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Robust multi‑input multi‑output 
adaptive fuzzy terminal sliding 
mode control of deep brain 
stimulation in Parkinson’s disease: 
a simulation study
Ehsan Rouhani1* & Yaser Fathi2

Deep brain stimulation (DBS) has become an effective therapeutic solution for Parkinson’s disease 
(PD). Adaptive closed-loop DBS can be used to minimize stimulation-induced side effects by 
automatically determining the stimulation parameters based on the PD dynamics. In this paper, by 
modeling the interaction between the neurons in populations of the thalamic, the network-level 
modulation of thalamic is represented in a standard canonical form as a multi-input multi-output 
(MIMO) nonlinear first-order system with uncertainty and external disturbances. A class of fast and 
robust MIMO adaptive fuzzy terminal sliding mode control (AFTSMC) has been presented for control 
of membrane potential of thalamic neuron populations through continuous adaptive DBS current 
applied to the thalamus. A fuzzy logic system (FLS) is used to estimate the unknown nonlinear 
dynamics of the model, and the weights of FLS are adjusted online to guarantee the convergence of 
FLS parameters to optimal values. The simulation results show that the proposed AFTSMC not only 
significantly produces lower tracking errors in comparison with the classical adaptive fuzzy sliding 
mode control (AFSMC), but also makes more robust and reliable outputs. The results suggest that 
the proposed AFTSMC provides a more robust and smooth control input which is highly desirable for 
hardware design and implementation.

Deep brain stimulation (DBS) has become an effective therapeutic solution for neurological disorders such as 
Parkinson’s disease (PD)1–4. In PD, degeneration of dopaminergic neurons leads to dopamine depletion in the 
substantia nigra pars compacta (SNc) which causes abnormal neuron activities. As a result, the thalamus (TH) 
relay reliability to sensorimotor commands is distorted5–7. DBS changes neural activities by delivering electrical 
currents to specific targets in the brain through implanted electrodes. The exact mechanisms underlying the DBS 
treatment are not clearly understood and are under debate1,8. In literature, the problem of DBS control for the 
treatment of PD can be approached at two mechanisms: open-loop9–11 and closed-loop5,12–15. Open-loop DBS 
involves high-frequency (around 130–180 Hz) trains of pulses with constant parameters without considering 
the state of disease. While open-loop DBS is efficient for alleviating PD symptoms, some technical challenges 
exist. The stimulation parameters are adjusted by a highly trained clinician expert to maximize the DBS efficiency 
and reducing its side effects3. Moreover, high-frequency stimulation consumes more energy which may reduce 
the battery longevity of the implanted device. In contrast, adaptive closed-loop DBS can be used to minimize 
stimulation-induced side effects by automatically determining the stimulation parameters based on the PD 
dynamics12,13,16,17, save energy, and reduce the risk of battery replacement in real DBS systems2. Furthermore, the 
feasibility of adaptive DBS has been shown previously using a fully implanted neural prosthesis18. During recent 
years various control approaches have been developed and tested on the computational models of PD5,7,14,19–21. 
Santaniello et al. developed a closed-loop control system using a recursively identified autoregressive model 
(ARX) to adjust the stimulation amplitude based on the feedback of electrical signals recorded from the brain14. 
A similar ARX structure was used as the predictive model in the generalized predictive control (GPC) method 
to generate the optimal stimulation pulses and modulate the activities of the neuronal basal ganglia (BG) model5. 
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In19, a nonlinear predictive control scheme based on an ARX model has been addressed to online adjustment of 
DBS amplitude and frequency. Su et al. proposed an adaptive feedback linearization (FL) algorithm to restore 
thalamic neurons relay reliability7. The major disadvantage of the proposed FL approach is that to design the 
control law the dynamics of a highly nonlinear computational model of PD are required. In20,21, a simple closed-
loop DBS based on linear delayed feedback has been suggested to effectively desynchronize a model of two 
neuronal populations of the subthalamic nucleus (STN) and the external segment of the globus pallidum (GPe). 
The aforementioned control works assumed that the dynamics of the model are known with unknown slow-
varying system parameters. Moreover, these methods suffer from several issues, such as transient performance, 
unmodeled dynamics, the amount of offline training, and system stability issues in real applications with the 
external disturbances and uncertainties of the highly nonlinear computational model of PD being controlled.

