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The effect of nutrients on microbial interactions, including competition and collaboration,
has mainly been studied in laboratories, but their potential application to complex
ecosystems is unknown. Here, we examined the effect of changes in organic acids
among other parameters on snow microbial communities in situ over 2 months. We
compared snow bacterial communities from a low organic acid content period to that
from a higher organic acid period. We hypothesized that an increase in organic acids
would shift the dominant microbial interaction from collaboration to competition. To
evaluate microbial interactions, we built taxonomic co-variance networks from OTUs
obtained from 16S rRNA gene sequencing. In addition, we tracked marker genes of
microbial cooperation (plasmid backbone genes) and competition (antibiotic resistance
genes) across both sampling periods in metagenomes and metatranscriptomes. Our
results showed a decrease in the average connectivity of the network during late spring
compared to the early spring that we interpreted as a decrease of cooperation. This
observation was strengthened by the significantly more abundant plasmid backbone
genes in the metagenomes from the early spring. The modularity of the network from
the late spring was also found to be higher than the one from the early spring, which is
another possible indicator of increased competition. Antibiotic resistance genes were
significantly more abundant in the late spring metagenomes. In addition, antibiotic
resistance genes were also positively correlated to the organic acid concentration of
the snow across both seasons. Snow organic acid content might be responsible for this
change in bacterial interactions in the Arctic snow community.

Keywords: competition, cooperation, networks, snow, organic acids

INTRODUCTION

Dynamic changes in nutrient concentrations have been shown to influence bacterial interactions
with ramifications for microbial community structure and function (Friedman and Gore,
2017; Khan et al., 2018). In these pure culture studies, either cooperation or competition
was the dominant interaction strategy depending on the nutrients considered and their
concentrations (Brockhurst et al., 2008, 2010, Lambert et al., 2011, 2014; Ravindran, 2017).
Interference competition was hypothesized to be mediated by antibiotic release (Cornforth
and Foster, 2013; Oliveira et al., 2015; Ponce-Soto et al., 2015; Song et al., 2017)
and was shown to be affected by the nutrient supply (Hol et al., 2014). For example,
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a sensitive Escherichia coli strain was observed to co-exist with
a colicin-secreting E. coli strain when co-cultivated on a poor
growth medium (sugars), but not on a rich medium (amino acids
and peptides), where the colicin-secreting E. coli strain released
antibiotics (Hol et al., 2014). Cooperation was also proposed to
be mediated by either metabolic or genetic exchanges between
different collaborative strains (Nogueira et al., 2009; Mc Ginty
et al., 2011; Dimitriu et al., 2014, 2015; Benomar et al., 2015;
Wall, 2016; Tecon and Or, 2017) and has also been shown to
be affected by nutrient supply (Benomar et al., 2015). Several
studies have examined the importance of horizontal gene transfer
in maintaining cooperation in synthetic bacterial communities
(Czárán and Hoekstra, 2009; Nogueira et al., 2009; Dimitriu
et al., 2014, 2015; Wall, 2016). Therefore, cooperation might be
promoted by increasing assortment among cooperative alleles
(Dimitriu et al., 2014) or by increasing kin selection (Nogueira
et al., 2009; Wall, 2016). In addition, most of the genes coding
for public goods appeared to be preferentially localized on
mobile genetic elements (plasmids) and at hotspots of genome
recombination (Nogueira et al., 2009).

The majority of research concerning nutrient-related effects
on bacterial interactions has been generated with culture-based
experiments (Mitri and Foster, 2013). While these studies
have provided information on different nutrient effects on
bacterial interactions under controlled conditions, they might not
predict microbial interactions in the environment. Microcosm
or mesocosm approaches have been used more recently to study
microbial communities and the results have varied (Ponce-Soto
et al., 2015; Ali et al., 2016; Song et al., 2017). Although no
studies concerning the effect of carbon content on microbial
interactions have been published to date, one study measured an
increase in antibiotic resistance genes in strains of Enterococcus
faecalis cultivated in eutrophic sediment mesocosms amended
with nitrogen and phosphorus (Ali et al., 2016). Other studies
observed a decline of antibiotic resistance in cultivable bacterial
populations from an oligotrophic lake in mesocosms amended
with nitrogen and phosphorus and from soil bacteria cultivated
on agar plates amended with increasing nutrient medium
concentrations (Ponce-Soto et al., 2015; Song et al., 2017). The
main difference between these two sets of studies is that one used
a PCR based method to track antibiotic resistance (Ali et al.,
2016), while the others used culture based methods (Ponce-Soto
et al., 2015; Song et al., 2017). Culture based techniques could
have a higher bias since they alter the bacterial community by
selecting members able to grow on media.

Nutrient dynamics also affect bacterial community structure
(Campbell et al., 2010). For example, an increase in organic
matter during soil fertilization was shown to decrease bacterial
community evenness in Arctic tundra soil (Koyama et al.,
2014). The observed effect of nutrients on bacterial community
structure might be indirect and mediated in part by bacterial
interactions. The low cultivability associated with environmental
bacteria might be mainly due to the co-dependency of
bacteria that are auxotrophic for some critical functions and,
therefore, are obligate co-operators (Pande and Kost, 2017).
Thus, bacterial communities might be viewed as networks of
cooperating and competing individuals. Such a view has been

explored by recent experiments that show a differential growth
rate of environmental bacterial strains when co-cultured with
other specific strains (Pande et al., 2014; Ren et al., 2015;
Vartoukian et al., 2016). Bacterial interactions could provide
a selective advantage to bacterial species as a function of
nutrient concentrations and subsequently influence bacterial
community structure.

