGA PAAD transcriptome normalization data and clinical
information were downloaded from UCSC Xena (https://
xenabrowser.net/datapages/) for further co-expression analysis.
The list of cancer-associated genes was obtained from the Cancer
Gene Census (https://cancer.sanger.ac.uk/census). CERES-
dependent scores were based on data from the Crispr
technology to knockdown target genes and perform cell
depletion assays (Ghandi et al., 2019). Target gene dependency
scores were obtained from the DepMap web portal (https://
depmap.org/portal/download/). A lower CERES score for a
given gene in a given cell line indicates that the gene of
interest plays an essential function in that cell line. A score of
0 indicates that the gene is not essential; accordingly, a score of -1
is the median of all pan-essential gene function scores. The
experimentally validated protein interaction information was
obtained by integrating BioGRID (Merriel et al., 2011), I2D
(Brown and Jurisica 2007), BioPlex (Huttlin et al., 2017) and
IntAct (Hermjakob et al., 2004).

Weighting Protein-Protein Interactions
Based on the TCGA PAAD transcriptome data, we can analyze
the co-expression relationship between genes. The stronger co-
expression relationship indicates that the two relationships are
more functionally related. We first calculated the correlations of
all possible gene pairs and filtered them based on the PPI
network, keeping only the gene pairs with PPI present. Thus,
the weight between each gene pair can be expressed as.

W(A,B) � { corr(A, B), Pair(A, B) � 1
NA, Pair(A, B) � 0

Where W(A, B) denotes the weight of the linkage between gene A
and gene B. Pair(A, B) � 1 indicates the presence of interaction
between gene A and gene B, while the opposite does not exist. We
only keep the gene pairs with interactions to calculate their
weights. corr(A, B) indicates the correlation between the
expression levels of gene A and gene B.

Generating Disease-Specific Networks
After weighting the PPI network, we use the short random walks
algorithm (Barnes and Feige, 1993) to decompose the network
into a series of sub-networks. This step is implemented based on
the cluster_walktrap function of the R package igraph. The core
idea is that short random walks are more likely to be enriched in
the same community. Therefore, we filtered the subnetworks
based on the collected CAGs and only retained subnetworks
containing at least one CAG for subsequent analysis. This means
that PRNet filters sub-networks containing at least one CAG
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instead of the entire weighted PPT network to construct disease-
specific networks, which can better retain disease-specific
information.

Ranking Candidate Genes
PRNet uses the PageRank algorithm (Xing and Ghorbani, 2004)
to calculate all the final filtered sub-networks, which returns the
PageRank value of each node, which is considered the importance
level of the gene. The specific algorithm is as follows.

PR(genei) � 1 − q

N
+ q∑k

genej

⎛⎝PR(genej)
L(genej) ⎞⎠

Where genei is the genes to be studied, and genej stand for the
genes interacting with genei. k is the number of genes interacting
with the gene to be studied, PR(genei) is the PageRank value of
the gene, L(genej) is the number of genes chained from genej.
The ‘N’means the total amount of genes used for analysis, and the
‘q’ is the damping factor, the meaning of which is the probability
of reaching a gene and continues to navigate backwards. The
default value of ‘q’ is 0.85.

Based on this, we can calculate the PageRank value of each
gene and use it to indicate the relative importance of the gene in
the disease-specific network and then potential screen
biomarkers.

Bioinformatics Analysis
Based on the TCGA PAAD gene expression normalized count
matrix, we divided the samples into two subgroups by
unsupervised hierarchical clustering using the R package
“ConsensusClusterPlus” (Wilkerson and Hayes 2010). Then
the matrix was processed as log2 (FPKM +1) and genes with
zero expression in more than half of the samples were removed.
The DESeq2 package (Love et al., 2014) was used to calculate the
differential expression of all genes between the different groups,
where adjusted p-values less than 0.05 and | log2FoldChange|>1
were considered differentially expressed genes. Principal
component analysis (PCA) (Wold et al., 1987) revealed
differences in expression patterns between different subgroups
of PAAD. Gene set enrichment analysis (GSEA) (Shi and Walker
2007) was used to perform enrichment analysis of differential
expression data. False discovery rate (FDR) q-value <0.05 was set
as the cut-off criterion. Based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) signaling pathway, we performed
gene set enrichment analysis using the R package “clusterProfiler”
v3.18.1. The enzyme, transcription factor, FDA approved drugs
information were downloaded from the Human Protein Atlas
(HPA) database. Survival analysis was performed using the R
package “survival,” and the overall survival curve was obtained by
Kaplan-Meier estimation.