Sliding mode control (SMC) is a robust and powerful control technique to handle the nonlinear uncertain 
system in the presence of bounded external disturbances22–24. Zhu et al. proposed a robust control technique 
based on SMC for control of membrane potential of a thalamic neuron in a thalamocortical computational model 
of BG network consisting of STN, GPe, internal segment of the globus pallidum (GPi), and TH6. The control 
objective was to design a DBS waveform to force the membrane potential of the thalamic neuron to track the 
normal firing pattern in real-time in a closed-loop manner using the feedback signal. The main limitation of 
the work is that to design the control pulses, the BG model dynamics should be assumed known. Moreover, the 
main drawback of the conventional SMC is that due to the linear switching of the manifolds the tracking error 
of the system converges to the origin asymptotically. To resolve the global asymptotic stability of conventional 
SMC, terminal sliding mode (TSM) control guarantees the finite-time convergence of the system states to the 
origin24,25. By using fractional-power terms instead of linear in switching surface of conventional SMC, the fast 
convergence of the TSM control in finite time is guaranteed. However, the main drawbacks of the discontinuous 
TSM are the singularity of the control input26,27 and chattering problems25,28. In the singularity condition, the 
amplitude of the control input in some areas of the state space may increase infinitely to guarantee the ideal TSM 
motion. In chattering phenomena, the high-frequency unmodeled dynamics of the system may be occurred due 
to the discontinuous switching of the control input across the sliding surface.

To resolve all the above problems, in this paper, we present a fast adaptive fuzzy terminal sliding mode con-
trol (AFTSMC) to control the membrane potential of thalamic neuron populations in a BG–thalamic network 
model. The proposed controller generates an adaptive control signal (stimulation current applied to the TH) 
automatically to force the firing patterns of the Parkinsonian state to track the normal firing patterns. The main 
innovations of the work are as follows:

•	 In6, the problem of robust control of a single thalamic neuron with uncertain external disturbance has been 
addressed. In contrast, in the current study, by modeling the interaction between the neurons in populations 
of the thalamic, the network-level modulation of thalamic is represented in a standard canonical form as the 
multi-input multi-output (MIMO) nonlinear first-order system with uncertainty and external disturbances.

•	 To increase the speed of the controller outside the sliding surface and eliminate the chattering problem, a 
fast continuous TSM-type reaching term is designed to ensure the finite-time motion of the system states to 
the sliding manifold.

•	 On the surface, a nonsingular continuous integral fractional-power surface is developed to ensure the 
bounded finite-time convergence of the tracking error.

•	 A fuzzy logic system (FLS) is used to estimate the unknown nonlinear dynamics of the model embedded in 
the control input, and the weights of FLS are adjusted online to guarantee the convergence of FLS parameters 
to optimal values.

Simulation results are given to evaluate the performance of the proposed control method through the control 
of firing patterns of Parkinsonian state to track the normal state of the TH, and the results are compared with 
the adaptive fuzzy conventional SMC. The simulation results show the effectiveness of the proposed AFTSMC 
in deal with the uncertainty and external disturbances of ionic channels.

Model and control problem
Model.  The model of the BG-thalamic network simulated in this study is adopted from So et al.11. In this 
model, four neuronal populations (10 neurons for each population) are modeled for TH, STN, GPe, and GPi. 
The network topology and connections are shown in Fig. 1. For each neuron in GPe (GPi) population there exist 
two inhibitory inputs from GPe neurons and two excitatory inputs from STN neurons. Each GPi neuron inhibits 
a TH neuron, and each STN neuron is inhibited by two GPe neurons. Hence, the dynamic variations of the GPi 
population and its disturbances or uncertainties originated from the two populations GPe and STN, may directly 
or indirectly affect the TH. To model the state of Parkinson, the net bias current shown by Iapp is reduced to show 
the dopamine depletion in SNc. The value of Iapp for different populations at both healthy and PD conditions is 
provided in Table 1. The membrane potential dynamics of TH, STN, GPE, and GPi are modeled by the Hodgkin-
Huxley (HH) equations as follows:

(1)Cm
dvTH

dt
= −IL − INa − IK − IT − IGPi→TH + ISMC + Idbs

(2)Cm
dvSTN

dt
= −IL − INa − IK − IT − ICa − Iahp − IGPe→STN + Iapp_STN
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where in (1)–(4),vi , i ∈ {TH , STN ,GPe,GPi} denotes the membrane potential of a single STN, TH, GPe, and GPi 
neuron respectively, Cm = 1µFcm−2 indicates the membrane capacitance.INa,IK,ICa,IT,Iahp , and IL are the sodium 
current, potassium current, high-threshold calcium current, low-threshold calcium current, after hyperpolari-
zation current, and leak current, respectively. The synaptic current between two neurons is denoted as follows:

where α and β are representing pre and post-synaptic neurons, respectively. gα→β denotes the maximal synaptic 
conductance and Eα→β denotes the reverse synaptic potential. The summation term over sj shows the presynaptic 
neurons current integration. The sensorimotor cortex (SMC) excitatory current to the TH is denoted by ISMC 
which is defined as follows:

where H is a Heaviside step function.iSMC = 3.5uAcm−2 , 1
/

ρSMC , and δSMC = 5 ms are the amplitude, frequency, 
and duration of the pulse, respectively. Due to the non-regular nature of SMC input, the frequency of the pulse 
1
/

ρSMC is generated from a gamma distribution with an average rate of 14 Hz and a coefficient of variation 
of 0.219. All the TH neurons in the population receive the SMC current with different initial voltages and the 
SMC pulse at each time forces them to fire. Idbs is the stimulation pulses delivered to the TH and designed in 

(3)Cm
dvGPe

dt
= −IL − INa − IK − IT − ICa − Iahp − ISTN→GPe + IGPe_GPe + Iapp_GPe

(4)Cm
dvGPi

dt
= −IL − INa − IK − IT − ICa − Iahp − ISTN→GPi + IGPe_GPi + Iapp_GPi ,

(5)Iα→β = gα→β

(

vβ − Eα→β

)

∑

j

sj ,

(6)ISMC = iSMCH
(

sin
(

2π t
/

ρSMC

))

×
[

1−H
(

sin
(

2π
(

t + δSMC

/

ρSMC

)))]

,

Figure 1.   The BG-thalamic network layout for normal and PD conditions. Healthiness or Parkinsonian state 
is modeled by applying a specific set of Iapp currents to GPi, GPe, and STN populations (grey and black arrows 
for Parkinson and healthy states, respectively). The interconnections between different neuronal populations 
are also depicted which shows different excitatory or inhibitory connections between neurons. Excitatory and 
inhibitory connections are shown by red and blue arrows, respectively. The sensorimotor cortex excitatory 
current to the TH is denoted by SMC.

Table 1.   The net bias applied currents (uA/cm2) to the different BG populations for the healthiness and PD 
states.

State STN GPe GPi

Healthy 33 20 21

PD 23 7 15
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the control problem section. A detailed description of the model equations is provided in Appendix A of the 
Supplementary Materials.

Simulation of the system including the BG-network model and adaptive fuzzy MIMO controller uses MAT-
LAB R2020a for implementing and obtaining the adaptive continuous DBS pulses. The entire period of simulation 
is 1000 ms (sampling period, 0.01 ms for control updates). The root mean square (RMS) of the absolute tracking 
error (RMSE) is calculated to measure the tracking accuracy as follows:

where vTH and vTHd are the membrane potentials of each thalamic neuron for Parkinsonian and healthy states, 
respectively and T is the entire time of the simulation. Moreover, to quantify the performance of the stimulation 
pulses, the energy index is defined as the RMS of the control input in the following form19:

Control problem.  The BG–thalamic network model described in (1)–(4) is used as a PD model. To obtain 
the control input (DBS stimulation) using AFTSMC, the dynamics of thalamic neurons in (1) should be consid-
ered in the following canonical form:

where x = [x1, . . . , xm]
T  is a measurable state vector (membrane potentials of thalamic neurons) and 

u = [u1, . . . , um]
T indicates the control input (DBS pulses).d(t) denotes unknown bounded external perturba-

tions and uncertainties of the system i.e., ‖d(t)‖ < υ , where υ is a nonnegative known value. The unknown vector 
functions f1(x, t)+ d(t) and F2(x, t) are defined as

Assumption 1  F2(x, t) is a positive definite matrix and a real parameter σ0 > 0 is exists such that F2(x, t) > σ0Im , 
where Im is an m×m identity matrix.