Tracking bacterial interactions in situ can be performed
through networks, such as co-variance networks based on
taxonomic data (Faust and Raes, 2012). This approach has
been used for microbial communities from oceans (Ruan,
2006; Lima-Mendez et al., 2015), soils (Barberán et al., 2012;
Ding et al., 2015), human microbiomes (Faust et al., 2012)
and heavy-metal-polluted sediments (Yin et al., 2015). These
networks often use co-variance to infer positive (cooperative)
and negative (competitive) bacterial interactions (e.g., Ruan,
2006), but co-variance might also indicate that the populations
are responding to other stimuli, simultaneously. An approach
combining gene markers for bacterial interactions based on
pure culture studies and taxonomy-based co-variance networks
described above should strengthen the results obtained. Here,
we applied this combined approach using antibiotic resistance
as the surrogate for competition and plasmid structural genes
for collaboration, and taxonomy-based co-variance networks on
microbial communities sampled from an Arctic snowpack over
the spring season. Arctic snow microbial communities were
selected because arctic snow carbon content varies by several
orders of magnitude during the spring season (Twickler et al.,
1986) and is generally considered a low carbon environment.
Recently, using COG functions characteristic of oligotrophy
or copiotrophy as proposed by Lauro et al. (2009), Maccario
et al. (2019) showed that arctic snow bacterial communities
were adapted to oligotrophic lifestyles. However, oligotrophic
the arctic snow environment is, carbon content increases over
the spring season (Hacking et al., 1983; Twickler et al., 1986;
Haan et al., 2001; Grannas et al., 2007). In addition, Arctic snow
has varying nutrient conditions that affect bacterial community
structure and function (Larose et al., 2013). We hypothesized
that increases in organic acids (as a soluble subset of potential
organic substrates) in the warming spring snow would increase
competition (and reduce collaboration).

MATERIALS AND METHODS

Field Sampling
Snow samples were collected during a 2011 springtime field
campaign in Ny-Ålesund (Svalbard, Norway, 78◦56′N, 11◦52′E).
Surface snow layers (upper 3 cm) (2L meltwater equivalent) were
collected into sterile bags using a sterilized shovel as described
previously (Larose et al., 2010a). A total of 31 samples were
collected between mid-April to beginning of June 2011. The
spring research campaign was held between April, 2011 and
June, 2011 at Ny Ålesund in the Spitsbergen Island of Svalbard,
Norway (78◦56′N, 11◦52′E). The field site, a 50 m2 perimeter
with restricted access (to reduce contamination from human
sources), is located along the south coast of the Kongsfjorden,
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which is oriented SE-NW and open to the sea on the west side
(Supplementary Figure S1). We added a map in supporting
information. The Kongsfjorden was free of sea ice throughout
the campaign. Specific sampling dates can be found in the
chemistry table (see dataset at Supplementary Table S1). In
addition, different weather and snow conditions were monitored
over the sampling period (Supplementary Figure S2). Samples
for snow chemistry were collected, stored frozen, sent back to
the laboratory in France for analysis as described in Larose
et al. (2010a,b). Snow samples collected for microbiology were
processed immediately after collection in the field laboratory.
Samples were left to melt at room temperature prior to filtering
onto sterile 0.22 µM 47 mm filters (Millipore) using a sterile
filtration unit (Nalge Nunc International Corporation) and
filters were stored in Eppendorf tubes filled with the extraction
buffer from the PowerWater extraction kit (MoBio) at −20◦C
for further analysis. Samples for major ions and particles
were collected in sterile polycarbonate Accuvettes© sealed with
polyethylene caps. All samples were stored frozen (−20◦C) and
in the dark until analysis.

Chemical Analysis
Samples were melted in a class 100 clean room at LGGE-
CNRS laboratory (Grenoble, France). They were then transferred
into Dionex glass vials previously rinsed with ultra-pure
Millipore water (conductivity > 18.2 m�, TOC < 10 ng/g)
and analyzed less than 24 h after melting. Analyses were
performed by conductivity-suppressed ion chromatography
using a Dionex ICS 3000© apparatus and a Dionex AS40©
autosampler placed in the clean room facilities. Different
chemical parameters were measured during this study (e.g.,
major/minor ions, organic acids, and pH). Soluble anions
(methyl sulfonic acid (MSA), SO4, NO3, Cl) and cations (Na,
NH4, K, Mg, Ca) and organic acids were analyzed by ionic
chromatography (IC, Dionex ICS3000). AS/AG 11HC and
CS/CG 12A columns were used for anions and cations analyses,
respectively. All chemical analyses were carried out at on the
airOsol platform of the IGE laboratory in Grenoble, France.
This data set can be found in Supplementary Table S1. The
following parameters were used for statistical analyses [Organic
acids (oxalate, lactate, glutarate, propionate, succinate, formate,
acetate), NO3

−, NH4
+, SO4

2−, mercury, fluoride, calcium,
magnesium, bromide, strontium, lithium, sodium, chloride,
potassium, number of particles, methyl sulfonic acid (MSA)] and
pH. For values below the detection limit, we used the detection
limit divided by 2.

