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Mathematical modeling holds great potential for quantitatively describing biofilm growth in presence or absence of chemical
agents used to limit or promote biofilm growth. In this paper, we describe a general mathematical/statistical framework that allows
for the characterization of complex data in terms of few parameters and the capability to (i) compare different experiments and
exposures to different agents, (ii) test different hypotheses regarding biofilm growth and interaction with different agents, and (iii)
simulate arbitrary administrations of agents.Themathematical framework is divided to submodels characterizing biofilm, including
new models characterizing live biofilm growth and dead cell accumulation; the interaction with agents inhibiting or stimulating
growth; the kinetics of the agents. The statistical framework can take into account measurement and interexperiment variation.
We demonstrate the application of (some of) the models using confocal microscopy data obtained using the computer program
COMSTAT.

1. Introduction

Biofilms are structured communities of bacteria enclosed
in an extracellular matrix composed of polysaccharides,
proteins, and extracellular DNA adherent to a surface [1].
Unlike planktonic bacteria, biofilms exhibit differences in
metabolism, antibiotic tolerance, and ability to evade the
immune system, making infections due to biofilms difficult
to treat [2]. Biofilms are a main cause of acute and chronic
infections, including foreign-body infections, otitis media,
and urinary tract infections.

When a population of microorganisms organized in a
biofilm grows, it is likely to pass over different phases. The
growth may follow a period of dormancy, if the environ-
mental conditions before the beginning of the growth are
not optimal. Eventually, cells start to divide and structure,
and the biofilm grows into a period in which the overall
rate of cell division prevails over that of their death. Under
favorable conditions, the growth may be considered to be
unlimited (hence exponential) for some time, but eventually

[3] physiological and physical limits such as (i) exhaustion of
available nutrients, (ii) accumulation of inhibitory metabo-
lites or end products, and (iii) exhaustion of space intervene.
As a result, the growth rate decreases and the colony reaches
its maximum size. Repeated or continual exposure to these
environmental or physiological stressors can then result in a
decline in the biofilm size [4].

In vitro biofilms are often used in studies concerning
therapy, dealing with the reactions of bacterial populations to
various agents: drugs, for example, antibiotics, or mutagens
[5–8]. Those are applied externally to the biofilm structures
and change their environment or directly eliminate (kill) the
bacteria or decrease their reproductive capacity.

A variety of mathematical models have been used to
describe bacterial growth in investigation of dynamics in
environment depending only on the activity of the bacteria
[9, 10]. Similarly, a number of models have been proposed
to describe the action of different agents, in particular drugs
and their interaction [11–13]. The objective of this paper
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is to obtain an integrated framework that provides models
describing the different stages of biofilm growth, the action of
different agents, and the simultaneous modeling of resulting
kinetics for live and dead biofilm. The statistical issues asso-
ciated with the use of these data, in particular the treatment
of different sources of variability, are also addressed.

We demonstrate the use of the resulting general models
using data obtained by means of confocal microscopy and
COMSTAT [14]. COMSTAT takes the image stacks created
by the confocal microscope as source data and produces up
to ten image analysis features for quantification of biofilm
structures which are output as one or more text files. The
models we describe in this paper apply to univariate mea-
surements: total biomass, area in a specific layer, average
thickness, and volumes of microcolonies identified at the
substratum (COMSTAT also obtains multivariate data, such
as thickness distribution, which can be used to quantify the
three-dimensional structures in the biofilm.Themodeling of
such data is the subject of current modeling investigation and
will be reported in future communications.).

2. Methods

2.1. Mathematical Modeling. Modeling of biofilm growth
requires the specification of three components. The first,
a function 𝑔(⋅), describes the growth of the biofilm in
absence of agents limiting or promoting growth. The second,
a nonnegative function ℎ(⋅), describes the interaction with
the agents. The third, 𝐶(⋅), describes the temporal variation
(kinetics) of the agents acting on the biofilm. The general
model we consider expresses the rate of change of the biofilm
as follows:

𝑑𝐵 (𝑡)
𝑑𝑡 = 𝑔 (𝑡, 𝐵 (𝑡)) ± ℎ (𝐶 (𝑡) , 𝐵 (𝑡))
𝐵 (0) = 𝐵0,

(1)

where 𝑡 is time, 𝐵(𝑡) is biofilm amount present in the system
at time 𝑡, 𝐵0 is the initial conditions or biofilm amount at𝑡 = 0, and 𝐶(𝑡) is the concentration of agent at time 𝑡. The± sign indicates that the model can describe either inhibition
or stimulation.