Assumption 2  The desired trajectory xdi (t),i = 1, . . . ,m is a known (membrane potentials of thalamic neurons 
in normal condition) continuous function which its first-order dynamics are exist for measurement.

If the tracking error of the PD model is considered as ei = xdi − xi , then, to implement AFTSMC the nonsin-
gular continuous sliding surface is designed as follows:

where sig(ei(t))η = |ei(t)|
ηsign(ei(t)) , σ and η are positive design parameters that satisfy σ > 0, 1 < η < 2 . If 

the initial system states are away from the switching surface, a fast reaching law is designed to guarantee the 
finite-time motion of the system states to the sliding manifold as follows:

where the matrices K1 = diag(k11, . . . , k1m) > 0m×m and K2 = diag(k21, . . . , k2m) > 0m×m are design control 
gains and 1 < ρ1 < 3, 0 < ρ2 < 1 . The first dynamic of the sliding surface vector is

The equivalent control input is designed as follows:

Lemma 1  If an extended Lyapunov function V(x) is given as follows:

(7)RMSE =

√

√

√

√

1

T

T
∑

t=1

|vTH (t)− vTHd(t)|
2,

(8)Energy =

√

√

√

√

1

T

T
∑

t=1

uT (t)u(t).

(9)ẋ(t) = f1(x, t)+ F2(x, t) · u(t)+ d(t),

(10)f1(x, t) =
[

f11(x, t), . . . ,f1m(x, t)
]T
,

(11)F2(x, t) =







f211(x, t) · · · f21m(x, t)
.
.
.

. . .
.
.
.

f2m1
(x, t) · · · f2mm(x, t)






.

(12)si(t) =

t
∫

0

ei(t)dt + σ sig(ei(t))
η
, i = 1, . . . ,m

(13)ṡ = −K1sig(s)
ρ1 − K2sig(s)

ρ2 ,

(14)ṡ = e + ησdiag(|e|η−1)ė.

(15)ueq(t) = F
−1
2 (x, t)

(

−f1(x, t)− d(t)+ ẋd(t)+
1

ησ
sig(e(t))2−η + K1sig(s)

ρ1 + K2sig(s)
ρ2

)
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where α1,α2 > 0 and �1 ≥ 1, 0 < �2 < 1 , then, its settling time is given by

where F(a, b; c; z) indicates Gauss’s hypergeometric function29. The settling time of the Lemma 1 is proved in 
Appendix B of the Supplementary Materials.

Lemma 2  If a1, a2, . . . , an are all positive parameters, and 0 < p ≤ 2 , then the following inequality always 
maintains30:

Theorem 1  The nonlinear MIMO model defined in (9) with its Assumptions 1 and 2 is considered. The terminal 
switching manifold and reaching law are chosen as (12) and (13), respectively, and the control input is defined by 
(15). If the system states are away from the switching manifold, the dynamics of the model converge to the switching 
manifold si = 0 in a finite time.

The proof is given in Appendix C of the Supplementary Materials. When the states reached the sliding surface 
( s = 0 ), the dynamics of (4) has a globally finite-time stable attractor in ei = 031, so that the convergence time tr 
is finite with any condition xi(tri ) and is calculated as follows:

Adaptive fuzzy terminal sliding mode control (AFTSMC).  In real applications of closed-loop DBS 
systems, the dynamics of functions f1(x, t)+ d(t) and F2(x, t) are unavailable and the control input (15) can-
not exist. In the current study, to resolve the problem, FLS is applied to estimate these unknown dynamics (see 
details in Appendix D of the Supplementary Materials). If f̂1(x,ψt

f1
) and F̂2(x,ψt

f2
) are the fuzzy approximations 

of f1(x, t)+ d(t) and F2(x, t) , respectively, the following modified control input (15) is written:

where ε0 is a very small positive number. If the inverse of F̂2(x,ψt
f2
) cannot exist, the regularized form of 

F̂2(x,ψ
t
f2
)−1 in (18) is used. With the regularized definition F̂2(x,ψt

f2
)−1 , the control signal (20) can always be 

well defined. Furthermore, a corrective control term is added to the main control input for compensating the 
effect of approximation errors in the following form:

where ueq(t) is given in (18) and uc(t) is proposed as follows:

where σ0 > 0, and ϒ is an adjustable parameter designed with the following equation:

In (22) and (23), u0(t) is as follows:

Theorem 2  Consider the nonlinear model of the system (9) with nonlinear time-varying dynamics f1(x, t), d(t) and 
F2(x, t) , which are estimated with (S.23) and (S.24), and the Assumptions 1 and 2 hold. The control signal is selected 
as (21) and the adaptive rules are considered as (S.30), (S.31), and (23). Thus, the following results are proven:

(16)V̇(x)+ α1V
�1(x)+ α2V

�2(x) ≤ 0,

(17)ts ≤
V(x0)

1−�1

α1(�1 − 1)
· F

(

1,
�1 − 1

�1 − �2
;
�1 − 1

�1 − �2
+ 1;−

α2

α1
V(x0)

�2−�1

)

,

(18)
(

a21 + . . .+ a2n
)p

≤
(

a
p
1 + . . .+ a

p
n

)2

.

(19)tsi =
σ

1− 1
η

∣

∣xi(tri )
∣

∣

η−1
.

(20)
ueq(t) =

F̂
T
2 (x,ψ

t
f2
)

ε0Im + F̂2(x,ψ
t
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)F̂T2 (x,ψ

t
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)
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t
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)+ ẋd(t)+

1

ησ
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,

(21)u(t) = ueq(t)+ uc(t),

(22)uc(t) =
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u0(t) = ε0(ε0Im + F̂2(x,ψ

t
f2
)F̂T2 (x,ψ

t
f2
))−1×

(

−f̂1(x,ψ
t
f1
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(1)	 The parameter vectors ψt
f1
 and ψt

f2
 converge to ψ∗

f1
 and ψ∗

f2
 asymptotically.

(2)	 If f∗1 (x,ψ
∗
f1
) = f̂1(x,ψ

t
f1
) and F∗2(x,ψ

∗
f2
) = F̂2(x,ψ

t
f2
), then, the finite-time convergence of tracking error to 

the origin is guaranteed.
(3)	 If f∗1 (x,ψ

∗
f1
) �= f̂1(x,ψ

t
f1
) and F∗2(x,ψ

∗
f2
) �= F̂2(x,ψ

t
f2
), then, the sliding variable converges to the neighborhood 

of zero as follows:

where k1 and k2 denote the minimum eigenvalues of matrices K1 and K2, respectively. By virtue of  (25) and (26), the 
region �s� ≤ δ = min(δ1, δ2) will be achieved in finite time. Then, the tracking error converges to a boundary layer

in a finite time.
The proof is given in Appendix E of the Supplementary Materials.

Remark 1  Due to the bounds of (25) and (26), the larger selection of control gains K1 and K2 results in a smaller 
boundary region δ . But, by increasing the value of these parameters, the amplitude of the control signal (DBS 
pulses) will increase so that the control input may not be implemented.

Remark 2  Based on the results of Theorem 2, (25), and (26), the region δ converges to zero asymptotically.

Remark 3  The terms sig(s)ρ1 and sig(s)ρ2 in control law, and η in the sliding surface are considered as a 
bridge between classical adaptive fuzzy sliding mode control ( ρ1 → 1, ρ2 → 0, η → 1 ) and AFTSMC 
( 1 < ρ1 < 3, 0 < ρ2 < 1, 1 < η < 2 ). These parameters should be adjusted appropriately to guarantee to reach 
the sliding manifold in finite time and continuous control input.

Simulation results
In this section, the results of the proposed AFTSMC to control the membrane potentials of the TH in Parkinso-
nian state are reported and evaluated. The closed-loop diagram of the proposed robust AFTSMC for control of 
Parkinsonian state is illustrated in Fig. 2. The control input is a continuous adaptive DBS current applied to the 
TH so that a DBS waveform forces the membrane potential of the thalamic neuron to track the normal firing 
pattern in real-time in a closed-loop manner using the feedback signal.