DNA Extraction and Sequencing
The DNA from 20 surface snow samples collected between
April and May 2011 (CH3N-1 to CH3N-37 or early spring ES)
and 16 surface snow samples collected from May to June 2011
(CH3N-40 to CH3N-76 or late spring LS) were extracted for
taxonomic analysis. Snow was melted at 4◦C before filtering
on 0.2 µm filters. DNA was extracted from filters using the
DNeasy PowerWater Kit (Qiagen) following the manufacturer’s
instructions. Then, the DNA was quantified using the QubitTM

dsDNA HS Assay Kit (Thermo Fisher Scientific) and the

V3–V4 regions of the 16S rRNA genes were amplified by
a PCR of 35 cycles at 92◦C 30 s, 55◦C 30 s and 72◦C. air
Forward primer is composed of the Illumina adapter 5′TC
GTCGGCAGCGTCAGATGTGTATAAGAGACAG coupled to
the 16s rRNA gene primer part CCTACGGGNGGCWGCAG
and Reverse primer is composed of the Illumina adapter 5′GT
CTCGTGGGCTCGGAGATGTGTATAAGAGACAG coupled to
the 16s rRNA gene primer part GACTACHVGGGTAT
CTAATCC. The 16S rRNA gene primers are from Klindworth
et al. (2013). Simultaneous adapter insertion and amplification
was performed using the Platinum PCR SuperMix (Invitrogen).
Libraries for 16S rRNA gene sequencing were prepared using the
16S rRNA gene Library Preparation Workflow recommended
by Illumina. Paired end sequencing was then carried out
on a MiSeq sequencer (Illumina) at the laboratory in Lyon.
Size of samples before and after clustering is provided in
Supplementary Table S2.

Eight samples (CH3N−1 to CH3N−10) collected between
April and May and twelve samples (CH3N-40 to CH3N-66)
collected between May and June underwent metagenomic and
metatranscriptomic sequencing. Not all samples were analyzed
for 16S rRNA genes as some of the metagenomic samples did not
have any DNA remaining for the 16S rRNA analysis. In addition,
we selected extra samples for the 16S rRNA gene based network
analysis. For the metatranscriptomic/metagenomic analyses, total
nucleic acids were extracted using PowerWater RNA isolation
kit (MoBio) following the manufacturer’s instructions, except
that the DNAse treatment step was omitted. The RNA fraction
of nucleic acids was then further purified using RNeasy kit
from Qiagen following the manufacturer’s instructions. cDNA
libraries were prepared from RNA using Tetro cDNA synthesis
kit (Bioline). DNA and cDNA samples were then amplified
using multiple displacement amplification with the illustraTM

GenomiPhiTM HS DNA Amplification Kit (GE Healthcare)
since concentrations were too low for library preparation
and sequenced using a Roche 454 Titanium pyrosequencer to
generate longer reads than illumina MiSeq. Not all samples had
sufficient amounts of DNA for sequencing, resulting unbalanced
groups (i.e., 8 for ES and 12 for LS). The reads produced
from the 454 were 350 bp ± 100 bp average fragment length
following quality filtering (Supplementary Figure S3). The depth
of sequencing for each sample is reported in Supplementary
Table S3. Sequences are publically available at ftp://ftp-adn.ec-
lyon.fr/Snow_organic_acids_bacterial_interactions.

Bioinformatic Pipeline for Quality
Filtering, de novo Clustering, and
16S rRNA Gene Annotation
We used USEARCH (v 9.2) and the UPARSE pipeline (Edgar,
2013) for quality filtering and clustering of our 16S rRNA gene
datasets (for details on parameters used see Supplementary
Material and also the provided script). We annotated the
representative sequence of each cluster using RDP classifier
(Wang et al., 2007) with a bootstrap threshold of 80%.
We normalized the OTU counts by using the R package
MetagenomeSeq (Paulson et al., 2013).
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Metagenomic and Metatranscriptomic
Annotation and Dataset Generation
The raw files from 454 pyrosequencing were processed using
Mothur (Schloss et al., 2009) for quality filtering with the settings
recommended in Schloss et al. (2011). FastQC (Andrews, 2010)
was also used to control for base overrepresentation. Some
remains of adapters were found and Usearch (Edgar, 2010)
was used to trim our sequences. The resulting.fastq files were
functionally annotated using EggNOG-Mapper (Huerta-Cepas
et al., 2017), based on eggNOG orthology data (Huerta-Cepas
et al., 2016), using the default parameters. The sequence searches
were performed using diamond (Buchfink et al., 2015). Resulting
annotations were imported into R (R Development Core Team,
2011) to build gene count tables. Reads annotated as eukaryotic
sequences were filtered out based on the tax id associated to
each sequence annotation using the R package taxize to obtain
a bacterial and archaeal dataset (Chamberlain and Szöcs, 2013).
The “Retrieve/ID mapping” function1 from uniprot was used to
convert the string ids (EggNOG) into uniprot protein names
to generate functional gene tables for each metagenomic and
metatranscriptomic dataset. The GO annotation associated to
these protein names was used for subsequent analyses.