2.1.1. Biofilm Growth. A large number of models have been
proposed to describe bacterial growth, for example, [15–
17]. For the purpose of this paper, we only describe the
simplest model for unlimited growth (exponential) and
three semiempirical models for limited growth. Exponential
biofilm growth assumes that the rate of growth is propor-
tional to the amount of cells present in the system, and that
there is no limitation to growth; thus

𝑑𝐵 (𝑡)
𝑑𝑡 = 𝑔 (𝑡, 𝐵 (𝑡)) = 𝑘𝑏𝐵 (𝑡) , (2)

where 𝑘𝑏 is the growth rate of the biofilm. The analytic
solution of (2) is an exponential growth:

𝐵 (𝑡) = 𝐵0𝑒𝑘𝑏𝑡 (3)

with doubling time, 𝑡𝑑, being equal to ln(2)/𝑘𝑏.

In general, exponential growth can only describe the early
stages of biofilm growth. A number of semiempirical models
can be used to take into account the decrease in proliferation
that results from limitations of nutrient supply or mechanical
constraints or metabolites accumulation. We consider the
Logistic, Gompertz, and Bertalanffymodels.The Logistic [18]
takes the following form:

𝑔 (𝑡, 𝐵 (𝑡)) = 𝑘𝑏𝐵 (𝑡) (1 − 𝐵 (𝑡)
𝐵max

) , (4)

where𝐵max is themaximumbiofilm level that can be reached.
The corresponding analytic solution is as follows:

𝐵 (𝑡) = 𝐵max𝐵0𝐵0 + (𝐵max − 𝐵0) 𝑒−𝑘𝑏𝑡 . (5)

The Gompertz model [19–21] takes the following form:

𝑔 (𝑡, 𝐵 (𝑡)) = 𝑘𝑏𝐵 (𝑡) ln(𝐵max𝐵 (𝑡) ) (6)

with analytic solution:

𝐵 (𝑡) = 𝐵max𝑒ln(𝐵0/𝐵max)𝑒
−𝑘𝑏𝑡 . (7)

Finally the Bertalanffy model [22] assumes that growth
occurs proportionally to biofilm surface area, while biofilm
loss is proportional to biofilm:

𝑔 (𝑡, 𝐵 (𝑡)) = 𝑘𝑏𝐵 (𝑡)2/3 − 𝑘𝑑𝐵 (𝑡) , (8)

where 𝑘𝑑 is the death rate for biofilm. The solution of (8) is
also sigmoidal in shape and tends to an asymptote as time
increases, where the birth and death term balance each other
out. A general version of the Bertalanffy model takes the
following form [22]:

𝑔 (𝑡, 𝐵 (𝑡)) = 𝑘𝑏𝐵 (𝑡)𝜆 − 𝑘𝑑𝐵 (𝑡)𝛿 , (9)

where 0 < 𝜆 < 𝛿. The Logistic equation is a special case of
this model with 𝜆 = 1, 𝛿 = 2.
2.1.2. Agents Interaction with Biofilm. The simplest model
describing the interaction of bacterial biofilm with an agent
assumes that the action of the agent is proportional to the
product agent and biofilm:

ℎ (𝐶 (𝑡) , 𝐵 (𝑡)) = 𝜃1𝐶 (𝑡) 𝐵 (𝑡) , (10)

where 𝜃1 now quantifies the interaction. For an inhibitory
agent combining (10) with exponential growth (2) obtains

𝑑𝐵 (𝑡)
𝑑𝑡 = 𝑘𝑏𝐵 (𝑡) − 𝜃1𝐶 (𝑡) 𝐵 (𝑡) . (11)