The fuzzy systems used to estimate f̂1(x,ψt
f1
) and F̂2(x,ψt

f2
) have the membrane potentials of thalamic neu-

rons as input. For each state variable x =
[

vTH1
, . . . , vTH10

]T two Gaussian-type membership functions were 
defined as follows:

where c11 = c12 = . . . = c110 = −49.59, c21 = c22 = . . . = c210 = −25.36 and δ1 = δ2 = . . . = δ10 = 5 . The values 
of the adaptive FLS estimator are selected for covering the full possible range x . The initial conditions of the 
BG-network states are random values between -60 and -70 mv, and the initial values of the parameter ζ are set 
to random values with a uniform distribution between 0 and 1. Figure 3 shows the results of the thalamic firing 
pattern for neuron 1 in response to SMC excitatory current to the TH for healthy and Parkinsonian. In the healthy 
state, as the SMC excitatory current pulses applied with a gamma distribution with an average rate of 14 Hz, the 
thalamic neuron responds to the input successfully, while in Parkinsonian state, due to the reduction of net bias 
applied currents to the populations of STN, GPe, and GPi, the spiking behavior of the neuron in the presence of 
the applied input current may be suppressed and the neuron failed to respond normally. The response of the TH 
neuron in the healthy state is considered as the desired pattern and the main objective is to design and generate 
the control input (adaptive continuous DBS pulses) automatically to force the firing patterns of the Parkinsonian 
state to track the normal firing patterns.

Robust closed‑loop control of DBS pulses.  In this section, the results of controlling the firing pat-
terns of Parkinsonian state through the proposed AFTSMC are evaluated. The control parameters (i.e., 
σ , η, ρ1, ρ2, ε0, κf1 , κf2 , κ0, σ0,ϒ ) are selected with the trial-and-error process to reach the minimum tracking 
error with high accuracy and kept fixed during external disturbances and time-varying uncertainty simulations. 
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Figure 4 shows the results of the tracking for neuron 1 using the proposed AFTSMC (Fig. 4a) in comparison 
with the classical adaptive fuzzy sliding mode control (AFSMC). The results show that RMSE is 0.13 mv and 0.15 
mv for AFTSMC and classical AFSMC, respectively. The controller rapidly and automatically adjusted the level 
of stimulation signals to track the desired trajectory with the fast convergence speed. The membrane potential 
converges to the desired trajectory before 4 ms approximately. Figure 5 shows the membrane potential, control 
input, and absolute tracking error for individual cells of the TH populations. The bright bars in the chart of the 
membrane potential show the spiking activity of the thalamic cells in response to the input current of the sen-
sorimotor cortex. The mean RMSE for 10 neurons of the TH is 0.15 mv and 0.19 mv for AFTSMC and classical 
AFSMC, respectively.

Figure 2.   Closed-loop diagram of the proposed robust AFTSMC for control of Parkinsonian state through 
adaptive continuous DBS pulses. Tracking error,e(t) , is achieved by comparing the output of the healthy model, 
xd(t) , and the actual model, x(t) . The fuzzy estimators receive the voltages of TH neurons as inputs and calculate 
the elements of f1 vector and F2 matrix as main parts of the nonlinear dynamic model of the TH (see details in 
Appendix D of the Supplementary Materials). f1 , F2 and tracking error e(t) are used to compute the final control 
input u(t).
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Figure 3.   Results of the thalamic firing pattern for neuron 1 in response to the sensorimotor cortex (SMC) 
excitatory current to the TH for healthy and Parkinsonian states with the different net bias applied currents of 
Table 1 to the populations of STN, GPe, and GPi.
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Effects of system uncertainty (parameters variations).  In this section, to evaluate the performance 
of the proposed controller to handle time-varying uncertainty, the values of the system parameters were var-
ied randomly about their nominal values during 1000  ms simulation. All model parameters which are pre-
sented in the supplementary tables are considered in this analysis. These parameters include maximal ionic 
conductance ( gL, gNa, gK , gT , gCa, gahp ), reverse ionic potential ( EL,ENa,EK ,ET ,ECa ), maximum synaptic con-
ductance ( gSTN→GPe , gSTN→GPi , gGPe→STN , gGPe→GPe , gGPe→GPi , gGPi→TH ), and reverse synaptic potentials 
( ESTN→GPe ,ESTN→GPi ,EGPe→STN ,EGPe→GPe ,EGPe→GPi ,EGPi→TH ). The variations were randomly acquired 
with the uniform distribution by passing the random sequences to the low-pass filter (fourth-order Butterworth-
type) with the cutoff frequency of 0.025 Hz. Figure 6 shows the results of the tracking under 50% time-varying 
uncertainty of the parameters. The control input of AFTSMC is continuous without any chattering and singu-
larity (RMSE, 0.46 mv). In contrast, due to the discontinuity of the classical AFSMC (RMSE, 0.75 mv) across 
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Figure 4.   Typical results of the closed-loop control for neuron 1 using (a) AFTSMC (b) AFSMC.