Chemical/Molecular Biology Data
Analysis
The chemical data were evaluated for differences between sample
groups. Data were log transformed (except pH) and a PCA was
calculated using the ade4 package (Dray and Dufour, 2007) in
R. Co-inertia analysis (Dolédec and Chessel, 1994) was used to
test the impact of snow chemistry on bacterial communities using
the R package ade4 (Dray and Dufour, 2007). Chemical data sets
were compared to microbial taxonomy (OTU table 16S rRNA
gene at the genus level), metagenomes (gene annotation level
and EggNOG-Mapper annotations) and metatranscriptomes
(gene annotation level and EggNOG-Mapper annotations). The
significance of each co-inertia was tested using a permutation test
(10000 permutations).

ANOSIM Analysis
The OTU tables were processed with the ADONIS function from
the vegan (Dixon, 2003) package in R to carry out ANOSIM
(ANalysis Of SIMilarities) analysis. This is a non-parametric test
to detect whether more similarities exist between samples inside
a sampling group than with the rest of the dataset. We used this
method with a randomization test (10000 permutations) to test
for differences in similarity between the groups of samples from
early spring (ES) and late spring (LS).

Network Analysis With the OTUs
Based on the OTU tables generated previously with USEARCH
for ES and LS groups, a co-variance network was built. Prior to
building the network, a filtering step was used to remove OTUs
present in less than eight samples (50% of the samples used to
build each network). FastLSA (Durno et al., 2013), an improved

1http://www.uniprot.org/uploadlists/

version of LSA (Local Similarity Analysis) (Ruan, 2006) was used
to compute the networks. LSA has been shown by Weiss et al.
(2016) to detect significant co-variance on time series data. We
used a lag of zero and filtered out the results that were not
significant at the 95% confidence interval (p-val < 0.05). These
data were then imported into R and the packages igraph (Csardi
and Nepusz, 2006) and GGally, which is an extension from
ggplot2 (Wickham, 2009), were used to visualize the co-variance
networks obtained. After the network assembly, we compared
their respective densities.

Functional Analysis of Microbial
Communities
Metagenomes and metatranscriptomes were pooled into groups
based on chemical analysis and co-inertia results. Four groups
were determined: early spring (ES) metagenomes, early spring
(ES) metatranscriptomes, late spring (LS) metagenomes and
late spring (LS) metatranscriptomes. Annotation diversity and
differences in profiles between the genes retrieved in the
metagenomes and the metatranscriptomes of these groups were
compared with Venn diagrams using R package limma (Ritchie
et al., 2015). Differential protein gene abundance was compared
between the metagenomic profiles of the ES and LS groups
using the R package edgeR (Robinson et al., 2010). The p-value
was set at 0.05.

Plasmid Marker and Antibiotic Gene
Identification in Metagenomes and
Metatranscriptomes
Plasmid structural related protein names were identified by
retrieving the proteins annotated with the GO term id
GO:0005727 (extrachromosomal circular DNA). In addition, a
regular search of protein names using the keyword “plasmid”
was carried out. Antibiotic response GO terms were extracted
using a custom set of protein names retrieved from Uniprot
(Supplementary Table S4 for complete list). Protein names
annotated with the GO id GO:0017000 (antibiotic biosynthetic
process) were also used. To mine for antibiotic resistance
genes determinants (ARGDs) in both our metagenomic and
metatranscriptomic datasets, reads were also annotated using
Diamond blastx (Buchfink et al., 2015) against the CARD
database (McArthur et al., 2013). All the hits that were returned
with an e-value lower than 10−10, a z-score higher than 50
and a sequence similarity higher than 60% were considered as
significant. For all the annotations, the best hit method was
adopted to retrieve one unique annotation per read. Annotations
were normalized by the total read count from their respective
sample (after the removal of eukaryotic sequences from the
total read counts).

RESULTS

Snow Chemistry
Changes in snow chemical composition were monitored
during the spring sampling period (April to June 2011,
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Supplementary Table S1). The chemical composition in
early spring samples (ES) was different (PERMANOVA
p-value = 0.0015) than late spring samples (LS) as shown by
principal component analysis (PCA) (Figure 1). The difference
in the early and late spring samples was due to the increase
in most organic acids (acetate, oxalate, succinate and formate)
and a decrease in lactate concentrations in late spring as well as
changes in pH. Many inorganic salts (e.g., sulfate, bromide) were
at higher concentrations in the early spring samples.

Relationship Between Snow Chemistry
and Microbial Data During Early and Late
Spring
The co-variance of the chemistry and taxonomic datasets was
determined (co-inertia coefficient RV = 0.48, p-value = 0.01).
The co-inertia analysis did not highlight any clear relationship
between taxonomy and chemistry. The metagenomic and
metatranscriptomic relative abundances in different functional
classes also co-varied with snow chemistry (Table 1). The level

of annotation (i.e., proteins vs. gene onthology (GO) categories)
influenced their relative co-variance. The co-inertia coefficient
(RV) was the highest for metagenomic (vs. metatranscriptomic)
datasets when using the GO terms. The co-inertia plot was similar
to the PCA carried out using the chemistry data (Supplementary
Figure S4). We observed a separation between the samples from
the early and late spring along the first axis of the co-inertia
plot (Supplementary Figure S4). The chemical variables with the
highest influence on first axis of the co-structure were organic
acids (acetate, succinate, oxalate and formate and lactate), pH and
some major ions (fluoride, calcium). Similar to the OTU analysis,
no specific proteins were found to have a significantly higher
contribution to the co-inertia.