According to this model if the agent concentration is kept
at constant level 𝑘𝑏/𝜃1, the growth rate is zero. That con-
centration is the minimal concentration of agent killing
bacteria or BIC. The BIC is frequently used to characterize
bacterial growth in planktonic, in vitro experiments, and
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clinical settings (e.g., [23]). Note that if the growth rate is
not exponential, the BIC is not a constant but depends on
the current amount of biofilm. For example, for the Logistic
model, incorporating an inhibitory agent action takes the
following form:

𝑑𝐵 (𝑡)
𝑑𝑡 = 𝑘𝑏𝐵 (𝑡) (1 − 𝐵 (𝑡)

𝐵max
) − 𝜃1𝐶 (𝑡) 𝐵 (𝑡) (12)

and the BIC is given by the following equation:

BIC (𝐵 (𝑡)) = 𝑘𝑏𝜃1 (1 − 𝐵 (𝑡)
𝐵max

) (13)

that shows how the BIC decreases as a function of 𝐵(𝑡).
Similarly, for the Gompertz model,

BIC (𝐵 (𝑡)) = 𝑘𝑏𝜃1 ln(𝐵max𝐵 (𝑡) ) . (14)

More complex models for the interaction agent/biofilm can
be used, for example, threshold models, according to which
the agent is effective if its concentration reaches a threshold,

ℎ (𝐶 (𝑡) , 𝐵 (𝑡)) = {{{
𝜃1𝐶 (𝑡) 𝐵 (𝑡) if 𝐶 (𝑡) ≥ 𝜃2
0 otherwise, (15)

where the parameter 𝜃2 is the threshold; or models following
saturation kinetics similar to what is used in, for example,
pharmacodynamics [13],

ℎ (𝐶 (𝑡) , 𝐵 (𝑡)) = 𝜃1𝐶 (𝑡)
𝜃2 + 𝐶 (𝑡)𝐵 (𝑡) , (16)

where now, for large concentrations of agent, the killing
rate asymptotes to 𝜃1𝐵(𝑡). In presence of two agents, 𝐶1(𝑡)
and 𝐶2(𝑡), models (10) and (16) increase in complexity, as
the agents can affect the killing rate in different ways. For
example, the linear model (10) can be generalized as follows:

ℎ (𝐶1 (𝑡) , 𝐶2 (𝑡) , 𝐵 (𝑡)) = (𝜃1𝐶1 (𝑡) + 𝜃2𝐶2 (𝑡)) 𝐵 (𝑡) (17)

or

ℎ (𝐶1 (𝑡) , 𝐶2 (𝑡) , 𝐵 (𝑡))
= (𝜃1𝐶1 (𝑡) + 𝜃2𝐶2 (𝑡) + 𝜃3𝐶1 (𝑡) 𝐶2 (𝑡)) 𝐵 (𝑡) , (18)

where 𝜃3 is a killing rate for the agents’ interaction. When
saturation kinetics are present, as is the case for the single
agent model (16), a number of possibilities arise, generating
additive, synergistic, and antagonistic models often applied
in pharmacodynamic, enzymology, or binding experiments
[12]. For example, incorporating a model for competitive
interaction between two agents yields

ℎ (𝐶1 (𝑡) , 𝐶2 (𝑡) , 𝐵 (𝑡))
= (𝐶1 (𝑡) /𝐶1,50 + 𝛼 (𝐶2 (𝑡) /𝐶2,50)1 + 𝐶1 (𝑡) /𝐶1,50 + 𝐶2 (𝑡) /𝐶2,50) 𝐵 (𝑡) , (19)

where if 𝛼 > 0 the model shows additivity, and when 𝛼 = 0 it
reduces to the competitive antagonism model and yields

ℎ (𝐶1 (𝑡) , 𝐶2 (𝑡) , 𝐵 (𝑡))
= 𝐶1 (𝑡)𝐶1 (𝑡) + 𝐶1,50 (1 + 𝐶2 (𝑡) /𝐶2,50)𝐵 (𝑡) . (20)

2.1.3. Agent Kinetics. A mathematical representation of the
agents’ kinetics is needed to incorporate their action on the
biofilm. This in general does not present particular difficul-
ties. Analytical solutions or sets of differential equations can
be used to do so [24, 25]. As an alternative one can use “model
independent” representations of the data, such as smoothing
splines [26], or, when the measurement error in the kinetics
data is low an even simpler linear interpolant as we do in the
examples reported below.