RESULTS

Prioritizing Disease Candidate Genes
The basic flow of model construction is shown in Figure 1. We
curated the PPI information from several databases including

204,399 interactions from BioGRID, 16,334 interactions from
I2D (Brown and Jurisica 2007), 28,382 interactions from BioPlex
(Huttlin et al., 2017) and 109,220 interactions from IntAct
(Hermjakob et al., 2004). These protein interactions collected
were all experimentally validated with high confidence, so we
directly merged the results from all databases. A total of 358,335
interactions among 20,379 proteins were finally collected, and
after removing duplicate protein interaction pairs, 309,321
experimentally identified interactions among 20,379 proteins
were obtained for further analysis. Next, we downloaded
TCGA PAAD transcriptome data, calculated gene pairs’
expression correlation in the human-derived PPI network. We
merged the correlation coefficients into the PPI network as the
weights of gene pairs to construct a standard PAAD-specific
weighted-PPI network. Next, we analyzed this network using
short random walks, sliced this extensive network into multiple
communities, and kept only the communities containing known
CAGs as disease-specific sub-networks. A total of 147
communities were generated as a result and only 19

FIGURE 1 | Flowchart of PRNet. The protein interaction information from
validated PPI databases. Gene pairs’ expression correlation was calculated by
using TCGA PAAD mRNA expression matrix. These datasets were merged to
construct a standard PAAD-specific weighted-PPI network. Short
random walks algorithm was used to slice this extensive network into multiple
communities, and kept only the communities containing known CAGs as
disease-specific sub-networks. Finally, the PageRank algorithm was applied
to analyze the final constructed network and calculated the PR value of each
node.
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communities contain the known CAGs were obtained for further
analysis. We used the PageRank algorithm to analyze the final
constructed network and calculated the PR value of each node.
Higher PR values indicate that the gene plays a more regulatory
role in PAAD, i.e., more important for PAAD development.
Lower PR values indicate that the gene is more isolated in the
gene regulatory network of PAAD and less likely to act as a
candidate in PAAD.

Novel PAAD Candidate Genes
Based on the above method, we calculated the PR values of 14,615
genes in PAAD, and the ranking and PR values of these genes
were shown in Supplementary Table S1. We selected three
subnetworks containing the most genes and performed KEGG
enrichment analysis (Supplementary Figure S1 and
Supplementary Table S2). The largest subnetwork contains
many pathways related to cell proliferation and division, and
maintenance of life activities such as cell cycle, DNA replication,
ubiquitin-mediated proteolysis, etc. The pathways involved in the
second subnetwork are related to malignant tumour progression,
such as MAPK signaling pathway, ERBB signaling pathway,
VEGF signaling pathway, etc. The third major sub-network is
related to ribosomes.

We further compared the distribution of the known CAGs
after reordering. As shown in Figure 2A, there are XX identical
genes in the top 719 genes and the CAG list, XPO1, CUL3, EGFR,
HSP90AA1, NTRK1, etc., were clearly ranked at the top, further
indicating their essential functions in the malignant progression
PAAD. However, we also found that some CAGs such as
HOXD11, PHOX2B, SSX4, ISX, SOX21 ranked significantly
lower. Our selected CAG list is all about pan-cancer markers,
but not all markers play essential functions in PAAD. To further
confirm the reliability of our screening results, we analyzed the
CERES scores of the top 719 genes and the CAG list relative to all
genes (Figure 2B). The results showed that the CERES scores of
PRNet screened genes were significantly lower than those of the
known CAG list, indicating that these genes play more critical
functions in PAAD. Then, we showed the top 20 genes, plotted
their CERES score distribution individually, and annotated their
functions (Figures 2C,D). Some genes are known as enzymes,
transcription factors or tumour therapeutic targets. We checked
the genetic alterations of the top 20 genes in TCGA PAAD
cohorts and less mutations were found, in addition to the fact
that most of the genes had samples that showed amplification in
samples, especially YWHAZ, with a high frequency (7%)
(Supplementary Figure S2A). Further functional enrichment