Figure 5.   Typical results of the membrane potential, control input, and absolute tracking error for individual 
cells of the TH populations using (a) AFTSMC (b) AFSMC.
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the sliding surface, the control input generates high switching control activity which may excite unmodeled 
neglected dynamics of the BG-network, thus causing chattering. Figure 7 shows the membrane potential, control 
input, and absolute tracking error for individual cells of the TH populations. The averages of RMSE and Energy 
using AFTSMC and AFSMC over 10 trials of the simulation as a function of parameter variations from 0 to 50% 
are depicted in Fig. 8. Increasing the upper bound of the uncertainty caused more consumption of Energy and 
larger tracking error. The standard deviation (SD) and mean of RMSE and Energy generated using the AFSMC 
method were higher than that by the proposed AFTSMC. This indicates that the proposed AFTSMC method can 
provide robust control of DBS pulses with respect to the AFSMC. The results of the one-way ANOVA test show 
that the tracking performance and energy of the controllers AFTSMC and AFSMC were significantly different 
(p < 0.01).

Effects of external disturbances and uncertainty.  To evaluate the performance of the proposed 
AFTSMC to reject the external disturbance in the presence of uncertainty, the following external current is 
added to the dynamics of (1) for each TH neuron as the ionic channels disturbances:

(29)id(t) = sin

(

1+
kt

10

)

, k = 1, . . . , 10.
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Figure 6.   Typical results of the closed-loop control for neuron 1 under 50% time-varying system parameters 
using (a) AFTSMC (b) AFSMC.

Figure 7.   Typical results of the membrane potential, control input, and absolute tracking error for individual 
cells of the TH populations under 50% time-varying system parameters using (a) AFTSMC (b) AFSMC.
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Figure 9 shows the results of the tracking for neuron 1 using the proposed AFTSMC in comparison with 
the classical AFSMC. The results show that RMSE is 0.43 mv and 0.85 mv for AFTSMC and classical AFSMC, 
respectively. Figure 10 shows the membrane potential, control input, and absolute tracking error during the 
entire period of simulation for individual cells of the TH populations. The averages of RMSE and Energy using 
AFTSMC and AFSMC over 10 trials of the simulation as a function of parameter variations from 0 to 50% in 
the presence of external disturbance are indicated in Fig. 11. The parameters SD and mean of RMSE and Energy 
generated using the AFSMC method were higher than that by the proposed AFTSMC. The results of the one-way 
analysis of variance (ANOVA) test show that the tracking performance and energy of the controllers AFTSMC 
and AFSMC were significantly different (p < 0.01).