2.1.4. Modeling Dead Biofilm. Confocal microscopy data
allow the measurement of both live and dead cells (see Data
section). Indicating by 𝐷(𝑡) the dead biofilm present in the
system at time 𝑡, its rate of generation can be directly obtained
from the growth equations reported above by identifying the
loss or gain in live cells due to the presence of the agent. For
the Logistic growth rate equation (4), this yields

𝑑𝐷 (𝑡)
𝑑𝑡 = 𝑘𝑏𝐵 (𝑡)2

𝐵max
± ℎ (𝐶 (𝑡) , 𝐵 (𝑡)) , (21)

and, for the generalized Bertalanffy model equation (8), an
inhibitory agent obtains

𝑑𝐷 (𝑡)
𝑑𝑡 = 𝑘𝑑𝐵 (𝑡)𝛿 + ℎ (𝐶 (𝑡) , 𝐵 (𝑡)) . (22)

For the Gompertz model, the growth equation does not lead
directly to express a rate of cell loss since it only expresses a
decrease of the growth rate 𝑘𝑏 inversely proportional to
biofilm growth. A possibility is to express dead biofilm as
follows:

𝐷 (𝑡) = 𝐵0𝑒𝑘𝑏𝑡 − 𝐵 (𝑡) , (23)

the difference between what would result from exponential
growth and the actual biofilm level.

2.1.5. Modeling Post-Plateau Biofilm Decrease. To account for
effects leading to a post-plateau decline in the biofilm size
[4], one can introduce a hypothetical endogenous variable,𝑋, that is reduced proportionally to the amount of biofilm
present [27, 28].

𝑑𝑋 (𝑡)
𝑑𝑡 = −𝑘𝑙𝐵 (𝑡) , 𝑋 (0) = 1, (24)

where 𝑘𝑙 is the rate of reduction. 𝑋(𝑡) is arbitrarily set to 1
at time zero; it is positive as 𝐵(𝑡) increases, but eventually it
becomes negative (as it can be seen by the relationship𝑋(𝑡) =
1–𝑘𝑙 ∫𝑡0 𝐵(𝑡)𝑑𝑡).The growth rate of biofilm takes the following
form:

𝑔 (𝑡, 𝐵 (𝑡) , 𝑋 (𝑡)) = 𝑔 (𝐵 (𝑡)) 𝑋 (𝑡) , (25)
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where 𝑔(𝐵(𝑡)) is given by (4) or (6). For example, for Logistic
growth,

𝑑𝐵 (𝑡)
𝑑𝑡 = [𝑘𝑏𝐵 (𝑡) (1 − 𝐵 (𝑡)

𝐵max
)] 𝑋 (𝑡) . (26)

The right side of equations (25) and (26) becomes negative
as time progresses and leads 𝐵(𝑡) to asymptote to zero (𝑋(𝑡)
asymptotes to a negative value). The main limitation of the
model is that for any value of 𝑘𝑙 the biofilm always asymptotes
to 0. To avoid this the model can be modified as follows:

𝑑𝑋 (𝑡)
𝑑𝑡 = 𝑘𝑝 − 𝑘𝑞𝑋 (𝑡) − 𝑘𝑙𝐵 (𝑡) , 𝑋 (0) = 𝑘𝑝

𝑘𝑞 , (27)

where 𝑘𝑝 and 𝑘𝑞 are production and elimination rates of the
endogenous substance. Equations for dead cells are obtained
as before.

We remark that especially in in vivo systems one can
observe pre- or post-plateau appearance of cyclical growth,
associatedwith seeding and dispersal [29, 30]. Tomodel these
situations one could use a time-varying 𝐵max that changes
value after a pure time-delay or depending on a threshold
biofilm value.

2.1.6. Modeling Dormancy. Biofilm growth can follow an
initial period of dormancy that can be expressed easily using
a (pure) lag time. The growth rate becomes

𝑔 (𝑡, 𝑋 (𝑡)) = {{{
0 𝑡 < 𝑡lag
𝑔 (𝐵 (𝑡 − 𝑡lag)) otherwise, (28)

where 𝑡lag is the lag time.