Bacterial Community Structure
After filtering of the 16S rRNA gene reads, the samples had
an average of 16 757 reads and a median of 8944 reads.
Based on the annotation of cluster seeds using RDP classifier,
the observed genera were mainly affiliated to Proteobacteria,

FIGURE 1 | Principal component analysis biplot from the snow chemical analyses of the samples used in this study. The different chemical variables considered in
this PCA are represented by vectors. The samples [black dots (early spring samples) and triangles (late spring samples)] are represented based on their respective
projections.
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TABLE 1 | Comparison of the different co-inertia calculated with the snow
chemistry of the different snow samples and the different datasets such as 16S
rRNA sequence clusters and the metagenomes/metatranscriptomes annotations
determined with the Eggnog mapper.

Dataset Annotation Co-inertia RV p-value

Metagenomes Genes id 0.44 0.033

GO terms 0.45 0.003

Kegg pathways 0.59 0.0002

Metatranscriptomes Genes id 0.43 0.072

GO terms 0.44 0.023

Kegg pathways 0.37 0.064

16S rRNA sequencing OTU 97% id 0.48 0.01

Cyanobacteria, Bacteroidetes, Acidobacteria, Firmicutes and
Actinobacteria. Linear correlation between individual variables
was low (R = 0.14) and the analysis of similarity (ANOSIM)
of the 16S rRNA gene derived OTUs from the early and late
spring samples had a p-value = 0.03 (perm = 10 000). SIMPER
analysis showed that the contribution from any individual OTU
to the observed between-groups dissimilarity never exceeded
0.4%. The core community (defined as the OTUs appearing in
more than 50% of the samples from one sampling period) from
the early spring appeared to be bigger than the one from the
late spring (59 vs. 29 OTUs with 17 shared OTUs between the
two periods) (Supplementary Table S5). This threshold of 50%
was based on the guidelines suggested by Weiss et al. (2016),
although different levels up to 80% were examined and these
higher values did not change the shared OTUs significantly. These
two core communities (59 and 29 OTUs) were then used to
build co-variance networks. The variations and annotation of the
OTUs varied between samples and time during the spring season
(Supplementary Figure S5).

Exploring Cooperation Using Interaction
Networks
More OTUs co-varied positively in the early spring (ES) network
than in the late spring (LS) network. The networks from early
spring and late spring shared three interactions (Figure 2;
red circles). The ES network displayed higher average node
connectivity, but had a lower modularity than the network
from the LS period (Table 2). The graph density and its
transitivity were higher in the LS network, while the average
edge betweenness and closeness were found to be higher in
the ES network. We also investigated to which extend the size
of the networks could be considered as different since the
core communities from which the networks were derived were
different in size (59 OTUs for ES vs. 29 OTUs for LS core
community) (Supplementary Table S5). To do so, we considered
the amount of interactions retrieved as positive in the respective
networks (59 vs. 10) and standardized it by the total amount
of possible interactions that were possible to build with their
respective input sets of OTUs (i.e., which corresponds to a
binomial coefficient computed for n = number of core OTUs
and k = 2). This comparison confirmed our initial findings since
the ratio of significant positive co-variances observed in each
network was higher for ES (0.034) as compared to LS (0.025).

Bacterial Community Function
We used the KEGG metabolic pathways obtained from the
EGGNOG annotations to determine the main metabolic
pathways in the snow metagenomes and metatranscriptomes.
The dominant pathways were similar for both metagenomes
and metatranscriptomes (Supplementary Tables S6, S7)
and were related to amino acid (i.e., arginine and proline
metabolism), nucleic acid (i.e., purine/pyrimidine metabolism)
and carbohydrate (butanoate, propionate and pyruvate)
metabolism/catabolism. Nitrogen metabolism, bacterial
chemotaxis, and ABC transporters were also present among
the most abundant pathways. Pathways related to vitamin
biosynthesis (i.e., folate biosynthesis), antibiotic metabolism
(i.e., streptomycin and vancomycin biosynthesis pathways),
methane metabolism, photosynthesis, cell motility (flagellar
assembly), DNA repair, polyunsaturated fatty acid metabolisms
as xenobiotic degradation (i.e., naphthalene, ketone) were
also identified in the metagenomes and metatranscriptomes.
Heatmaps with the 50 most abundant KEGG pathways in
our metagenomes and metatranscriptomes are shown in
Supplementary Figures S6, S7, respectively.

Bacterial Community Functional
Changes From Early (ES) to Late (LS)
Spring
Venn diagrams were constructed at the protein level (gene
product) and at the GO term level from the annotated
metagenomic and metatranscriptomic datasets. At both the
protein level and the GO level, a more diverse group of genes
was annotated for LS samples than for ES samples (Figure 3). The
metagenomes and metatranscriptomes in late spring shared more
genes between them than they did in early spring. In addition, the
overlap between early spring metatranscriptomes and late spring
metagenomes was larger than the overlap between early spring
metagenomes and early spring metatranscriptomes. The overlap
between early spring and late spring metatranscriptomes was
larger than the overlap between early spring metatranscriptomes
and metagenomes.