Discussion and conclusions
In the current paper, a class of fast and robust MIMO control scheme based on AFTSMC has been presented for 
control of membrane potential of thalamic neuron populations in the BG–thalamic network model through con-
tinuous adaptive DBS pulses. In the previous work6, a robust SMC was proposed for modulation of Parkinsonian 
state with uncertain disturbance. A property of the classical SMC is the convergence of the tracking error to the 
origin in an infinite time. Moreover, in the previous work6, to design the control input the membrane potential 
of the thalamic neuron being controlled should be assumed known. In the current study, to resolve the limita-
tion of globally asymptotic stabilization of classical SMC and speed up the convergence time in both reaching 
and sliding phases of the motion, an AFTSMC control has been proposed to guarantee the global stability of 
the closed-loop system with the fast speed. Another problem is the modeling of the complexity of the neuron 
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Figure 8.   Results of the mean RMSE and Energy over 10 trials of the simulation under time-varying system 
parameters using AFTSMC in comparison with classical AFSMC. Standard deviation bars are shown for 10 
independent simulations in each uncertainty.
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Figure 9.   Typical results of the closed-loop control for neuron 1 under 50% time-varying system parameters 
and external disturbances using (a) AFTSMC (b) AFSMC.
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populations in TH. From a simulation point of view, in6, a single-input single-output (SISO) framework was 
developed for robust control of a single thalamic neuron with uncertain external disturbance. In contrast, in this 
paper, the interaction between 10 neurons of the TH is represented as the MIMO nonlinear dynamic system and a 
class of MIMO control framework (centralized structure) is developed for controlling the BG system. Centralized 
controller structure requires a complex mathematical model of the BG dynamics in the control law designation 
and calculation. But, in real applications of robust closed-loop DBS systems, the challenge is the reduction of 
computational order of the system and easy implementation of the closed-loop system. One solution to cope with 
this limitation is the decentralized design of the system. In a decentralized control scheme, a system is divided 
into a set of subsystems in which an independent controller is used to control each subsystem. The controller of 
each subsystem is designed based on feedback measurements of the membrane potential of each isolated neuron 
of the TH. The external disturbance of each subsystem is considered as a model of the interaction between the 
subsystems and estimated online with the FLS. The real implementation of the proposed closed-loop controller 
in decentralized and centralized forms to evaluate the performance and real-time speed of each structure in PD 
patients through robust adaptive control of DBS using AFTSMC is considered as future research.

While computational modeling and simulation provide affordable tools to test and develop effective 
approaches before clinical trials, many methodological assumptions based on these computational models may 
not hold in real practical applications. Uncertainty and external disturbance are unavoidable elements of the brain 
neural networks, including ion channels and synaptic connections32. Furthermore, other sources of uncertainty, 

Figure 10.   Typical results of the membrane potential, control input, and absolute tracking error for individual 
cells of the TH populations under 50% time-varying system parameters and external disturbances using (a) 
AFTSMC (b) AFSMC.
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such as day-to-day and subject-to-subject variability, or possible inaccurate electrode targeting may increase the 
mismatch between the real control platform and the simulation-based designed controller. Hence, the control 
approaches purely depending on an accurate BG model, such as the feedback linearization method employed 
in7, would not be an ideal option for practical implementation. To take into account this issue, we evaluated 
the effects of uncertainty and disturbances on the performance of the proposed controller in a well quantita-
tive manner by increasing the level of uncertainty from 0 to 50 percent with and without external disturbance 
circumstances. Although increasing uncertainty and/or disturbance negatively affected the control performance 
of both AFSMC and AFTSMC, the proposed AFTSMC significantly outperforms the classic AFSMC and its 
superior performance was statistically demonstrated. The proposed AFTSMC not only produced lower track-
ing errors but also made more robust and reliable outputs. Based on these results, the robustness against model 
uncertainty and disturbance can be considered as the most significant achievement of this study. This stability 
makes the proposed AFTSMC a reliable option for implementing in real applications.

In the current study, from a simulation point of view, a robust continuous adaptive control input (DBS cur-
rent to the TH) could efficiently force the membrane potential of TH neuron populations to track the pattern 
of healthy subjects in Parkinsonian state without considering the frequency and parameters of the stimulation 
(pulse amplitude (PA) and pulse width (PW))6,7. In a real DBS platform, it can be seen that the stimulator can 
generate charge-balanced, biphasic current pulses20,33,34 with interphase delay, and both PA and PW of stimula-
tion signal are individually or simultaneously adjusted by the AFTSMC to track the healthy patterns of the TH. 
The proposed controller has the ability of online adaptation to handle the subject and day-to-day variations or 
the environment changes. Another challenge in a real DBS platform is continuous stimulation with constant 
frequency. It may lead to increase side effects and battery usage. The optimal control strategy is of interest for 
current DBS technology to improve the energy efficiency for increasing the battery lifetime35,36. We considered 
this practical issue in our simulation by evaluating the energy index. The results demonstrated that under uncer-
tainty and/or disturbance circumstances, the energy required for classic AFSMC will be highly variable, while 
the proposed AFTSMC energy index showed very stable values. Further considering the practical perspective, 
the control input resulted from classic AFSMC showed high switching activity, which makes it hard to achieve 
energy efficiency37. In contrast, the proposed AFTSMC provides a more robust and smooth control input which 
is highly desirable for hardware design and implementation.
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