2.2. Statistical Modeling and Model Selection. Biofilm data
usually consist of several measurements made on a number
of growing “cells” on different occasions. The measurements
present different levels of random variation: among mea-
surements within a given cell (intracell variation), among
cells (intercell variation), and interoccasion. A hierarchical
nonlinear mixed effect model [31] can be used to represent
such data. According to this model the 𝑖th observation from
the 𝑗th cell and 𝑘th experiment,𝑦𝑖𝑗𝑘, takes the following form:

𝑦𝑖𝑗𝑘 = 𝑉 (𝑡𝑖𝑗𝑘, ℎ (𝛿, 𝜂𝑗, ]𝑘)) + 𝜀𝑖𝑗𝑘, (29)

where 𝑡𝑖𝑗𝑘 is the corresponding sampling time, 𝑉 is a non-
linear function describing the relationship between time,
parameters, and predicted response, and ℎ(𝛿, 𝜂𝑗, ]𝑘) describes
the parameters values for each cell, which depend on 𝛿, a fixed
effect mean parameter vector, a vector of intercell random
effect parameters, 𝜂𝑗, and a vector of intercell random effect
parameters, ]𝑘, with mean zero and a certain, typically multi-
variate normal, distribution with variance-covariance matrixΩ. The random effect 𝜀𝑖𝑗𝑘 indicates intracell variability (e.g.,
measurement error) typically assumed (multivariate) nor-
mally distributed with mean zero and covariance matrix Σ,
which could depend on 𝛿, 𝜂𝑗 (we omit details for simplicity)

and an unknown parameter vector 𝜎. Popular methods used
to fit mixed effect models to data are implemented in the
computer programs such as NONMEM [32] and NLME [33],
which allow the computation of corresponding second-order
statistics for the estimates, in particular the large sample
variance-covariance matrix of the parameters 𝛿, individual
parameters as empirical-Bayes estimates, and corresponding
predictions, conditional on the estimates for 𝛿, Ω, Σ.

To select between different models one can use statistical
model selection criteria together with the usual graphical dis-
plays based on predictions, observations, and residuals. Some
statistical model selection criteria are the Hannan-Quinn
(HQ) [34] and Akaike (AKA) [35]; these criteria penalize
the likelihood of the model proportionally to the number of
parameters in the model, thus penalizing the selection of
models with ‘too many’ parameters.The HQ is the most con-
servative; it uses twice the log of the number of observations
times the number of parameters as penalty, while the AKA
uses twice the number of parameters.

2.3. Data. Pseudomonas aeruginosa PAO1 tagged with green
fluorescent protein (GFP) were studied in flow-chamber
experiments described in [36]. In brief, biofilms were grown
at 30∘C in flow chambers. Each flow chamber was inoculated
with 250 𝜇L of an overnight culture of PAO1 diluted to an
OD600 of 0.05 and left without flow for one hour. After one
hour, flow was started with minimal media at a flow rate
of 20ml/h using a peristaltic pump (Watson Marlow 205 S).
After cultivation for 24 or 72 hours, flow was stopped and
minimal media were replaced with an antibiotic flask con-
taining the desired concentration of either Meropenem
(MEM) or Tobramycin (TOB) where administered as an
intermittent bolus.This antibiotic flask is connected to bubble
traps and the flow chambers containing the cultivated PAO1
biofilms. Flow was restarted and minimal media were
pumped from the dilution flask to the antibiotic flask to the
flow chambers at a constant rate calculated tomimic the elim-
ination rate constant of the antibiotic. MEM and TOB were
obtained from the pharmacy of the University of California
San Francisco Medical Center [37]. Concentration-time pro-
files were based on previously described PK parameters of
MEM and TOB from healthy volunteers and patients with
cystic fibrosis [38, 39]. The target MEM peak concentration
based on human population values was computed to be 107.53
mg/L with a 𝑡1/2 = 0.893 h. The target TOB peak concen-
tration, based on a dose of 10mg/kg in a 70 kg adult, was
32.79mg/L with an associated 𝑡1/2 = 2.75 h. Samples were
analyzed by liquid chromatography-tandem mass spectrom-
etry (LC-MS/MS) [40].