The GO categories that were more abundant in ES
metagenomes and metatranscriptomes were related to resistance
to chloramphenicol, plasmid maintenance, and cellular stress
like ribophagy and autophagy (see Supplementary Table S8 for
details). Among the GO categories that were more abundant in
LS metagenomes and metatranscriptomes, several were related to
lactate/oxalate catabolism and acetate and formate metabolism
as well as phosphate starvation (see Supplementary Table S9
for details). Some examples for acetate include cation/acetate
symporter (log FC 4.4, p-value 0.004) and acetyl-coenzyme
A synthetase (logFC 4.1, p-value 0.001). The proteins names
retrieved as being in relation with organic acid catabolism
were formyl-CoA:oxalate CoA-transferase (FCOCT) and formate
dehydrogenase (FDH). The tax ids from those genes were
from bacterial species from the Comamonadaceae and the
Ralstoniaceae, two families from the order of Burkholderiales.
Virus related terms (i.e., viral process and capsule organization)
were also more abundant in the late spring samples.

Frontiers in Microbiology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 2492

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02492 October 30, 2019 Time: 16:16 # 7

Bergk Pinto et al. Organic Acids Drive Bacterial Interactions

FIGURE 2 | Co-variance networks built from the OTU normalized counts from early spring (ES) and late spring (LS). Each dot represents an OTU (the colors
represent different phyla) and each black line represents a positive co-variance (considered as a surrogate of cooperation) and the two red lines in the ES networks
represent two negative co-variances (interpreted as a possible competitive interaction). The red circles highlight the interactions that both networks shared. The
average connectivity (average amount of positive co-variance a node possesses in a network) is higher in the ES network (=4) compared to the LS network (=1.82).
The modularity was higher in the LS network (0.72) than in the ES network (0.532).

TABLE 2 | The main network properties observed in the two co-variance networks
build from OTU clusters of 16S rRNA gene sequencing data.

Network property Early spring Late spring

Average node connectivity 4 1.82

Modularity 0.532 0.72

Graph density (group adhesion) 0.14 0.18

Networks connectivity (group cohesion) 1 0

Transitivity 0.48 1

Average node closeness (normalized) 0.28 0.11

Average edge betweenness 36.62 0

In total, 1463 proteins were shown to be significantly more
abundant in the metagenomic dataset from either of the two
sampling periods by EdgeR (see Supplementary Table S10 for
more abundant in ES and Supplementary Table S11 for more
abundant in LS for details) of which 125 were more abundant in
ES metagenomes (logfold < 0), while 1338 were more abundant
in LS metagenomes (logfold > 0) (Figure 4). The annotated
proteins that were most enriched in the ES metagenomes
with the largest logfold changes between early and late spring

were linked to chloramphenicol resistance (logFold = −11.5),
plasmid structure genes (logFold = −7.6) (Supplementary
Table S10 for details). Annotated proteins involved in plasmid
maintenance and plasmid partition were more abundant in
the early spring (Table 3). Annotated proteins that had the
largest logfold changes between late and early spring were linked
to environmental sensing (logFold = 7.6–8.3), a membrane-
transport protein (logFold = 8.1) and a putative exported
protein (logFold = 9.4). Antibiotic resistance proteins (tetR,
penicillin binding protein, bleomycin resistance, and macrolide
resistance) and proteins involved in antibiotic biosynthesis
(amidase) were more abundant in the late spring (Table 4).
Sequences related to viruses and chemotaxis were also observed
at higher abundances in LS metagenomes (Supplementary Table
S11 for details).

Changes in Antibiotic Resistance Gene
Determinants in the Snow
Using the CARD antibiotic resistance gene database (McArthur
et al., 2013), metagenomic and metatranscriptomic sequences
were annotated for antibiotic resistance genes. The number of
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FIGURE 3 | Venn diagrams displaying the functional overlap from the metagenomes (MG) and the metatranscriptomes (MT) from the early spring (ES) and the late
spring (LS) periods based on two different levels of annotations (using EGGNOG-mapper) retrieved using UNIPROT: (A) protein name level and (B) GO (gene
onthology) categories.

FIGURE 4 | Volcano plot displaying the protein names significantly enriched in early or late spring metagenomes compared to the other period. The log10 of the
p-value significance of the differential abundance study retrieved from edgeR is plotted as a function of the logFold change observed for the respective protein
names used in the study (filtered out for occurrences lower than two samples). The cutoff of p-val > 0.05 (log10(0.05) = 1.3) has been used in this study. The
plasmid structural protein names (replication proteins and toxin anti-toxin complex, considered as surrogate of bacterial cooperation) identified are plotted as blue
dots, the antibiotic resistance/synthesis protein names (surrogate of bacterial competition) are plotted as red dot. We plotted protein names related to viruses in
black and protein names related to chemotaxis and sensors as orange dots.

the different antibiotic resistance gene determinants (ARGDs)
was greater for the late spring samples and the overlap
between metagenomes and metatranscriptome ARGDs was
higher for the late spring samples (Supplementary Figure
S8). Both the number of metatranscriptomic sequences
annotated as ARGDs and the diversity of these genes
correlated to organic acid concentrations (Figure 5). The
annotated early spring taxonomy of the chloramphenicol
acetyl-transferase had two tax ids from the database

(Clostridium scindens and Pseudoflavonifractor capillosus).
For the late spring samples, the sequences annotated as
the putative amidase were assigned eight different taxa
ids (two strains of Pseudomonas fluorescens, Nocardia
farcinica, Gemmatimonas aurantiaca, Sinorhizobium fredii,
Rubrivivax benzoatilyticus, and Gordonia alkanivorans).
The sequences annotated as the protein MacB involved in
macrolide resistance was assigned to four different tax ids
(P. fluorescens, Stenotrophomonas maltophilia, Nostoc sp., and
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TABLE 3 | Protein names related to plasmid structure genes determined by edgeR as being significantly enriched in metagenomes from early spring (logFC < 0) or late
spring (logFC > 0).