FIGURE 2 | Novel PAAD candidates’ features. (A) The distribution of the known CAGs after reordering. (B) The CERES scores of the top 719 genes and the CAG
list relative to all genes. (C) The CERES score distribution of the 20 top-ranked genes. (D) Functional annotation of the 20 top-ranked genes.
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showed that these genes were significantly enriched in some
pathways which play important roles in PAAD progression,
such as PI3K/AKT/mTOR signaling pathway (Kennedy et al.,
2011), EGFR signaling pathway (Williams et al., 2017) and NF-κB

signaling pathway (Prabhu et al., 2014), etc. (Supplementary
Figure S2B). Survival analysis showed that the expression of most
genes (12 of 20) correlated with the survival of PAAD patients
(Figure 3 and Supplementary Figure S2C). However, many

FIGURE 3 | Kaplan–Meier OS curves of genes ranked from 1 to 10.

FIGURE 4 |Consensus cluster of PAAD samples based on top-ranked genes. (A) Consensus cluster heatmap of PAAD samples. (B) The silhouette plot of the two
clusters (G1/2) defined by the top-ranked genes. (C) Principal component analysis of the total mRNA expression profile in the TCGA dataset. (D) Kaplan–Meier OS
curves for different subgroups. (E)Differentially expressed genes between G1 andG2 subgroup. (F)GSEA analysis of differentially expressed genes betweenG1 andG2
subgroup by using hallmark pathways. G2: high-risk subgroup; G1: low-risk subgroup.
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genes are less studied, which means their functions in PAAD
deserve more exploration.

Comparison of Top-Ranked Genes and
CAGs
To further elaborate the superiority of our screened model in PAAD,
we selected the top 719 genes and CAG list for unsupervised
hierarchical clustering (Figure 4A and Supplementary Figure
S3A). For comparison, we defined both as two classes
(Supplementary Table S3). Compared with the CAG list derived
classification system, the classification system of the PRNet-based
signature definition was significantly better with a silhouette width of
−0.78 (Figure 4B and Supplementary Figure S3B). Although there
were significant transcriptome differences in both signature-defined
subgroups (Figure 4C and Supplementary Figure S3C),
interestingly, the subgroup obtained based on the CAG list did
not suggest survival differences (Supplementary Figure S3D). The
subgroups classified based on the PRNet-defined signature could
significantly distinguish survival (Figure 4D).We further investigated
the differences in gene expression and pathway activity between these
two groups. As shown in Figure 4E, 1,563 genes were significantly
overexpressed in the low-risk group, and 2,193 genes were
significantly elevated in the high-risk group (Supplementary
Table S4). We then analyzed the pathways affected by these
genes. Tumour hallmark signaling pathway enrichment analysis
suggested that the high-risk group was significantly enriched in
interferon response, epithelial-mesenchymal transition, TGFβ and
other immune response and oncogenic pathways. In contrast, the
low-risk group showed normal pancreatic cells’ molecular
characteristics, overexpressed some markers of normal pancreatic
cells, and showed higher oxidative phosphorylation and ribosomal
signaling pathway activities (Figure 4F, Supplementary Figure S4
and Supplementary Table S5).

We also compared the association of high and low-risk groups
with clinical factors to investigate a significant survival difference
between the two groups (Supplementary Figure S5). Interestingly,
no significant differences were found at either the age or sex level.
However, there were more samples of lymph node metastases and
distal metastases in the high-risk group, and they were more
enriched in stage III and stage IV tumours. This corresponds to
a worse prognosis for survival at later clinical stages. The worse
overall survival in the high-risk group compared to the low-risk
group may be related to their greater susceptibility to lymph node
metastasis and distal metastasis.