Microscopic observations of the flow cells were com-
pleted using a Leica TCS SP2 confocal laser scanning
microscopy (CLSM) with an argon/krypton laser and detec-
tors and filter sets for simultaneous monitoring of GFP (exci-
tation, 488 nm; emission, 517 nm) for live cell staining and
propidium iodide (excitation, 543 nm; emission, 565 nm) for
dead cell staining. Images were acquired at approximately
1 𝜇m intervals in the 𝑧 direction down through the biofilm.
Each channel of the flow chamber was randomly imaged at
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Figure 1: Biofilm growth models: simulation. (a) Biofilm growth according to the Gompertz (solid line) and Logistic (dashed line) models.
(b) Corresponding time derivatives. (c) Corresponding biofilm doubling time. (d) Corresponding BIC. Parameter values: 𝐵0 = 0.001, 𝑘𝑏 = 6,𝐵max = 1, 𝜃1 = 1. (Biofilm and time are in arbitrary units.)

two separate locations per time point. CLSM images were
analyzed using COMSTAT [14].

3. Results

Biofilm Growth Models: Simulation. Figure 1(a) shows a plot
of the Gompertz and Logistic models (see (7) and (5)) with
parameters values 𝐵0 = 0.001, 𝑘𝑏 = 6, 𝐵max = 1, and
time in arbitrary units. Figure 1(b) shows their corresponding
time derivative (i.e., the biofilm overall rate of change), and
Figure 1(c) the biofilm doubling time. Doubling time is not
a constant, as for the exponential model equation (3), but is
instead expressed by the following relationships:

𝑡𝑑 = ln (ln (2) /𝑒−𝑘𝑏𝑡 + 1)
𝑘𝑏 , (30)

for the Gompertz, and

𝑡𝑑 = − 1
𝑘𝑏 ln(1

2 − 𝐵02 (𝐵max − 𝐵0) 𝑒𝑘𝑏𝑡) (31)

for the Logistic model. Note how the doubling time is only
defined up to the time for which𝐵(𝑡) = 𝐵max/2, where it tends
to infinity. Figure 1(d) shows the BIC for the twomodels: note
how the BIC is a decreasing function of𝐵(𝑡), because intrinsic
growth rate decreases as 𝐵(𝑡) reaches the asymptote 𝐵max.

Simulated Data Example 1. Different growth models are
often difficult to discriminate when fitted to data. Fig-
ure 2 shows data simulated using a Logistic (Figure 2(a)) or
Gompertz (Figure 2(b)) model. The data are generated by
adding random normally distributed noise with mean 0 and
standard deviation 0.1 to the predictions; parameter values are
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Figure 2: Simulated Data Example 1. Gompertz and Logistic models data fit. Circles, data simulated using a Logistic (a) or Gompertz (b)
model with added random normally distributed noise; parameter values:𝐵0 = 0.001, 𝑘𝑏 = 6, 𝐵max = 1. Solid lines and dashed lines: Gompertz
and Logistic model fit to the data, respectively. See also legend to Figure 1.

𝐵0 = 0.001, 𝑘𝑏 = 6, 𝐵max = 1. Visually, the fits are difficult to
distinguish, and they are undistinguishable according to the
Akaike criterion.There is difference in Akaike value between
the two models of 0.8 for Figure 2(a) and 1.2 for Figure 2(a).

The Bertalanffy model equation (8) can describe rather
different kinetics than the Logistic (and Gompertz) depend-
ing on the values of its parameters. In general one cannot
reproduce data generated by generalized Bertalanffy process
using either a Gompertz or Logistic equation.

Simulated Data Example 2. Figure 3 shows an example where
data are simulated using the Bertalanffy model with 𝑘𝑏 =4, 𝑘𝑑 = 2, 𝜆 = 0.25, 𝛿 = 1(Figure 3(a)) or 𝑘𝑏 = 4, 𝑘𝑑 = 2,𝜆 = 0.1, 𝛿 = 1(Figure 3(b)), adding normally distributed
error with mean 0.0 and standard deviation 0.1. Note the
misfit of the Gompertz (dashed line) and especially Logistic
model (thin dashed line) when compared to the Bertalanffy
fit (solid line). The differences in the objective functions cor-
responding to the fits are in this case statistically significant
according to the Akaike criterion.