Protein logFC logCPM P-value

Replication initiation protein (Protein E) (Protein rep) −9.193 12.645 1.62 × 10−15

Rep protein (Fragment) −7.600 11.182 1.288 × 10−11

Putative plasmid maintenance system antidote protein, XRE family −5.240 9.607 3 × 10−5

XRE family plasmid maintenance system antidote protein −4.397 9.255 0.001

Plasmid maintenance system killer −3.300 9.107 0.007

Plasmid recombination protein −2.041 10.565 0.027

Plasmid recombination protein.1 −2.041 10.565 0.027

Replication protein 3.517 11.551 0.0005

The logCPM represents the average abundance of the protein name across the whole dataset and is an indicator of how much signal was present in the dataset to test
the enrichment with edgeR.

TABLE 4 | Protein names related to antibiotic resistance or synthesis genes returned by edgeR as being significantly enriched in metagenomes from early spring
(logFC < 0) or late spring (logFC > 0).

Protein logFC logCPM P-value

Chloramphenicol acetyltransferase (EC 2.3.1.28) −11.509 14.915 5.50 × 10−21

Transcriptional regulator, TetR family 1.922 11.399 2.2 × 10−2

Beta-lactamase 2.168 10.564 2.4 × 10−2

Penicillin-binding protein 1B (PBP-1b) (PBP1b) (Murein polymerase) 2.471 9.616 0.036

Penicillin-binding protein 2 3.301 9.189 0.043

Glyoxalase/bleomycin resistance protein/dioxygenase 3.393 9.801 0.011

Macrolide export ATP-binding/permease protein MacB (EC 3.6.3.-) 3.807 9.312 0.017

Penicillin-binding protein 3.873 9.338 0.017

Putative amidase 6.663 10.997 3.15e – 06

The logCPM represents the log2 average abundance of the protein name across the whole dataset and is an indicator of how much signal was present in the dataset to
test the enrichment with edgeR.

Achromobacter insuavis). Interestingly, Pseudomonas was found
in the early spring interaction network and implicated in a
negative interaction.

DISCUSSION

Interactions Between Organic Acids and
Bacterial Communities in Snow
Among the different snow chemical parameters that were
tightly coupled to changes in microbial functions (metagenomic)
(Table 1), total measured organic acid concentration ranged
from around 3 ppb to over 2000 ppb (see Supplementary
Table S1). For samples that had metagenomic sequencing
performed, the total organic acids ranged from 6ppb to
350 ppb (see Figure 5). Increases in organic acid concentrations
were previously observed in Svalbard (Larose et al., 2013)
and Greenland snow (Twickler et al., 1986). We also saw
an increase in genes related to organic acid metabolism
(e.g., acetate catabolism) in LS metatranscriptomes, which
could reflect an active response of the snow community.
Metatranscriptomes might provide a sensitive and rapid
indicator of environmental signals while metagenomes might
be more representative of changes over longer periods of
time in relation to their chemical environment. The late

spring protein-coding genes (both from metagenomic and
metatranscriptomic data sets) overlapped more with the
metatranscriptomes from the early spring than with the
metagenomes from the early spring (Figure 3). These trends
were also observed at the GO term annotation level. This pattern
might indicate that some of the low abundance active taxa
from the early spring season (not observed in the metagenomes
but observed in the metatranscriptomes from early spring)
became dominant during the late spring season (observed in
the late spring metagenomes) and stayed active during this
period (also present in late spring metatranscriptomes). This
was consistent with the associated taxonomy based on the
functional gene annotation where taxa observed only in the early
metatranscriptomes but not in the metagenomes that were also
retrieved in the late spring metagenomes and metatranscriptomes
(Supplementary Figure S9).

Bacterial Communities of the Snow Shift
From Cooperation Toward Competition
as Organic Acid Levels Increased
Plasmids might be involved in cooperative interactions and
could serve as a marker for microbial collaboration. For example,
genes coding for public goods were preferentially located on
mobile elements or close to integrases when incorporated
into genomes (Nogueira et al., 2009; Mc Ginty et al., 2011).
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FIGURE 5 | Antibiotic resistance genes (ARGD) transcription annotated from the metatranscriptome datasets (MT) vs. the total sum of organic acids amounts
measured in the snow samples (black dot, early spring samples and black triangle, late spring samples). The numbers display the amount of different ARGD genes
annotated in each sample. A Spearman correlation between ARGD transcription and total organic acids concentration had a rho = 0.57 and a p-value = 0.010.

In addition, conjugation and gene transfer through plasmids
were associated with bacterial cooperation (Dimitriu et al.,
2014). Gene transfer might drive cooperation among
bacteria by increasing their genetic similarity that would
select cooperative behavior via kin selection (Nogueira
et al., 2009). The sequences related to plasmid structural
proteins were more abundant in early spring metagenomes
than in late spring when the organic acid concentrations
were higher. While this does not show causality, it is
consistent with the hypothesis that organic acids might
impact microbial interactions.