DISCUSSION

Pancreatic adenocarcinoma is a kind of tumour of highly
heterogeneous, which leads a big issue for researchers to get a
comprehensive understanding in the study of tumour molecular
mechanisms (McGuigan et al., 2018; Yao et al., 2020). Attempts have
beenmade formany years to discover the potential risk-causing genes
working in PAAD progression. In our study, an analysis model
integrating PPI network and co-expression patterns is proposed,
which can identify potential risk causative genes in pancreatic

adenocarcinoma. The importance of candidate genes was scored
by PRNet to screen new pivotal regulators. Furthermore, the
reliability of the screened candidate genes was validated by kinds
of analytical tools.

Based on the PRNet method, we constructed the disease-specific
subnetworks. As shown in Supplementary Figure S1 and
Supplementary Table S2, pathways related to cell cycle and life
activity maintenance are mainly in the subnetwork with the most
significant number of genes. And pathways related to tumour
progression, such as MAPK and ERBB signaling pathway, etc.,
presents in the second-largest subnetwork. These results indicate
that the networks we screened are closely related to tumours. Cancer
is characterized by uncontrolled cell proliferation, which results from
the abnormal expression and activities of various cell cycle proteins,
making the cell cycle a typical hotspot in tumour research (Sherr
1996). In addition, MAPK, VEGF and other signaling pathways have
been proved closely associated withmalignant tumour progression in
many studies (Ferrara 2005; Wagner and Nebreda 2009; Gargalionis
et al., 2018). Therefore, analysis based on these networks may help
identify core regulatory proteins and explore their potential as
tumour biomarkers.

Looking into the top 20 rank score potential biomarkers in
Figure 2, some of them have been proved the functions in PAAD,
such as XPO1 and FYN. XPO1mRNAexpression is heterogeneous in
pancreatic adenocarcinoma and is associated with progression stage
and shorter survival (Birnbaum et al., 2019). Nuclear export Inhibitors
based on study of XPO1 are used to therapy pancreatic cancer
(Muqbil et al. 2018). FYN is one of Src family kinases. Its
upregulation is associated with pancreatic cancer metastasis (Chen
et al., 2010). Interestingly, our study found some proteins that are not
annotated as enzymes, transcription factors, and FDA-validated
targets, such as APP, ELAVL1 and YWHAZ. As a potential
biomarker with the highest PageRank scores, amyloid precursor
protein (APP) is a substrate of proteases and secretase, which is
mainly focused on pathogenesis of Alzheimer’s disease, was reported
been involved in pancreatic cancer (Hansel et al., 2003). And further
study figured out that the major enzyme mediating APP cleavage in
pancreatic cancer is ASAM10 (Woods and Padmanabhan 2013). It
has been suggested that ELAVL1 is an RNA-binding protein, which
may play a translational modification regulatory sway in prostate
cancer progression (Melling et al., 2016). In addition, ELAVL1 may
influence the efficacy of glioma heterogeneous targeted drugs by
affecting cell fusion (Filippova and Nabors 2020). ELAVL1 also plays
an essential function in tumours such as colorectal cancer (Gu et al.,
2019) and breast cancer (Chou et al., 2015; Luo et al., 2020), suggesting
that ELAVL1 may indeed serve as a potential marker for PAAD. In
contrast, YWHAZ, despite its low gene expression and not being
easily detectable, is involved in tumorigenesis and progression in
many tumours (Nishimura et al., 2013; Guo et al., 2018; Zhao et al.,
2018), including pancreatic cancer (Xue et al., 2018). These results
suggest that the potential genes we screened effectively-identified
novel markers not found in the standard gene set.

Overall, our proposed model is superior in reconstructing
potential tumour markers and identifying new therapeutic targets
and revealing more tumour heterogeneity than the traditional CAG
list. These results offer a way to study the pancreatic
adenocarcinoma’s pathogenesis and provide new ideas for the
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future drug development and clinical treatment of pancreatic
adenocarcinoma.
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