Real Data Example 1. Figure 4 shows the result of the fits of the
Logistic and Gompertz models to average thickness control
data. Note how the average thickness increases and then
reaches a plateau. The Logistic (dashed line) and Gompertz
(solid line) fits estimate a similar value for 𝐵max but have
slightly different shapes.The objective function values for the
Logistic and Gompertz models were 373.50 versus 375.35,
indicating a statistically insignificant, slightly better fit for
the Logistic model. According to the Logistic model the
maximum biofilm growth, (𝐵max), was 52.1 (𝜇m) with a birth
rate (𝑘𝑏) of 0.051 (1/h). According to the Gompertz model the
maximum biofilm growth, (𝐵max), was 53.2 (𝜇m) with a birth
rate (𝑘𝑏) of 0.049 (1/h).
Real Data Example 2. Figure 5 shows the result of the fits
to biomass data collected in the same cells. The Logistic
(dashed line) and Gompertz (solid line) fits estimate a similar
value for 𝐵max, the maximum growth level, and have slightly
different shapes before asymptote toward 𝐵max. The objective
function values for the Logistic and Gompertz models were
585.86 versus 585.93, indicating that the models cannot
be discriminated based on the fit. According to the Gom-
pertz model, the maximum biofilm growth, (𝐵max), was
42.5 𝜇m3/𝜇m2 with a birth rate (𝑘𝑏) of 0.051.3 1/h.

RealData Example 3.This demonstrates the use of a nonlinear
mixed effect model on a complex data set that includes
controls, single-dose administration of MEM at TOB at 24
hours (monoexponential decay), triple dose (monoexponen-
tial decay) of both drugs at 74 hours, and a combined single-
dose infusion of MEM and single dose (monoexponential)
or TOB at 72 hours. Figure 6 shows the plot of the weighted
residuals versus time for the fit to data; the solid lines show the
R [41] function supsmu fit to the residuals. Note the overall
lack of trends (a trend in the residuals would indicate a misfit
of the model to the data), although there is a minor trend at
the lowest and highest prediction values.

Figure 7 shows plots of the observations (open circles)
and empirical-Bayes predictions by the model (solid line) for
a selection of the data sets. The data are selected based on
the objective function value of the individual fit to each data
set. Top to bottom, right to left they correspond to the 10%
(best), 25%, 40%, 60%, 75%, and 90% (worst) fit of themodel.
Table 1 reports the parameter estimates, showing the partition
of the variability of the parameter estimates. Figure 8 shows a
simulation based on those parameter estimates: drug kinetics
in Figure 8(a) and the corresponding biomass vsersus time
plot in Figure 8(b).

Real Data Example 4. Finally, as an example of a combined fit
to live and dead cells Figure 9(a) shows the fit of the Logistic
growth model incorporating drug effect according to (15)
to the live biofilm average thickness data pooled from
twelve experiments; Figure 9(b) shows the fit of to the dead
cells; Figure 9(c) shows the pharmacokinetic profile imposed
during in the experiments. Note how the model follows quite
well the decrease in average thickness following the drug
administration and tracks the corresponding increase of dead
cells despite the large variability for both live and dead data
measurements. The estimate of the killing rate (𝜃1) in this
example is 0.00243 (1/h/𝜇m).

4. Discussion

In this paper, we describe general mathematical models that
can be used to quantify biofilm growth and interaction with
different agents inhibiting or stimulating growth.Themodels
are semiempirical in nature, in the sense that they do not
include a detailed physiological description but allow the
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Figure 3: Simulated Data Example 2. Bertalanffy versus Gompertz and Logistic models data fit. Circles, data simulated using a Bertalanffy
model with added random normally distributed noise. Parameter values: 𝑘𝑏 = 4, 𝑘𝑑 = 2, 𝜆 = 0.25, 𝛿 = 1; 𝑘𝑏 = 4, 𝑘𝑑 = 2, 𝜆 = 0.1, 𝛿 = 1
(b). Solid lines, dashed lines, and thin dashed lines: Bertalanffy, Gompertz, and Logistic model fit to the data, respectively. See also legend to
Figure 1.
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Figure 4: Real Data Example 1. Circles, average thickness data with superimposed predictions of the fits of a Logistic (dashed line) and
Gompertz (solid line) models.
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Figure 5: Real Data Example 2. Circles, biomass data with superimposed the predictions of the fits of a Logistic (dashed line) and Gompertz
(solid line) models.
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Figure 6: Real Data Example 3: model residuals plot. Gompertz model fit to multiple administration Meropenem (MEM) and Tobramycin
(TOB) data (see also legend to Figure 8). Open circles, nonlinear mixed effect model weighted residuals versus predictions; solid line, R
function supsmu fit to the weighted residuals.