Antibiotics might be proxies for bacterial competition
and their related marker genes (production and resistance)
have been used to track bacterial interference competition
(Ponce-Soto et al., 2015; Goordial et al., 2017). In our study,
sequences annotated as antibiotic resistance and secretion
proteins were more abundant in late spring metatranscriptomes
and metagenomes (Figure 4). Sequences annotated as putative
amidase, penicillin amidase, and penicillin amylase were
only observed in the late spring metagenomes. These
proteins are known to be involved in some derivatives
of penicillin and lactone biosynthesis; this last molecule
is one of the main constituents of macrolide antibiotics
(Omura, 2002). We correlated an increase in the number
and diversity of antibiotic resistant gene determinants to
an increase of organic acid content in the snow (Figure 5).
Competition might increase as the environment becomes
richer in organic acids and result in bacterial communities

actively transcribing genes for an increasingly diverse set
of ARGDs. While antibiotic resistance is also sometimes
associated with cooperative traits (Cordero et al., 2012),
the diversity of antibiotic genes would be low as the entire
community shares the public good. In our data sets, only
early spring samples had low antibiotic gene diversity (see
Table 4), which might be compatible with the hypothesis of
antibiotics secreted as a public good to protect the whole
cooperative community.

Physical changes of the snowpack might also induce a shift
from cooperation to competition. As the season progressed,
the snowpack became gradually warmer and wetter. This
likely increased motility of the bacterial population within the
snow as indicated by an increase in the relative abundance
of proteins related to chemotaxis and motility (i.e., receptors,
flagella) in late spring samples (Supplementary Tables S9, S10).
A decrease in the environmental stratification of the snow
ecosystem with observed changes in snow crystal morphology
(from faceted crystals to rounded ones) and a loss of snow
layers was also apparent throughout the entire spring period.
Several studies have shown that bacterial cooperation was
counter-selected when the stratification of the environment
decreased to the benefit of competitive bacterial strains (F. J. H.
Kümmerli et al., 2009; Hol et al., 2013, 2015). The transition
from a cold dry snowpack to a warmer wetter one might
have led to increased habitat mixing among micro-organisms.
Increased mixing could increase the viral-microbial contact,
which would lead to increased infection rate (Ashby et al., 2014;
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Simmons et al., 2018). This possible increased infection rate was
consistent with the increased viral related sequences and GO
terms in late spring metagenomes (Supplementary Tables S9,
S11 for details).

Microbial Networks Respond to the Shift
of Cooperation Toward Competition
Co-variance networks have been used recently to study bacterial
interactions and two network characteristics, connectivity and
modularity, were considered as proxies for cooperation and
competition, respectively. The early spring (ES) network had
a higher average connectivity than the late spring network
(Figure 2 and Table 2). This was further confirmed by
the higher ratio observed between the positive interactions
retrieved in the ES network and all the possible interactions
than the same ratio for the LS network. We also compared
the intensity of the respective co-variances observed in these
two networks by looking at their respective local spatial
autocorrelation (LSA) coefficients (similar to a correlation
coefficient with values between 0 and 1 for positive co-
variances) and did not observe any significant differences
in their distribution [between 0.81 and 0.91 (Supplementary
Figure S10)]. Higher average connectivity can be interpreted
as a marker of cooperation within the early spring bacterial
community. This property is also related to an increased
resistance to change (local resilience) since the presence of
several organisms within the network can contribute to resisting
to local perturbations (Scheffer et al., 2012). In the context
of positive bacterial interactions, metabolic exchanges between
the different members of the community could enhance
the resilience of the cooperative strains when the nutrient
composition changes. As shown by Benomar et al. (2015),
nutrient stress can induce metabolic exchanges between two
bacterial strains. However, once perturbations are too great, the
whole network structure can be transformed (Scheffer et al.,
2012). The overlap between the covariance networks of early
and late spring communities was low (only two interactions,
see Figure 2), even though their core communities overlapped
by more than 50% of the OTUs (Supplementary Table S5).
The changes in nutrients over a short period of time and
the decrease in environmental stratification might have led to
the differences in the positive interaction networks for the
bacterial communities from early and late spring snow (Figure 2
and Table 2).

The late spring network displayed a higher modularity than
the early spring network. High modularity is linked to a higher
adaptive capacity, since the network is more heterogeneous
(Scheffer et al., 2012). This network configuration could be more
advantageous in a dynamic environment where perturbations
are more intense. An increase in environmental perturbations
has also been associated with a decline in cooperation (Wilson
et al., 2017). This effect was explained by a trade-off between
access to nutrients (enhanced by spatial perturbations) and access
to an auto-inducer to initiate cooperation (decreased by spatial
perturbations) (Wilson et al., 2017). In our data, we observed
more GO terms related to stress (mainly due to antibiotics and

viruses but also to oxidative and osmotic stress) in the late spring
metagenomes relative to the early spring metagenomes.

CONCLUSION

Increase in organic acid concentrations in the snow might
have influenced bacterial interactions and led to a shift from
cooperation to competition. Several other correlations were
observed between community response and environmental
chemical parameters. Physical changes of the snow structure
leading to decreased stratification and increased mixing might
have also contributed. Using a combined method of marker
genes and network analysis, we evaluated bacterial interactions in
the complex snow microbial communities. Future work should
include controlled laboratory studies with snow enriched with
organic acids to confirm the trends observed in this field study.
In addition, we need to increase our knowledge of genetic
markers of microbial interactions since the number of genes
currently used to track cooperation and competition is still small
and controversial.
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