Table 1: Biofilm growth parameters and kills rates associated with
MEM and TOB.

Parameter Parameter estimate Interchannel
variability (%)

𝐵max (𝜇m3/𝜇m2) 39.5 (1.34) 21.8
𝑘𝑏 (1/h) 0.0425 (0.0406) 11.1
𝑘1 (1/h/cu) 0.00301 (0.00011) 14.8
𝑘2 (1/h/cu) 0.00352 (0.000168) 20.9
𝑘12 (1/h/cu2) 0.000473 (0.000083) 7.1
Residual Variability 𝜎
(𝜇m3/𝜇m2) 8.02 -

𝐵max, maximum biofilm growth (in absence of drug); 𝑘𝑏, biofilm growth
rate (in absence of drug); 𝑘1, MEM kill rate; 𝑘2, TOB kill rate; 𝑘12, drug
interaction kill rate (cu, concentration units, 1000∗ng/mL). Standard errors
for the estimated parameters are in parenthesis.

quantification of biofilm growth and the interaction with
growth-inducing or growth-reducing agents.

With regard to biofilm growth, we show that the com-
monly used BIC (the minimal drug concentration that
inhibits growth) is not a constant when growth is limited,
which is almost always the case with biofilms, but depends
on the actual amount of biofilm and corresponding growth
status.

We show how different growth models are often difficult
to distinguish when fitted to data. This is due to the inherent
flexibility of the models and also related to the sampling
frequency and noise level present in the data. In the examples
reported here, the sampling is relatively frequent. But in
general, other experimental conditions might allow more
frequent sampling and therefore the identification of more
complex growthmodels and/ormore complexmodels for the
response to agents affecting biofilm growth.

Themain advantage of the use of amathematical model is
that it can provide a characterization of complex data in terms
of few parameters. As an example, Table 1 shows how a

model with just five parameters characterizes seven distinct
experiments. In addition, a nonlinear mixed effect model
allows the identification not only of the parameters charac-
terizing the growth and growth inhibition but also of the
sources of variability present in a particular experimental
situation. This is important because it allows the comparison
of the quality of the data arising from different experimental
conditions, and it suggests where experimental variation
might need to be reduced. The main advantages of using a
nonlinear mixed effect model are its statistical elegance
and its efficiency. The main disadvantages are the many
distributional assumptions involved in the formulation of the
model and the computational burden involved in estimating
the likelihoodof the observations. A simple alternative, which
takes advantage of the relatively abundance of data in in vitro
experiments, is to fit data from each cell and experiment inde-
pendently, obtaining the corresponding parameter estimates,
which are then used to characterize the distribution of the
parameters in the collection of experiments. This requires no
specialized software andmight be themost appealingmethod
of choice in many situations.

The most important function of a mathematical model is
the characterization of the process underlying data gener-
ation (rather than random variation associated with data
collection). The models we describe represent a summary of
models already present in the literature but also include
potentially useful newmodels describing the kinetics of dead
cells, together with models describing agents and agent inter-
action with growth. Taken together, they can allow the repre-
sentation of a vast array of biofilm data.
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Figure 7: Real Data Example 3: observations and model predictions. Gompertz model fit to multiple administration MEM and TOB data
(see text). In all panels: open circles, observations; solid lines, model predictions. Panels: top to bottom, right to left: 10% best fit, 25%, 40%,
60%, 75%, and 90% (worst fit).
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Figure 8: Real Data Example 3: simulation using the fitted model. (a) MEM and TOB administrations. (b)The corresponding predictions by
the model using the estimates reported in Table 1.
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Figure 9: Real Data Example 4. (a) Live biofilm average thickness. (b) Dead biofilm average thickness. (c) Drug administration profile. All
panels: circles, observations; solid line, model predictions.
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